

Selecting the Aspect Ratio of a Scatter Plot Based on Its Delaunay Triangulation

Martin Fink Lehrstuhl für Informatik I Universität Würzburg

Joint work with Jan-Henrik Haunert, Joachim Spoerhase & Alexander Wolff

... reveal trends ...

- ... reveal trends ...
- ... or clusters.

- ... reveal trends ...
- ... or clusters.
- In a most-frequently used visualizations in scientific publications.
 [Tufte, 2001]

- ... reveal trends ...
- ... or clusters.
- In a most-frequently used visualizations in scientific publications.
 [Tufte, 2001]
- ... heavily rely on the chosen aspect ratio.

[http://imgs.xkcd.com/comics/aspect_ratio.png]

- ... reveal trends ...
- ... or clusters.
- In a most-frequently used visualizations in scientific publications.
 [Tufte, 2001]
- In the second second

i

٠

;

•••

veal trends ...

∴ clusters.

e most-frequently used visualizations in scientific cations. [Tufte, 2001]

'eavily rely on the chosen aspect ratio.

- ... reveal trends ...
- ... or clusters.
- In a most-frequently used visualizations in scientific publications.
 [Tufte, 2001]
- ... heavily rely on the chosen aspect ratio.

- ... reveal trends ...
- ... or clusters.
- In a most-frequently used visualizations in scientific publications.
 [Tufte, 2001]
- ... heavily rely on the chosen aspect ratio.

- ... reveal trends ...
- ...or clusters.
- In a most-frequently used visualizations in s publications.
- ... heavily rely on the chosen aspect ratio.

- ... reveal trends ...
- ... or clusters.
- In are most-frequently used visualizations in scientific publications.
 [Tufte, 2001]
- ... heavily rely on the chosen aspect ratio.

- ... reveal trends ...
- ... or clusters.
- In are most-frequently used visualizations in scientific publications.
 [Tufte, 2001]
- ... heavily rely on the chosen aspect ratio.

task: automatically select a good aspect ratio

aspect-ratio selection for line charts

aspect-ratio selection for line charts

[Cleveland et al., 1988] suggest to use virtual line segments

aspect-ratio selection for line charts

- [Cleveland et al., 1988] suggest to use virtual line segments
- [Talbot et al., 2011]: use contour lines from kernel density estimator

aspect-ratio selection for line charts

- [Cleveland et al., 1988] suggest to use virtual line segments
- [Talbot et al., 2011]: use contour lines from kernel density estimator

8

8

8

results depend on initial aspect ratio

XX

measure quality of different aspect ratios independently

- measure quality of different aspect ratios independently
- use the Delaunay triangulation

- measure quality of different aspect ratios independently
- use the Delaunay triangulation
- optimization criteria:
 - maximize smallest angle

- measure quality of different aspect ratios independently
- use the Delaunay triangulation
- optimization criteria:
 - maximize smallest angle
 - minimize total edge length
 - optimize compactness of triangles
 - etc.

- point Set $P = \{p_1, ..., p_n\}$
- point $p_i = (x_i, y_i)$

- point Set $P = \{p_1, ..., p_n\}$
- point $p_i = (x_i, y_i)$
- scale factor s defines aspect-ratio

preserve the area

preserve the area

aspect ratio s \blacktriangleleft

 \bigcirc discretize into k aspect ratios

aspect ratio s

- discretize into k aspect ratios
- independently
 - compute Delaunay triangulation
 - measure quality

aspect ratio s

- discretize into k aspect ratios
- independently
 - compute Delaunay triangulation
 - measure quality
- select best checked aspect ratio

aspect ratio s

- discretize into k aspect ratios
- independently
 - compute Delaunay triangulation
 - measure quality

 $\frac{\Theta(n \log n)}{\Theta(n)}$

select best checked aspect ratio

aspect ratio s

- discretize into k aspect ratios
- independently
 - compute Delaunay triangulation
 - measure quality
- select best checked aspect ratio
- runtime: $\Theta(kn \log n)$

 $\frac{\Theta(n \log n)}{\Theta(n)}$

aspect ratio s

- discretize into k aspect ratios
- independently
 - compute Delaunay triangulation
 - measure quality

 $\Theta(n \log n) \\ \Theta(n)$

- select best checked aspect ratio
- runtime: $\Theta(kn \log n)$
- approximation? which intermediate ratios?

- 1. Maintaining the Delaunay Triangulation
- 2. Maximizing the Smallest Angle
- 3. Minimizing the Total Edge Length
- 4. Other Optimization Criteria

1. Maintaining the Delaunay Triangulation

aspect ratio s

start at some s

1. Maintaining the Delaunay Triangulation

aspect ratio s

- start at some s
- compute Delaunay triangulation

1. Maintaining the Delaunay Triangulation

aspect ratio s

- start at some s
- compute Delaunay triangulation
- continuously change s

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform *flips* if necessary

aspect ratio s

- start at some *s*
- compute Delaunay triangulation
- continuously change s
- perform *flips* if necessary

criterion: empty circumcircle of 4 points easy to check

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform *flips* if necessary

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform *flips* if necessary
- go through all flips

- start at some s
- compute Delaunay triangulation
- continuously change s
- perform *flips* if necessary
- go through all flips

- sweep over possible aspect ratios
- handle event queue of edge flips

aspect ratio s

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes O(log n) time

[Roos, 1993]

aspect ratio s

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes O(log n) time

• $O(n^{2+\epsilon})$ flips

[Roos, 1993]

[Rubin, 2012]

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes O(log n) time [Roos, 1993] here: at most 2 flips per possible edge
 O(n² flips [Rubin, 2012]

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes O(log n) time [Roos, 1993] here: at most 2 flips per possible edge
 O(n² flips [Rubin, 2012]

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes O(log n) time [Roos, 1993] here: at most 2 flips per possible edge
 O(n² flips [Rubin, 2012]

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes O(log n) time [Roos, 1993] here: at most 2 flips per possible edge
 O(n² flips [Rubin, 2012]

- sweep over possible aspect ratios
- handle event queue of edge flips
- update takes O(log n) time [Roos, 1993] here: at most 2 flips per possible edge
 O(n²) flips [Rubin, 2012]
- total runtime: O(n² log n) for traversing all topologically different Delaunay triangulations

2. Maximizing the Smallest Angle

optimize between event points

2. Maximizing the Smallest Angle

optimize between event points

• angle α describes function $\alpha(s)$

2. Maximizing the Smallest Angle

- optimize between event points
- angle α describes function $\alpha(s)$
- put functions together

2. Maximizing the Smallest Angle

aspect ratio s

- optimize between event points
- angle α describes function $\alpha(s)$
- put functions together

traverse lower envelope

2. Maximizing the Smallest Angle

- optimize between event points
- angle α describes function $\alpha(s)$
- put functions together

- traverse lower envelope
- Davenport-Schinzel sequences & [Agarwall + Sharir, 1995]: yields globally optimal aspect ratio in O(n² log n) time

- \bigcirc sum of many functions \Rightarrow previous approach does not work
- find $(1 + \epsilon)$ -approximation

- \bigcirc sum of many functions \Rightarrow previous approach does not work
- find $(1 + \epsilon)$ -approximation
- between flips consider $(1 + \epsilon)$ -intermediate steps

$$s$$
 $(1+\epsilon)s$

- \bigcirc sum of many functions \Rightarrow previous approach does not work
- find $(1 + \epsilon)$ -approximation
- between flips consider $(1 + \epsilon)$ -intermediate steps

$$s$$
 $(1+\epsilon)s$

In length I_e of edge e within a small intervall: $I_e(s(1+\epsilon)) \leq (1+\epsilon)I_e(s)$

- \bigcirc sum of many functions \Rightarrow previous approach does not work
- find $(1 + \epsilon)$ -approximation
- between flips consider $(1 + \epsilon)$ -intermediate steps

$$s$$
 $(1+\epsilon)s$

In length I_e of edge e within a small intervall: $I_e(s(1+\epsilon)) \leq (1+\epsilon)I_e(s)$

carries over to sum

• find $(1 + \epsilon)$ -approximation in $O(n^3 + n \cdot \frac{1}{\log(1+\epsilon)})$ time

- \bigcirc sum of many functions \Rightarrow previous approach does not work
- find $(1 + \epsilon)$ -approximation
- between flips consider $(1 + \epsilon)$ -intermediate steps

$$s$$
 $(1+\epsilon)s$

In length I_e of edge e within a small intervall: $I_e(s(1+\epsilon)) \leq (1+\epsilon)I_e(s)$

- carries over to sum
- find $(1 + \epsilon)$ -approximation in $O(n^3 + n \cdot \frac{1}{\log(1+\epsilon)})$ time
- also works for other optimization criteria

4. Other Optimization Criteria

maximize total compactness of triangles

4. Other Optimization Criteria

maximize total compactness of triangles

perimeter

area

minimize total uncompactness of triangles

perimeter

 \sqrt{a} rea

more:

- maximize mean inradius
- minimize sum of squared angles

- What do users want?
- let participants choose

- What do users want?
- let participants choose

- What do users want?
- let participants choose

- What do users want?
- let participants choose

- What do users want?
- let participants choose
- 18 tested instances, e.g. ...

maximize minimum angle

- maximize minimum angle
- maximize mean inradius

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles
- minimize total edge length

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles
- minimize total edge length

- maximize minimum angle
- maximize mean inradius
- maximize total compactness of triangles
- minimize total uncompactness of triangles

preliminary results

of the user study

support this

minimize total edge length

Conclusion

Delaunay triangulation helps to optimize scatter plots

Please participate in our user study! www1.informatik.uni-wuerzburg.de/scatterplots

Conclusion

- Delaunay triangulation helps to optimize scatter plots
- maintaining the Delaunay triangulation is fast

Please participate in our user study! www1.informatik.uni-wuerzburg.de/scatterplots

Conclusion

- Delaunay triangulation helps to optimize scatter plots
- maintaining the Delaunay triangulation is fast
- more than one good quality measure

Please participate in our user study! www1.informatik.uni-wuerzburg.de/scatterplots