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Scatter Plots . . .

. . . reveal trends . . .

. . . or clusters.

. . . are most-frequently used visualizations in scientific
publications. [Tufte, 2001]

. . . heavily rely on the chosen aspect ratio.

task:
automatically select a good aspect ratio
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Previous Work

aspect-ratio selection for line charts

e.g. banking to 45◦ [Heer + Agrawala, 2006]

[Cleveland et al., 1988] suggest to use virtual line segments

[Talbot et al., 2011]: use contour lines from kernel density
estimator

results depend on initial aspect ratio
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Definitions

point Set P = {p1, . . . , pn}

point pi = (xi , yi )

scale factor s defines aspect-ratio

pi (s) = (1/
√

s · xi ,
√

s · yi )

preserve the area
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First Idea

aspect ratio s

discretize into k aspect ratios

independently
– compute Delaunay triangulation
– measure quality

select best checked aspect ratio

runtime: Θ(kn log n)

Θ(n log n)
Θ(n)

approximation? which intermediate ratios?
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3. Minimizing the Total Edge Length

4. Other Optimization Criteria
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aspect ratio s

start at some s

compute Delaunay triangulation

continuously change s

perform flips if necessary

criterion: empty circumcircle of 4 points
easy to check
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1. Maintaining the Delaunay Triangulation f.

aspect ratio s

sweep over possible aspect ratios

handle event queue of edge flips

update takes O(log n) time [Roos, 1993]

O(n2+ε) flips [Rubin, 2012]
here: at most 2 flips per possible edge

total runtime: O(n2 log n) for traversing all topologically
different Delaunay triangulations
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2. Maximizing the Smallest Angle

aspect ratio s ︸︷︷︸
optimize between event points

angle α describes function α(s)

∠

s

put functions together

traverse lower envelope

Davenport-Schinzel sequences &
[Agarwall + Sharir, 1995]:
yields globally optimal aspect ratio
in O(n2 log n) time
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3. Minimizing the Total Edge Length

sum of many functions ⇒ previous approach does not work

find (1 + ε)-approximation

between flips consider (1 + ε)-intermediate steps

length le of edge e within a small intervall:
le(s(1 + ε)) ≤ (1 + ε)le(s)

s (1 + ε)s

carries over to sum

find (1 + ε)-approximation in O(n3+n · 1
log(1+ε) ) time

also works for other optimization criteria
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4. Other Optimization Criteria

maximize total compactness of triangles

minimize total uncompactness of triangles

√
area

perimeter

√
area

perimeter

more:
– maximize mean inradius
– minimize sum of squared angles
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User Study

What do users want?

let participants choose

18 tested instances, e.g. . . .

Please participate: www1.informatik.uni-wuerzburg.de/scatterplots
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Test Results

maximize minimum angle

maximize mean inradius

maximize total compactness of triangles

minimize total uncompactness of triangles

minimize total edge length

7

7

7

X

X

preliminary results
of the user study
support this
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Conclusion

Delaunay triangulation helps to optimize scatter plots

maintaining the Delaunay triangulation is fast

more than one good quality measure

Please participate in our user study!
www1.informatik.uni-wuerzburg.de/scatterplots
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