Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases

Martin Fink
Lehrstuhl für Informatik I
Universität Würzburg

Joint work with Sergey Pupyrev

Metro Maps - Bordeaux

Metro Maps - Paris

Metro Maps - Metro Lines

Metro Maps - Metro Lines

Previous work, e.g. [Nöllenburg and Wolff, 2011] with focus on drawing underlying graph

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

- the number of crossings is minimized.

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

- the number of crossings is minimized.
- crossings are placed on edges if possible.

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

- the number of crossings is minimized.
- crossings are placed on edges if possible.

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

- the number of crossings is minimized.
- crossings are placed on edges if possible.

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

- the number of crossings is minimized.
- crossings are placed on edges if possible.

Metro Line Crossing Minimization

Insert all lines L into embedded graph $G=(V, E)$ such that \ldots

- the number of crossings is minimized.
- crossings are placed on edges if possible.

We assume that ...

- lines are simple paths.
- lines intersect in paths.

Problem Variants

- MLCM: line ends placed freely

Problem Variants

- MLCM: line ends placed freely

- MLCM-P: line ends placed outermost

Problem Variants

- MLCM: line ends placed freely

- MLCM-P: line ends placed outermost

- MLCM-PA: side assignment for line ends

equivalent: line ends in degree-1 vertices

Previous Work

- MLCM: single edge: $O\left(|L|^{2}\right)$ time [Benkert et al., GD'06] more complex graphs: complexity open

Previous Work

- MLCM: single edge: $O\left(|L|^{2}\right)$ time [Benkert et al., GD'06] more complex graphs: complexity open
- MLCM-P:
- NP-hard on paths [Bekos et al., GD'07]

Previous Work

- MLCM: single edge: $O\left(|L|^{2}\right)$ time [Benkert et al., GD'06] more complex graphs: complexity open
- MLCM-P:
- NP-hard on paths
[Bekos et al., GD'07]
- solution by ILP

Previous Work

- MLCM: single edge: $O\left(|L|^{2}\right)$ time [Benkert et al., GD'06] more complex graphs: complexity open
- MLCM-P:
- NP-hard on paths
- solution by ILP
[Bekos et al., GD'07]
[Asquith et al., 2008]
- MLCM-PA:
- polynomial-time algorithms by [Asquith et al., 2008],
[Argyriou et al., GD'08], and [Nöllenburg, GD'09]

Previous Work

- MLCM: single edge: $O\left(|L|^{2}\right)$ time [Benkert et al., GD'06] more complex graphs: complexity open
- MLCM-P:
- NP-hard on paths
- solution by ILP
[Bekos et al., GD'07]
[Asquith et al., 2008]
- MLCM-PA:
- polynomial-time algorithms by [Asquith et al., 2008],
[Argyriou et al., GD'08], and [Nöllenburg, GD'09]
- linear-time algorithm
[Pupyrev et al., GD'11]

Previous Work

- MLCM: single edge: $O\left(|L|^{2}\right)$ time [Benkert et al., GD'06] more complex graphs: complexity open
- MLCM-P:
- NP-hard on paths
- solution by ILP
[Bekos et al., GD'07]
[Asquith et al., 2008]
- MLCM-PA:
- polynomial-time algorithms by [Asquith et al., 2008],
[Argyriou et al., GD'08], and [Nöllenburg, GD'09]
- linear-time algorithm
- "block crossings"

[Pupyrev et al., GD'11]
[Fink and Pupyrev, 2013]

Previous Work

- MLCM: single edge: $O\left(|L|^{2}\right)$ time [Benkert et al., GD'06] more complex graphs: complexity open
- MLCM-P:
- NP-hard on paths
[Bekos et al., GD'07]
- solution by ILP
- MLCM-PA:
- polynomial-time algorithms by [Asquith et al., 2008],
[Argyriou et al., GD'08], and [Nöllenburg, GD'09]
- linear-time algorithm
- "block crossings"

[Pupyrev et al., GD'11]
[Fink and Pupyrev, 2013]

Our results

- Main results:
- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P

Our results

- Main results:
- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Additional results:
- MLCM + MLCM-P: check for crossing-free solution

Our results

- Main results:
- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Additional results:
- MLCM + MLCM-P: check for crossing-free solution
- MLCM-P: Checking for solution with $\leq k$ crossings is fixed-parameter tractable.

Our results

- Main results:
- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Additional results:
- MLCM + MLCM-P: check for crossing-free solution
- MLCM-P: Checking for solution with $\leq k$ crossings is fixed-parameter tractable.
- a restricted version of MLCM-P can be solved efficiently

Our results

- Main results:
- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Additional results:
- MLCM + MLCM-P: check for crossing-free solution
- MLCM-P: Checking for solution with $\leq k$ crossings is fixed-parameter tractable.
- a restricted version of MLCM-P can be solved efficiently

MLCM - NP-hardness

- MLCM-P is hard on paths.

MLCM - NP-hardness

- MLCM-P is hard on paths.

MLCM - NP-hardness

- MLCM-P is hard on paths.
- MLCM is trivial on paths.

MLCM - NP-hardness

- MLCM-P is hard on paths.
- MLCM is trivial on paths.
- Show hardness on caterpillars by reduction from MLCM-P.

MLCM - NP-hardness

- MLCM-P is hard on paths.
- MLCM is trivial on paths.
- Show hardness on caterpillars by reduction from MLCM-P.

MLCM - NP-hardness

- MLCM-P is hard on paths.

- MLCM is trivial on paths.
- Show hardness on caterpillars by reduction from MLCM-P.

MLCM - NP-hardness

MLCM - NP-hardness cont'd

MLCM - NP-hardness cont'd

MLCM - NP-hardness cont'd

MLCM - NP-hardness cont'd

MLCM - NP-hardness cont'd

MLCM - NP-hardness cont'd

MLCM - NP-hardness cont'd

MLCM - NP-hardness cont'd

O good solutions are feasible for MLCM-P

MLCM - NP-hardness cont'd

O good solutions are feasible for MLCM-P

MLCM - NP-hardness cont'd

black/black, red/black \& red/red crossings

O good solutions are feasible for MLCM-P

MLCM - NP-hardness cont'd

black/black, red/black \& red/red crossings

- good solutions are feasible for MLCM-P

MLCM - NP-hardness cont'd

black/black, red/black \& red/red crossings

O good solutions are feasible for MLCM-P

- 1:1 correspondence of crossing-minimal solutions

MLCM - NP-hardness cont'd

O good solutions are feasible for MLCM-P

- 1:1 correspondence of crossing-minimal solutions

MLCM - NP-hardness cont'd

- good solutions are feasible for MLCM-P
- 1:1 correspondence of crossing-minimal solutions

MLCM - NP-hardness cont'd

black/black, red/black \& red/red crossings

O good solutions are feasible for MLCM-P

- 1:1 correspondence of crossing-minimal solutions

MLCM - Crossing-free solutions

- avoidable crossings

MLCM - Crossing-free solutions

- avoidable crossings

- unavoidable crossings

MLCM - Crossing-free solutions

- avoidable crossings

- unavoidable crossings

- We show:
crossing-free solution exists \Leftrightarrow no unavoidable crossing
- Main results:
- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Additional results:
- MLCM + MLCM-P: check for crossing-free solution
- MLCM-P: Checking for solution with $\leq k$ crossings is fixed-parameter tractable.
- a restricted version of MLCM-P can be solved efficiently

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v $\xlongequal{\square=} I_{V}=$ true

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v $\xlongequal{\square} I_{V}=$ true

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

crossing can be avoided

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

crossing can be avoided

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

crossing can be avoided

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

crossing cannot be avoided

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

crossing can be avoided

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

no crossing $\Leftrightarrow I_{u} \equiv I_{V}$

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

no crossing $\Leftrightarrow I_{u} \equiv I_{V}$
$\leftrightarrow\left(I_{u} \vee \neg I_{v}\right) \wedge\left(\neg I_{u} \vee I_{v}\right)$

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

- analyze pairs of lines

no crossing $\Leftrightarrow I_{u} \not \equiv I_{v}^{\prime}$

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

- analyze pairs of lines

no crossing $\Leftrightarrow I_{u} \not \equiv I_{v}^{\prime}$
$\leftrightarrow\left(I_{u} \vee I_{v}^{\prime}\right) \wedge\left(\neg I_{u} \vee \neg I_{v}^{\prime}\right)$

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

no crossing $\Leftrightarrow I_{u} \equiv$ true

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

no crossing $\Leftrightarrow I_{u} \equiv$ true
$\leftrightarrow\left(I_{u}\right)$

MLCM-P - 2SAT model

- variable I_{v} models side of line end at node v

O analyze pairs of lines

no crossing $\Leftrightarrow I_{u} \equiv$ true
$\leftrightarrow\left(I_{u}\right)$

- checking for crossing-free solution in $O\left(|L|^{2}\right)$ time note: replace I_{U} by $\neg I_{U}$ if necessary for consistent meaning of "top"

MLCM-P - Approximation

- check for unavoidable crossings
- build 2SAT model

MLCM-P - Approximation

- check for unavoidable crossings
- build 2SAT model
- k avoidable crossings $\leftrightarrow k$ unsatisfied crossing formulas

MLCM-P - Approximation

- check for unavoidable crossings
- build 2SAT model
- k avoidable crossings $\leftrightarrow k$ unsatisfied crossing formulas

$$
\left(I_{u} \vee \neg I_{v}\right) \wedge\left(\neg I_{\mathrm{u}} \vee I_{\mathrm{V}}\right)
$$

MLCM-P - Approximation

- check for unavoidable crossings
- build 2SAT model
- k avoidable crossings $\leftrightarrow k$ unsatisfied crossing formulas

$$
\left(I_{u} \vee \neg I_{v}\right) \wedge\left(\neg I_{u} \vee I_{V}\right)
$$

- k avoidable crossings $\leftrightarrow k$ unsatisfied clauses

MLCM-P - Approximation

- check for unavoidable crossings
- build 2SAT model
- k avoidable crossings $\leftrightarrow k$ unsatisfied crossing formulas

$$
\left(I_{\mathrm{u}} \vee \neg I_{\mathrm{v}}\right) \wedge\left(\neg I_{\mathrm{u}} \vee I_{\mathrm{v}}\right)
$$

at least one clause satisfied

- k avoidable crossings $\leftrightarrow k$ unsatisfied clauses
- $O(\sqrt{\log n})$-approximation for Min 2CNF Deletion \Rightarrow $O(\sqrt{\log |L|})$-approximation for MLCM-P

MLCM-P - Approximation

- check for unavoidable crossings
- build 2SAT model
- k avoidable crossings $\leftrightarrow k$ unsatisfied crossing formulas

$$
\left(I_{u} \vee \neg I_{v}\right) \wedge\left(\neg I_{\mathrm{u}} \vee I_{\mathrm{v}}\right)
$$

at least one clause satisfied

- k avoidable crossings $\leftrightarrow k$ unsatisfied clauses
- $O(\sqrt{\log n})$-approximation for Min 2CNF Deletion \Rightarrow $O(\sqrt{\log |L|})$-approximation for MLCM-P
- similarly: MLCM-P is fixed-parameter tractable.
- Main results:
- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Additional results:
- MLCM + MLCM-P: check for crossing-free solution
- MLCM-P: Checking for solution with $\leq k$ crossings is fixed-parameter tractable.
- a restricted version of MLCM-P can be solved efficiently

Proper MLCM-P

- no line is subpath of another line

Proper MLCM-P

- no line is subpath of another line

O consistent line directions

Proper MLCM-P

- no line is subpath of another line

O consistent line directions

Proper MLCM-P

- no line is subpath of another line

O consistent line directions

○ global "top" / "bottom"

Proper MLCM-P

- no line is subpath of another line
- consistent line directions

global "top" / "bottom"
- no equality crossing formulas $I_{U} \equiv I_{V}$

Proper MLCM-P

- no line is subpath of another line

O consistent line directions

global "top" / "bottom"

- no equality crossing formulas $I_{U} \equiv I_{V}$
- can solve Min 2CNF Deletion efficiently by MIN UNCUT model

Proper MLCM-P

- no line is subpath of another line

O consistent line directions

- global "top" / "bottom"
- no equality crossing formulas $I_{U} \equiv I_{V}$
- can solve Min 2CNF Deletion efficiently by MIN UNCUT model
$0 \Rightarrow$ polynomial-time algorithm for Proper MLCM-P

Conclusion \& Open Questions

- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Proper MLCM-P with consistent directions can be solved efficiently.

Conclusion \& Open Questions

- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Proper MLCM-P with consistent directions can be solved efficiently.

Open questions:
O approximation for MLCM

- constant-factor approximation for MLCM-P
- FPT for \#lines per edge

Conclusion \& Open Questions

- MLCM is NP-hard.
- $O(\sqrt{\log |L|})$-approximation for MLCM-P
- Proper MLCM-P with consistent directions can be solved efficiently.

Open questions:

- approximation for MLCM
- constant-factor approximation for MLCM-P
- FPT for \#lines per edge

Thank you!

