Selecting the Aspect Ratio of a Scatter Plot

Based on Its Delaunay Triangulation

Martin Fink
Lehrstuhl für Informatik I
Universität Würzburg

Joint work with

Jan-Henrik Haunert, Joachim Spoerhase \& Alexander Wolff

Scatter Plots ...

- ... reveal trends ...

Scatter Plots ...

- ... reveal trends ...
- ... or clusters.

Scatter Plots

- ... reveal trends ...
- ... or clusters.
- ... are most-frequently used visualizations in scientific publications.

Scatter Plots ...

- ... reveal trends ...
- . . . or clusters.
- ... are most-frequently used visualizations in scientific publications.
- .. . heavily rely on the chosen aspect ratio.

WHENEVER SOMEONE UPLOADS A LETTERBOXED 16:9 VDEO RESCALED TO 4:3, I DO THIS TO THER CAR.

Scatter Plots ...

- ... reveal trends ...
- . . . or clusters.
- ... are most-frequently used visualizations in scientific publications.
- ... heavily rely on the chosen aspect ratio.

Scatter Plots

Scatter Plots ...

- ... reveal trends ...
- ... or clusters.
- ... are most-frequently used visualizations in scientific publications.
- .. . heavily rely on the chosen aspect ratio.

Scatter Plots

- ... reveal trends ...
- ... or clusters.
- ... are most-frequently used visualizations in scientific publications.
- ... heavily rely on the chosen aspect ratio.

Scatter Plots

- ... reveal trends ...
- ... or clusters.
- ... are most-frequently used visualizations in publications.
- ... heavily rely on the chosen aspect ratio.

Scatter Plots

- . . . reveal trends ...
- ... or clusters.
- ... are most-frequently used visualizations in scientific publications.
[Tufte, 2001]
- ... heavily rely on the chosen aspect ratio.

Scatter Plots . . .

- ... reveal trends ...
- ... or clusters.
- ... are most-frequently used visualizations in scientific publications.
[Tufte, 2001]
- ... heavily rely on the chosen aspect ratio.

task:
automatically select a good aspect ratio

Previous Work

- aspect-ratio selection for line charts

Previous Work

- aspect-ratio selection for line charts

e.g. banking to $45^{\circ} \quad[$ Heer + Agrawala, 2006]
- [Cleveland et al., 1988] suggest to use virtual line segments

Previous Work

- aspect-ratio selection for line charts

e.g. banking to $45^{\circ} \quad$ [Heer + Agrawala, 2006]
- [Cleveland et al., 1988] suggest to use virtual line segments
- [Talbot et al., 2011]: use contour lines from kernel density estimator

Previous Work

- aspect-ratio selection for line charts

e.g. banking to $45^{\circ} \quad[H e e r+$ Agrawala, 2006]
- [Cleveland et al., 1988] suggest to use virtual line segments
- [Talbot et al., 2011]: use contour lines from kernel density estimator

results depend on initial aspect ratio

Our Approach

- measure quality of different aspect ratios independently

Our Approach

- measure quality of different aspect ratios independently
- use the Delaunay triangulation

Our Approach

- measure quality of different aspect ratios independently
- use the Delaunay triangulation
- optimization criteria:
- maximize smallest angle

Our Approach

- measure quality of different aspect ratios independently
- use the Delaunay triangulation
- optimization criteria:
- maximize smallest angle
- minimize total edge length
- optimize compactness of triangles
- etc.

Definitions

point Set $P=\left\{p_{1}, \ldots, p_{n}\right\}$
point $p_{i}=\left(x_{i}, y_{i}\right)$

Definitions

- point Set $P=\left\{p_{1}, \ldots, p_{n}\right\}$
- point $p_{i}=\left(x_{i}, y_{i}\right)$
- scale factor s defines aspect-ratio

Definitions

- point Set $P=\left\{p_{1}, \ldots, p_{n}\right\}$

0 point $p_{i}=\left(x_{i}, y_{i}\right)$

- scale factor s defines aspect-ratio

$$
p_{i}(s)=\left(\quad x_{i}, \quad s \cdot y_{i}\right)
$$

Definitions

- point Set $P=\left\{p_{1}, \ldots, p_{n}\right\}$

0 point $p_{i}=\left(x_{i}, y_{i}\right)$

- scale factor s defines aspect-ratio

$$
p_{i}(s)=\left(1 / \sqrt{s} \cdot x_{i}, \sqrt{s} \cdot y_{i}\right)
$$

preserve the area

Definitions

point Set $P=\left\{p_{1}, \ldots, p_{n}\right\}$
point $p_{i}=\left(x_{i}, y_{i}\right)$

- scale factor s defines aspect-ratio

$$
p_{i}(s)=\left(1 / \sqrt{s} \cdot x_{i}, \sqrt{s} \cdot y_{i}\right)
$$

preserve the area

First Idea

aspect ratio s

First Idea

- discretize into k aspect ratios

First Idea

- discretize into k aspect ratios
- independently
- compute Delaunay triangulation
- measure quality

First Idea

- discretize into k aspect ratios
- independently
- compute Delaunay triangulation
- measure quality
- select best checked aspect ratio

First Idea

- discretize into k aspect ratios
- independently
$\begin{array}{ll}\text { - compute Delaunay triangulation } & \Theta(n \log n) \\ \text { - measure quality } & \Theta(n)\end{array}$
- select best checked aspect ratio

First Idea

- discretize into k aspect ratios
- independently
$\begin{array}{ll}\text { - compute Delaunay triangulation } & \Theta(n \log n) \\ \text { - measure quality } & \Theta(n)\end{array}$
- select best checked aspect ratio
- runtime: $\Theta(k n \log n)$

First Idea

- discretize into k aspect ratios
- independently
$\begin{array}{ll}\text { - compute Delaunay triangulation } & \Theta(n \log n) \\ \text { - measure quality } & \Theta(n)\end{array}$
- select best checked aspect ratio
- runtime: $\Theta(k n \log n)$
- approximation? which intermediate ratios?

Overview

1. Maintaining the Delaunay Triangulation
2. Maximizing the Smallest Angle
3. Minimizing the Total Edge Length
4. Other Optimization Criteria

1. Maintaining the Delaunay Triangulation

aspect ratio s

- start at some s

1. Maintaining the Delaunay Triangulation

aspect ratio s

- start at some s
- compute Delaunay triangulation

1. Maintaining the Delaunay Triangulation

aspect ratio s

- start at some s
- compute Delaunay triangulation
- continuously change s

1. Maintaining the Delaunay Triangulation

aspect ratio s

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform flips if necessary

1. Maintaining the Delaunay Triangulation

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform flips if necessary

criterion: empty circumcircle of 4 points easy to check

1. Maintaining the Delaunay Triangulation

aspect ratio s

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform flips if necessary

1. Maintaining the Delaunay Triangulation

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform flips if necessary
- go through all flips

1. Maintaining the Delaunay Triangulation

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform flips if necessary
- go through all flips

1. Maintaining the Delaunay Triangulation f.

- sweep over possible aspect ratios
- handle event queue of edge flips

1. Maintaining the Delaunay Triangulation f.

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes $O(\log n)$ time

1. Maintaining the Delaunay Triangulation f.

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes $O(\log n)$ time
[Roos, 1993]
$O\left(n^{2+\epsilon}\right)$ flips
[Rubin, 2012]

1. Maintaining the Delaunay Triangulation f.

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes $O(\log n)$ time
[Roos, 1993] here: at most 2 flips per possible edge
$O\left(n^{2}\right)$ flips
[Rubin, 2012]

1. Maintaining the Delaunay Triangulation f.

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes $O(\log n)$ time
[Roos, 1993] here: at most 2 flips per possible edge
$O\left(n^{2}\right)$ flips
[Rubin, 2012]

1. Maintaining the Delaunay Triangulation f.

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes $O(\log n)$ time
[Roos, 1993] here: at most 2 flips per possible edge
$O\left(n^{2}\right)$ flips
[Rubin, 2012]

1. Maintaining the Delaunay Triangulation f.

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes $O(\log n)$ time here: at most 2 flips per possible edge
- $O\left(n^{2}\right)$ flips

1. Maintaining the Delaunay Triangulation f.

aspect ratio s

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes $O(\log n)$ time
[Roos, 1993] here: at most 2 flips per possible edge
- $O\left(n^{2}\right)$ flips
[Rubin, 2012]
- total runtime: $O\left(n^{2} \log n\right)$ for traversing all topologically different Delaunay triangulations

2. Maximizing the Smallest Angle

- optimize between event points

2. Maximizing the Smallest Angle

aspect ratios $\& \rightarrow+\underbrace{\square+1 / H} \rightarrow$

- optimize between event points
- angle α describes function $\alpha(s)$

2. Maximizing the Smallest Angle aspect ratios $\& \mathrm{H} \mid \underbrace{1 / H 1} \mathrm{H}$

- optimize between event points
- angle α describes function $\alpha(s)$
- put functions together

2. Maximizing the Smallest Angle

aspect ratio s

- optimize between event points
- angle α describes function $\alpha(s)$
- put functions together

- traverse lower envelope

2. Maximizing the Smallest Angle

aspect ratio s

- optimize between event points
- angle α describes function $\alpha(s)$
- put functions together

- traverse lower envelope
- Davenport-Schinzel sequences \& [Agarwall + Sharir, 1995]: yields globally optimal aspect ratio in $O\left(n^{2} \log n\right)$ time

3. Minimizing the Total Edge Length

- sum of many functions \Rightarrow previous approach does not work
- find $(1+\epsilon)$-approximation

3. Minimizing the Total Edge Length

- sum of many functions \Rightarrow previous approach does not work
- find $(1+\epsilon)$-approximation
- between flips consider $(1+\epsilon)$-intermediate steps

3. Minimizing the Total Edge Length

- sum of many functions \Rightarrow previous approach does not work
- find $(1+\epsilon)$-approximation
- between flips consider $(1+\epsilon)$-intermediate steps

- length l_{e} of edge e within a small intervall:
$l_{e}(s(1+\epsilon)) \leq(1+\epsilon) I_{e}(s)$

3. Minimizing the Total Edge Length

- sum of many functions \Rightarrow previous approach does not work
- find $(1+\epsilon)$-approximation
- between flips consider ($1+\epsilon$)-intermediate steps

- length l_{e} of edge e within a small intervall:
$l_{e}(s(1+\epsilon)) \leq(1+\epsilon) l_{e}(s)$
- carries over to sum
- find $(1+\epsilon)$-approximation in $O\left(n^{3}+n \cdot \frac{1}{\log (1+\epsilon)}\right)$ time

3. Minimizing the Total Edge Length

- sum of many functions \Rightarrow previous approach does not work
- find $(1+\epsilon)$-approximation
- between flips consider ($1+\epsilon$)-intermediate steps

- length l_{e} of edge e within a small intervall:
$l_{e}(s(1+\epsilon)) \leq(1+\epsilon) I_{e}(s)$
- carries over to sum
- find $(1+\epsilon)$-approximation in $O\left(n^{3}+n \cdot \frac{1}{\log (1+\epsilon)}\right)$ time
- also works for other optimization criteria

4. Other Optimization Criteria

- maximize total compactness of triangles

4. Other Optimization Criteria

- maximize total compactness of triangles

- minimize total uncompactness of triangles
perimeter
$\sqrt{\text { area }}$

4. Other Optimization Criteria

- maximize total compactness of triangles

- minimize total uncompactness of triangles
perimeter $\sqrt{\text { area }}$
- more:
- maximize mean inradius
- minimize sum of squared angles

User Study

- What do users want?
- let participants choose

Please participate: www1.informatik.uni-wuerzburg.de/scatterplots

User Study

- What do users want?
- let participants choose

Adjust aspect ratio and accept

Accept current drawing
I can't decide-skip this drawing
Please participate: www1.informatik.uni-wuerzburg.de/scatterplots

User Study

- What do users want?
- let participants choose

Adjust aspect ratio and accept

Accept current drawing
I can't decide-skip this drawing
Please participate: www1.informatik.uni-wuerzburg.de/scatterplots

User Study

- What do users want?
- let participants choose

Please participate: www1.informatik.uni-wuerzburg.de/scatterplots

User Study

- What do users want?
- let participants choose
- 18 tested instances, e.g. ...

Please participate: www1.informatik.uni-wuerzburg.de/scatterplots

Test Results

- maximize minimum angle

Test Results

- maximize minimum angle
- maximize mean inradius

Test Results

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles

Test Results

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles

Test Results

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles
- minimize total edge length

Test Results

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles
- minimize total edge length

Test Results

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles
- minimize total edge length
preliminary results

Conclusion

- Delaunay triangulation helps to optimize scatter plots

Please participate in our user study! www1.informatik.uni-wuerzburg.de/scatterplots

Conclusion

- Delaunay triangulation helps to optimize scatter plots
- maintaining the Delaunay triangulation is fast

Please participate in our user study! www1.informatik.uni-wuerzburg.de/scatterplots

Conclusion

- Delaunay triangulation helps to optimize scatter plots
- maintaining the Delaunay triangulation is fast
- more than one good quality measure

Please participate in our user study!
www1.informatik.uni-wuerzburg.de/scatterplots

