

Drawing Metro Maps using Bézier Curves

Martin Fink Lehrstuhl für Informatik I Universität Würzburg

Joint work with Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann & Alexander Wolff

We have ...

We want to create ...

 metro line: polyline with bends (possibly in stations)
 very schematized

metro line:
 polycurve without
 bends

metro line:
 polycurve without
 bends

 [Roberts et al., 2012]: improved planning speed

metro line: polycurve without bends

- [Roberts et al., 2012]: improved planning speed
- more artistic demand of Peter Eades! [GD'10]

o parametric curves

parametric curves

 $egin{array}{rcl} C: [0,1] & o & \mathbb{R}^2 \ t & \mapsto & (1-t)^3 p + 3(1-t)^2 t p' + 3(1-t) t^2 q' + t^3 q \end{array}$

parametric curves

leave vertices in direction of tangents

 $egin{array}{rcl} C:[0,1]&\to&\mathbb{R}^2\ t&\mapsto&(1-t)^3p+3(1-t)^2tp'+3(1-t)t^2q'+t^3q \end{array}$

- parametric curves
- leave vertices in direction of tangents
- our representation:
 control point =
 tangent + distance

 $C:[0,1] \to \mathbb{R}^2$ $t \mapsto (1-t)^3 p + 3(1-t)^2 t p' + 3(1-t)t^2 q' + t^3 q$

 [Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.

[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

 [Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.

[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

[Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.

[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

Our approach: – share tangents – move vertices

[Finkel and Tamassia, 2005]: Force-directed algorithm for drawing graphs with Bézier Curves

[Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.

[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

Our approach: – share tangents – move vertices

[Finkel and Tamassia, 2005]: Force-directed algorithm for drawing graphs with Bézier Curves

Method: Control-points as extra vertices.

[Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.

[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

Our approach: – share tangents – move vertices

[Finkel and Tamassia, 2005]: Force-directed algorithm for drawing graphs with Bézier Curves

Method: Control-points as extra vertices.

our approach: control points are no vertices

Our Approach

• use Bézier curves for representing edges

Our Approach

use Bézier curves for representing edges

use force-directed approach

geographic input

straight-line drawing

straight-line drawing

o approximation by Bézier Curves

approximation by Bézier Curves

while the drawing changes

compute forces on vertices compute forces on curves apply forces

simplify the drawing

perform post-processing simplification

while the drawing changes

compute forces on vertices

compute forces on curves

apply forces

simplify the drawing

perform post-processing simplification

while the drawing changes

compute forces on vertices

compute forces on curves

apply forces

simplify the drawing

perform post-processing simplification

while the drawing changes compute forces on vertices compute forces on curves apply forces simplify the drawing avoid intersections perform post-processing sim

while the drawing changes

compute forces on vertices

compute forces on curves

apply forces

simplify the drawing

while the drawing changes

compute forces on vertices

compute forces on curves

apply forces

simplify the drawing

perform post-processing simplification

- repulsion

- repulsion

- attraction of adjacent vertices

Forces – Vertices

- repulsion

- attraction of adjacent vertices

Forces – Vertices

- repulsion

- attraction of adjacent vertices

- repulsion

- attraction of adjacent vertices

- attraction to geographic position

straight-line segment = simplest curve

straight-line segment = simplest curve

Vt

U

move vertex v towards tangent

straight-line segment = simplest curve

move vertex v towards tangent

 rotate tangent towards straight-line

• tangents repelling each other • force = const. $\cdot \frac{1}{\alpha}$

Avoiding Intersections

Avoiding Intersections

intermediate stop

- intermediate stop
- keep control points

- intermediate stop
- keep control points
- o different distances for keeping the drawing crossing-free

- intermediate stop
- keep control points
- o different distances for keeping the drawing crossing-free

- edge proportions should be kept approximately
- testing different control point distances necessary

- edge proportions should be kept approximately
- testing different control point distances necessary
- adds many additional constraints

merge 4 curves to 2

edge proportions should be kept approximately

testing different control point distances necessary

adds many additional constraints

Tests: performed only once at the end

octilinear map

without merging edges

90 curves

with merging edges at intermediate stations

25 curves

additionally merging edges at interchange stations (degree 4)

9 curves

Montréal

Sydney

London

works well on smaller networks/sparse regions

- works well on smaller networks/sparse regions
- dense region like city centers are more problematic
- o minimizing the number of curves is important

- works well on smaller networks/sparse regions
- dense region like city centers are more problematic
- o minimizing the number of curves is important
- further minimization with local changes very hard

- works well on smaller networks/sparse regions
- dense region like city centers are more problematic
- o minimizing the number of curves is important
- further minimization with local changes very hard
- Idea:

Use global approximation of lines by continuos curves – subject to constraints