

Algorithms for Labeling Focus Regions

Martin Fink Lehrstuhl für Informatik I Universität Würzburg

Joint work with Jan-Henrik Haunert, André Schulz, Joachim Spoerhase, and Alexander Wolff

Our models

free leaders

Our models

radial leaders

free leaders

Previous Work

Previous Work

Previous Work

Necklace Maps

[Speckmann and Verbeek, 2010]

minimum allowed angle to avoid label collisions

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program

 $O(n \log n)$ time

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program
 - $O(n \log n)$ time
- weighted version: prefer higher rated points

- minimum allowed angle to avoid label collisions
- maximize number of visible labels
 by a dynamic program
 - $O(n \log n)$ time
- weighted version: prefer higher rated points

 $O(n^2)$ time

• find disk that respects minimum angle α

- find disk that respects minimum angle α
- consider double disk D(p, q) of minimum angle α formed with p and q

- find disk that respects minimum angle α
- consider double disk D(p, q) of minimum angle α formed with p and q
- build arrangement of all $D(\cdot, \cdot)$

- find disk that respects minimum angle α
- consider double disk D(p, q) of minimum angle α formed with p and q
- build arrangement of all $D(\cdot, \cdot)$
- check for intersection (cell of depht $\binom{n}{2}$)

- \bigcirc find disk that respects minimum angle α
- consider double disk D(p, q) of minimum angle α formed with p and q
- build arrangement of all $D(\cdot, \cdot)$
- check for intersection (cell of depht $\binom{n}{2}$)
- choose center in intersection

 $O(n^4 \log n)$ time

- find disk that respects minimum angle α
- consider double disk D(p, q) of minimum angle α formed with p and q
- build arrangement of all $D(\cdot, \cdot)$
- check for intersection (cell of depht $\binom{n}{2}$)
- choose center in intersection

 $O(n^4 \log n)$ time

- find disk that respects minimum angle α
- consider double disk D(p, q) of minimum angle α formed with p and q
- build arrangement of all $D(\cdot, \cdot)$
- check for intersection (cell of depht $\binom{n}{2}$)
- choose center in intersection

 $O(n^4 \log n)$ time

labels vertically distributed with unit distances

- labels vertically distributed with unit distances
- compute non-crossing leaders

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching
 [Bekos et al., 2007]

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching

no crossings

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching

no crossings

- labels vertically distributed with unit distances
- compute non-crossing leaders
- minimize total leader length: weighted bipartite matching no crossings fast $O(n^{2+\varepsilon})$

Selecting labeled sites

not all sites can be labeled

Selecting labeled sites

- not all sites can be labeled
- label good subset

Selecting labeled sites

Selecting labeled sites

Selecting labeled sites

- not all sites can be labeled
- label good subset
 - nice distribution
 - represent all sites

1 labeled site *k* unlabeled sites

1 labeled site
 k unlabeled sites

 minimize leader length + distance to attached sites

1 labeled site
 k unlabeled sites

- minimize leader length + distance to attached sites
- Facility Location model: solved by ILP

1 labeled site
 k unlabeled sites

- minimize leader length + distance to attached sites
- Facility Location model: solved by ILP

95 sites, 20 labels: 124s

- Randomized initialization heuristic for k-median/k-means [Arthur and Vassilvitski, 2007]
- probability $\approx distance^d$

- Randomized initialization heuristic for k-median/k-means [Arthur and Vassilvitski, 2007]
- probability $\approx distance^d$
- Clustering: assign to closest labeled site

- Randomized initialization heuristic for k-median/k-means [Arthur and Vassilvitski, 2007]
- probability $\approx distance^d$
- Clustering: assign to closest labeled site

much better than uniform random selection

– fast

opst-processing:

opst-processing:

- opst-processing:
 - (cubic) Bézier curves

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)
 - move towards desired
 shape

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)
 - move towards desired
 shape
 - avoid other leaders

- opst-processing:
 - (cubic) Bézier curves
 - force-directed approach
- gradually improve drawing according to desired changes (*forces*)
 - move towards desired
 shape
 - avoid other leaders

- move label positions on boundary
- improve angle

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels

• Faster algorithms for finding a good center in the radial leader model?

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels

- Faster algorithms for finding a good center in the radial leader model?
- Make interactive methods more stable during mouse movement.

- Free leader model prefered for smaller numbers of labeled sites
- Radial model for many short labels

- Faster algorithms for finding a good center in the radial leader model?
- Make interactive methods more stable during mouse movement.

Idea: Weights changing over time

