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Metro Maps – Metro Lines

Previous work, e.g. [Nöllenburg and Wolff, 2011]
with focus on drawing underlying graph
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Metro Line Crossing Minimization

Insert all lines L into embedded graph G = (V ,E ) such that ...

the number of crossings is minimized.

crossings are placed on edges if possible.

7

We assume that . . .
lines are simple paths.
lines intersect in paths.
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Problem Variants

MLCM: line ends placed freely

MLCM-P: line ends placed outermost

MLCM-PA: side assignment for line ends

equivalent: line ends in
degree-1 vertices
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MLCM – NP-hardness

MLCM-P is hard on paths.

MLCM is trivial on paths.

Show hardness on caterpillars by reduction from MLCM-P.

`︷ ︸︸ ︷
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MLCM – Crossing-free solutions

avoidable crossings

unavoidable crossings

We show:
crossing-free solution exists ⇔ no unavoidable crossing
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Main results:

– MLCM is NP-hard.

– O(
√

log |L|)-approximation for MLCM-P

Additional results:

– MLCM + MLCM-P: check for crossing-free solution

– MLCM-P: Checking for solution with ≤ k crossings is
fixed-parameter tractable.

– a restricted version of MLCM-P can be solved efficiently



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

lv = true



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

lv = true lv = false



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v l ′

l
crossing can be avoided



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v l ′

l
crossing can be avoided



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v l ′

l
crossing can be avoided



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v l

l ′

crossing cannot be avoided



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u vl ′

l



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u vl ′

l



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u vl ′

l
crossing can be avoided



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

l ′

l



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

no crossing ⇔ lu ≡ lvl ′

l



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

no crossing ⇔ lu ≡ lvl ′

l ↔ (lu ∨ ¬lv ) ∧ (¬lu ∨ lv )



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

l ′
l



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v
l ′

l



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

l ′ l no crossing ⇔ lu 6≡ l ′v



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

l ′ l no crossing ⇔ lu 6≡ l ′v

↔ (lu ∨ l ′v ) ∧ (¬lu ∨ ¬l ′v )



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v l ′

l



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

l

l ′

no crossing ⇔ lu ≡ true



/1713

MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

lv = true lv = false

u v

l

l ′

no crossing ⇔ lu ≡ true

↔ (lu)
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MLCM-P – 2SAT model

variable lv models side of line end at node v

analyze pairs of lines

note: replace lu by ¬lu if necessary for consistent meaning of
“top”

checking for crossing-free solution in O(|L|2) time

lv = true lv = false

u v

l

l ′

no crossing ⇔ lu ≡ true

↔ (lu)
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MLCM-P – Approximation

check for unavoidable crossings

build 2SAT model

k avoidable crossings ↔ k unsatisfied crossing formulas

k avoidable crossings ↔ k unsatisfied clauses

O(
√

log n)-approximation for Min 2CNF Deletion ⇒
O(

√
log |L|)-approximation for MLCM-P

similarly: MLCM-P is fixed-parameter tractable.

at least one clause satisfied

(lu ∨ ¬lv ) ∧ (¬lu ∨ lv )
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Main results:

– MLCM is NP-hard.

– O(
√

log |L|)-approximation for MLCM-P

Additional results:

– MLCM + MLCM-P: check for crossing-free solution

– MLCM-P: Checking for solution with ≤ k crossings is
fixed-parameter tractable.

– a restricted version of MLCM-P can be solved efficiently
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Proper MLCM-P

no line is subpath of another line 7
consistent line directions

7 7
global “top”/“bottom”

no equality crossing formulas lu ≡ lv

can solve Min 2CNF Deletion efficiently by MIN UNCUT
model

⇒ polynomial-time algorithm for Proper MLCM-P
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Conclusion & Open Questions

MLCM is NP-hard.

O(
√

log |L|)-approximation for MLCM-P

Open questions:

Proper MLCM-P with consistent directions can be solved
efficiently.

approximation for MLCM
constant-factor approximation for MLCM-P
FPT for #lines per edge

Thank you!
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