Drawing Metro Maps using Bézier Curves

Martin Fink
Lehrstuhl für Informatik I
Universität Würzburg
Joint work with
Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann \& Alexander Wolff

We have ...

We want to create ...

Octilinear vs. Curvy Drawings

O metro line: polyline with bends (possibly in stations)

- very schematized

Octilinear vs. Curvy Drawings

- metro line:
polycurve without bends

Octilinear vs. Curvy Drawings

- metro line: polycurve without bends
- [Roberts et al., 2012]: improved planning speed

Octilinear vs. Curvy Drawings

- metro line: polycurve without bends
- [Roberts et al., 2012]: improved planning speed

O more artistic demand of Peter Eades! [GD'10]

(Cubic) Bézier Curves

- parametric curves

(Cubic) Bézier Curves

O parametric curves

$$
\begin{aligned}
C:[0,1] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto(1-t)^{3} p+3(1-t)^{2} t p^{\prime}+3(1-t) t^{2} q^{\prime}+t^{3} q
\end{aligned}
$$

(Cubic) Bézier Curves

- parametric curves
- leave vertices in direction of tangents

$C:[0,1] \rightarrow \mathbb{R}^{2}$

$$
t \mapsto(1-t)^{3} p+3(1-t)^{2} t p^{\prime}+3(1-t) t^{2} q^{\prime}+t^{3} q
$$

(Cubic) Bézier Curves

O parametric curves

- leave vertices in direction of tangents

$C:[0,1] \rightarrow \mathbb{R}^{2}$
curves share tangents $t \mapsto(1-t)^{3} p+3(1-\longrightarrow$ fit smoothly together

(Cubic) Bézier Curves

O parametric curves

- leave vertices in direction of tangents

$C:[0,1] \rightarrow \mathbb{R}^{2}$
curves share tangents
$t \mapsto(1-t)^{3} p+3(1-\longrightarrow$ fit smoothly together

(Cubic) Bézier Curves

O parametric curves

- leave vertices in direction of tangents

$C:[0,1] \rightarrow \mathbb{R}^{2}$
curves share tangents $t \mapsto(1-t)^{3} p+3(1-\longrightarrow$ fit smoothly together

(Cubic) Bézier Curves

- parametric curves
- leave vertices in direction of tangents
- our representation: control point $=$ tangent + distance

$$
\begin{aligned}
C:[0,1] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto(1-t)^{3} p+3(1-t)^{2} t p^{\prime}+3(1-t) t^{2} q^{\prime}+t^{3} q
\end{aligned}
$$

Previous Work

- [Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.
[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

Previous Work

- [Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.
[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

Previous Work

- [Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.
[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

- [Finkel and Tamassia, 2005]: Force-directed algorithm for drawing graphs with Bézier Curves

Previous Work

- [Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.
[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

- [Finkel and Tamassia, 2005]: Force-directed algorithm for drawing graphs with Bézier Curves

Method: Control-points as extra vertices.

Previous Work

- [Brandes, Shubina, Tamassia, Wagner, 2001]: Bézier curves used for visualizing train connections.
[Brandes, Shubina, Tamassia, 2000], [Brandes, Wagner, 1998]

- [Finkel and Tamassia, 2005]: Force-directed algorithm for drawing graphs with Bézier Curves

Method: Control-points as extra vertices.
our approach: control points are no vertices

Our Approach

- use Bézier curves for representing edges

Our Approach

- use Bézier curves for representing edges
- use force-directed approach

Obtaining an Initial Drawing with Curves

- geographic input

Obtaining an Initial Drawing with Curves

- straight-line drawing

Obtaining an Initial Drawing with Curves

- straight-line drawing

Obtaining an Initial Drawing with Curves

- approximation by Bézier Curves

Obtaining an Initial Drawing with Curves

- approximation by Bézier Curves

Structure of the Algorithm

while the drawing changes

compute forces on vertices

compute forces on curves
apply forces
simplify the drawing
perform post-processing simplification

Structure of the Algorithm

while the drawing changes

compute forces on curves
apply forces
simplify the drawing
perform post-processing simplification

Structure of the Algorithm

while the drawing changes
compute forces on vertices
compute forces on curves
apply forces
simplify the drawing
perform post-processing simplification

Structure of the Algorithm

while the drawing changes
compute forces on vertices
compute forces on curves
apply forces
simplify the drawing

perform post-processing simplification

Structure of the Algorithm

while the drawing changes
compute forces on vertices
compute forces on curves
apply forces
simplify the drawing
perform post-processing sim
avoid intersections

Structure of the Algorithm

while the drawing changes
compute forces on vertices
compute forces on curves
apply forces
simplify the drawing
perform post rocessing simplification merge curves around deg-2 vertex

Structure of the Algorithm

 while the drawing changescompute forces on vertices
compute forces on curves
apply forces
simplify the drawing
perform post-processing simplification

Forces - Vertices

- repulsion

Forces - Vertices

- repulsion

- attraction of adjacent vertices

Forces - Vertices

- repulsion
- attraction of adjacent vertices

Forces - Vertices

- repulsion
- attraction of adjacent vertices

Forces - Vertices

- repulsion
- attraction of adjacent vertices

- attraction to geographic position

Forces - Shape of Curves

Forces - Shape of Curves

distances: $\frac{a}{b} \approx \frac{1}{3}$

use Fruchterman-Rheingold-like spring force

Forces - Straightening Curves

Forces - Straightening Curves

Forces - Straightening Curves

straight-line segment $=$ simplest curve

Forces - Straightening Curves

straight-line segment $=$ simplest curve

O move vertex v towards tangent

Forces - Straightening Curves

straight-line segment $=$ simplest curve

O move vertex v towards tangent

- rotate tangent towards straight-line

Forces - Straightening Curves

Forces - Straightening Curves

Forces - Angular Resolution

Forces - Angular Resolution

Forces - Angular Resolution

- tangents repelling each other
- force $=$ const. $\cdot \frac{1}{\alpha}$

Avoiding Intersections

Avoiding Intersections

Merging Curves

- intermediate stop

Merging Curves

- intermediate stop
- keep control points

Merging Curves

- intermediate stop
- keep control points
- different distances for keeping the drawing crossing-free

Merging Curves

- intermediate stop
- keep control points
- different distances for keeping the drawing crossing-free

Tests: not necessary

Merging Curves in Interchange Stations

 merge 4 curves to 2

Merging Curves in Interchange Stations

 merge 4 curves to 2

Merging Curves in Interchange Stations

 merge 4 curves to 2

- edge proportions should be kept approximately
- testing different control point distances necessary

Merging Curves in Interchange Stations

 merge 4 curves to 2

- edge proportions should be kept approximately
- testing different control point distances necessary

O adds many additional constraints

Merging Curves in Interchange Stations

 merge 4 curves to 2

- edge proportions should be kept approximately
- testing different control point distances necessary
- adds many additional constraints

Test Case - Vienna

Test Case - Vienna

Test Case - Vienna

with merging edges at intermediate stations

25 curves

Test Case - Vienna

additionally merging edges at interchange stations (degree 4)

9 curves

Montréal

Sydney

London

Observations and Conclusion

- works well on smaller networks/sparse regions

Observations and Conclusion

- works well on smaller networks/sparse regions
- dense region like city centers are more problematic

O minimizing the number of curves is important

Observations and Conclusion

O works well on smaller networks/sparse regions

- dense region like city centers are more problematic

O minimizing the number of curves is important

- further minimization with local changes very hard

Observations and Conclusion

O works well on smaller networks/sparse regions
O dense region like city centers are more problematic

- minimizing the number of curves is important
- further minimization with local changes very hard
- Idea:

Use global approximation of lines by continuos curves subject to constraints

