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We have . . .

[Nöllenburg and Wolff, 2011]

[Hong et al., 2006], [Stott et al., 2011]
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We want to create . . .

[Roberts, 2007]
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Octilinear vs. Curvy Drawings

metro line: polyline
with bends (possibly
in stations)
very schematized
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Octilinear vs. Curvy Drawings

metro line:
polycurve without
bends

[Roberts et al., 2012]:
improved planning
speed

more artistic
demand of Peter
Eades! [GD’10]
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(Cubic) Bézier Curves

p

p′
q′

q

parametric curves

C : [0, 1] → R2

t 7→ (1− t)3p + 3(1− t)2tp′ + 3(1− t)t2q′ + t3q

leave vertices in
direction of tangents

C



/215
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(Cubic) Bézier Curves

p

p′
q′

q

{
rC (p)

−→pC

parametric curves

C : [0, 1] → R2

t 7→ (1− t)3p + 3(1− t)2tp′ + 3(1− t)t2q′ + t3q

leave vertices in
direction of tangents

our representation:
control point =
tangent + distance

C
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Previous Work

[Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves
used for visualizing train connections.

[Finkel and Tamassia, 2005]: Force-directed algorithm for
drawing graphs with Bézier Curves

Method: Control-points as extra vertices.

[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

our approach: control points are no vertices

Our approach:
– share tangents
– move vertices
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Our Approach

use Bézier curves for representing edges
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Our Approach

use Bézier curves for representing edges

use force-directed approach
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Obtaining an Initial Drawing with Curves

geographic input
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Obtaining an Initial Drawing with Curves

straight-line drawing
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Obtaining an Initial Drawing with Curves

straight-line drawing

alternative: use
octilinear drawing
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Obtaining an Initial Drawing with Curves

approximation by Bézier Curves

put control points close to
vertex
use common tangents
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Structure of the Algorithm

while the drawing changes

compute forces on vertices

compute forces on curves

apply forces

simplify the drawing

perform post-processing simplification
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while the drawing changes
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perform post-processing simplification

sum up to desired changes
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Structure of the Algorithm

while the drawing changes

compute forces on vertices

compute forces on curves

apply forces

simplify the drawing

perform post-processing simplification

avoid intersections

7
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perform post-processing simplification
merge curves around deg-2 vertex
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Structure of the Algorithm

while the drawing changes

compute forces on vertices

compute forces on curves

apply forces

simplify the drawing

perform post-processing simplification

merge 4 curves to 2
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Forces – Vertices

– repulsion – attraction of adjacent vertices

desired edge length =
const · (# intermediate stops + 1)
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Forces – Vertices

– repulsion – attraction of adjacent vertices

– attraction to geographic position
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Forces – Shape of Curves

7 7 X

distances: a
b ≈

1
3

use Fruchterman-Rheingold-like
spring force

a

b
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Forces – Straightening Curves

7 X
straight-line segment = simplest curve

u

t
vt

α
v

move vertex v towards tangent
vt

rotate tangent towards
straight-line

law of the lever :
force weighted by distance

adding up rotational forces
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Forces – Angular Resolution
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Forces – Angular Resolution

X
α

tangents repelling each other
force = const. · 1α

7
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Avoiding Intersections
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Avoiding Intersections

7

X
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Merging Curves

intermediate stop

keep control points

different distances for keeping the drawing crossing-free

Tests: not necessary
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Merging Curves in Interchange Stations

merge 4 curves to 2
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Merging Curves in Interchange Stations

merge 4 curves to 2

station = crossing
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Merging Curves in Interchange Stations

merge 4 curves to 2

edge proportions should be kept approximately

testing different control point distances necessary

adds many additional constraints

Tests: performed only once at the end
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Test Case – Vienna

octilinear map
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Test Case – Vienna

without merging edges

90 curves
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Test Case – Vienna

with merging edges at
intermediate stations

25 curves
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Test Case – Vienna

additionally merging
edges at interchange
stations (degree 4)

9 curves
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Montréal
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Sydney
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London



/2121

Observations and Conclusion

works well on smaller networks/sparse regions
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Observations and Conclusion

works well on smaller networks/sparse regions

dense region like city centers are more problematic

minimizing the number of curves is important

further minimization with local changes very hard

Idea:
Use global approximation of lines by continuos curves –
subject to constraints


	We have \dots
	We want to create \ldots
	Octilinear vs.\ Curvy Drawings
	(Cubic) B\'ezier Curves
	Previous Work
	Our Approach
	Obtaining an Initial Drawing with Curves
	Structure of the Algorithm
	Forces -- Vertices
	Forces -- Shape of Curves
	Forces -- Straightening Curves
	Forces -- Angular Resolution
	Avoiding Intersections
	Merging Curves
	Merging Curves in Interchange Stations
	Test Case -- Vienna
	Montr\'eal
	Sydney
	London
	Observations and Conclusion

