Algorithms for Labeling Focus Regions

Martin Fink
Lehrstuhl für Informatik I
Universität Würzburg
Joint work with
Jan-Henrik Haunert, André Schulz, Joachim Spoerhase, and Alexander Wolff

Our models

free leaders

Our models

radial leaders
free leaders

Previous Work

Previous Work

Previous Work

The Radial Leader Model

O minimum allowed angle to avoid label collisions

The Radial Leader Model

- minimum allowed angle to avoid label collisions

O maximize number of visible labels by a dynamic program

The Radial Leader Model

- minimum allowed angle to avoid label collisions

O maximize number of visible labels by a dynamic program

The Radial Leader Model

O minimum allowed angle to avoid label collisions

- maximize number of visible labels by a dynamic program

The Radial Leader Model

- minimum allowed angle to avoid label collisions
- maximize number of visible labels by a dynamic program

The Radial Leader Model

- minimum allowed angle to avoid label collisions
- maximize number of visible labels by a dynamic program

The Radial Leader Model

- minimum allowed angle to avoid label collisions

O maximize number of visible labels by a dynamic program

The Radial Leader Model

- minimum allowed angle to avoid label collisions

O maximize number of visible labels by a dynamic program

The Radial Leader Model

- minimum allowed angle to avoid label collisions

O maximize number of visible labels by a dynamic program
$O(n \log n)$ time

The Radial Leader Model

O minimum allowed angle to avoid label collisions

- maximize number of visible labels by a dynamic program $O(n \log n)$ time

O weighted version: prefer higher rated points

The Radial Leader Model

O minimum allowed angle to avoid label collisions

O maximize number of visible labels by a dynamic program
$O(n \log n)$ time
O weighted version: prefer higher rated points
$O\left(n^{2}\right)$ time

The Radial Leader Model with Flexible Center Position

- find disk that respects minimum angle α

The Radial Leader Model with Flexible Center Position

- find disk that respects minimum angle α
- consider double disk $D(p, q)$ of minimum angle α formed with p and q

The Radial Leader Model with Flexible Center Position

- find disk that respects minimum angle α
- consider double disk $D(p, q)$ of minimum angle α formed with p and q

O build arrangement of all $D(\cdot, \cdot)$

The Radial Leader Model with Flexible Center Position

- find disk that respects minimum angle α
- consider double disk $D(p, q)$ of minimum angle α formed with p and q

O build arrangement of all $D(\cdot, \cdot)$

O check for intersection (cell of $\operatorname{depht}\binom{n}{2}$)

The Radial Leader Model with Flexible Center Position

- find disk that respects minimum angle α
- consider double disk $D(p, q)$ of minimum angle α formed with p and q

O build arrangement of all $D(\cdot, \cdot)$

- check for intersection (cell of depht $\binom{n}{2}$)

O choose center in intersection

$$
O\left(n^{4} \log n\right) \text { time }
$$

The Radial Leader Model with Flexible Center Position

- find disk that respects minimum angle α
- consider double disk $D(p, q)$ of minimum angle α formed with p and q
- build arrangement of all $D(\cdot, \cdot)$

O check for intersection (cell of depht $\binom{n}{2}$)

O choose center in intersection

$$
O\left(n^{4} \log n\right) \text { time }
$$

The Radial Leader Model with Flexible Center Position

- maximize angle $O\left(n^{6}\right)$ time
- find disk that respects minimum angle α
- consider double disk $D(p, q)$ of minimum angle α formed with p and q
- build arrangement of all $D(\cdot, \cdot)$

O check for intersection (cell of depht $\binom{n}{2}$)

- choose center in intersection

$$
O\left(n^{4} \log n\right) \text { time }
$$

The free leader model

- labels vertically distributed with unit distances

The free leader model

- labels vertically distributed with unit distances
- compute non-crossing leaders

The free leader model

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching [Bekos et al., 2007]

The free leader model

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching no crossings

The free leader model

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching no crossings

The free leader model

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching no crossings
fast

$O\left(n^{2+\varepsilon}\right)$

Selecting labeled sites

O not all sites can be labeled

Selecting labeled sites

- not all sites can be labeled
- label good subset

Selecting labeled sites

Selecting labeled sites

Selecting labeled sites

O not all sites can be labeled

- label good subset
- nice distribution
- represent all sites

Clustered Labeling

- 1 labeled site
$\rightarrow k$ unlabeled sites

Clustered Labeling

- 1 labeled site
$\rightarrow k$ unlabeled sites
- minimize leader length + distance to attached sites

Clustered Labeling

- 1 labeled site
$\rightarrow k$ unlabeled sites
- minimize leader length + distance to attached sites
- Facility Location model: solved by ILP

Clustered Labeling

- 1 labeled site
$\rightarrow k$ unlabeled sites
- minimize leader length + distance to attached sites
- Facility Location model: solved by ILP

95 sites, 20 labels: 124s

A Heuristic for Clustered Labeling

- Randomized initialization heuristic for k-median $/ k$-means [Arthur and Vassilvitski, 2007]

A Heuristic for Clustered Labeling

- Randomized initialization heuristic for k-median $/ k$-means [Arthur and Vassilvitski, 2007]

A Heuristic for Clustered Labeling

- Randomized initialization heuristic for k-median $/ k$-means [Arthur and Vassilvitski, 2007]

A Heuristic for Clustered Labeling

- Randomized initialization heuristic for k-median $/ k$-means [Arthur and Vassilvitski, 2007]

A Heuristic for Clustered Labeling

- Randomized initialization heuristic for k-median $/ k$-means [Arthur and Vassilvitski, 2007]
- probability \approx distance ${ }^{d}$

A Heuristic for Clustered Labeling

- Randomized initialization heuristic for k-median $/ k$-means [Arthur and Vassilvitski, 2007]
- probability \approx distance ${ }^{d}$
- Clustering: assign to closest labeled site

A Heuristic for Clustered Labeling

- Randomized initialization heuristic for k-median $/ k$-means [Arthur and Vassilvitski, 2007]
- probability \approx distance ${ }^{d}$
- Clustering: assign to closest labeled site
- much better than uniform random selection
- fast

Bézier Curves as Leaders

Bézier Curves as Leaders

- post-processing:

Bézier Curves as Leaders

- post-processing:

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)
- move towards desired shape

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)
- move towards desired shape
- avoid other leaders

Bézier Curves as Leaders

- post-processing:
- (cubic) Bézier curves
- force-directed approach
- gradually improve drawing according to desired changes (forces)
- move towards desired shape
- avoid other leaders

Curvy Leaders in the Radial Model

- move label positions on boundary
- improve angle

Conclusion and Open Problems

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels

Conclusion and Open Problems

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels
- Faster algorithms for finding a good center in the radial leader model?

Conclusion and Open Problems

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels
- Faster algorithms for finding a good center in the radial leader model?
- Make interactive methods more stable during mouse movement.

Conclusion and Open Problems

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels
- Faster algorithms for finding a good center in the radial leader model?
- Make interactive methods more stable during mouse movement. Idea: Weights changing over time

