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ABSTRACT
There is much interest in the automatic analysis of GPS
trajectories, motivated amongst others by animal tracking,
traffic modelling and tourism studies. Core questions involve
for example detecting stopping points and flocking behaviour,
and developing routing models. In this paper we consider
turning points. We develop a formal definition of “turning
point” based on analysing the structure of free-space dia-
grams for Fréchet distance. We give an efficient algorithm
for computing an optimal set of turning points under this
criterion.

Our method is evaluated in the context of a current study
on tourist preferences at Berchtesgaden National Park, Ger-
many. We evaluate the suitability of our definition and the
efficiency of our algorithm on a large set of real-world GPS
trajectories collected by outdoor recreationists. A ground
truth of turning points was established by hand for the com-
plete data set. Experiments show that the runtime and
quality of our method are suitable for practical applications.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometri-
cal problems and computations; H.2.8 [Database Manage-
ment]: Database Applications—Spatial databases and GIS
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1. INTRODUCTION
GPS tracking is an important tool for tourism studies. In

the field of outdoor recreation, it is used to investigate intra-
destination movement patterns. Lew and McKercher [14],
for instance, distinguish between point-to-point patterns
(meaning that tourists visit an attraction and follow the
same way back) and circular patterns (that do not feature
such turning points). For this classification, it is important
to determine turning points in GPS trajectories.

The identification of turning points was also an essential
step in an ongoing study on the behavior of visitors to Bercht-
esgaden National Park [16]. In this study more than five
hundred GPS trajectories were recorded and segmented at
turning points for further analysis. In this paper, we in-
troduce a novel method for the detection of turning points
and use the data collected in the study for experimental
evaluation.

Related work
The algorithmic analysis and segmentation of trajectories
has been intensively studied in the past years. Segmentation
algorithms have been based, for example, on finding hotspots
of a certain shape [12], or based on so-called stable criteria [1],
hereditary properties [4], monotone criteria [8] or nonmono-
tone criteria [3]. Van Kreveld and Luo [17] give algorithms to
efficiently calculate the similarity of trajectories and subtra-
jectories, taking temporal aspects into account (in addition
to geometric properties). The specific problem of identifying
turning points has been attacked by Liu and Schneider [15],
who segment trajectories using an angle criterion. A similar
technique has been proposed by Chen et al. [9]. However,
their method is completely local, which makes it susceptible
to scale issues such as the sampling rate and the presence of
noise. Our algorithm provides robustness in these settings
by making a more global analysis.

The concept of free-space diagrams for of Fréchet distance
is due to Alt and Godau [2]. Several groups of authors
intersecting on Buchin & Buchin have applied this concept
to the analysis of GPS trajectories in various ways. They
propose a measure for partial similarity of curves [7]. The free-
space diagrams are used to find subtrajectories that are near
each other and to match vertices. They introduce constrained
free-space diagrams [5] as a tool to perform various other
analyses, proposing restrictions on the free space and what
paths are considered admissible. A sweepline algorithm [6]
is used to cluster similar parts in one or many trajectories.



Figure 1: Three views of a trajectory from our data set. Left: GPS points as segmented into three parts by
the ground truth, overlaid on satellite imagery.1 Middle: The entire trajectory as a single polyline. Right:
The resulting free-space diagram. The tourist starts at a parking lot in the north and goes west of the lake ( ).
The tourist turns around, doubles back and then goes east of the lake ( ). A second turning point occurs
and the tourist returns to the parking lot ( ).

2. HOLES IN FRÉCHET DIAGRAMS
In this paper, we interchangeably interpret GPS trajec-

tories as polylines and vice versa. We now consider the
free-space diagrams introduced by Alt and Godau [2] for
computing the Fréchet distance between two (directed) poly-
lines. In their paper, they search for an admissible path
through this particular free-space diagram and prove that
such a path exists if and only if the two input polylines have
Fréchet distance at most ε. See the original paper for details.
When just looking for the existence of such a path, the exact
parameterisation of parameter space is irrelevant. In this
paper, we parameterise by the length of the line segments.

These free-space diagrams (henceforth: Fréchet diagrams)
contain considerable information about the relative position
and shape of the polylines. Recall that a point f in a Fréchet
diagram for polylines P and Q corresponds to a point on P
and a point on Q, and that f is free if and only if these two
points have distance at most ε. We will find that interesting
information can be found even for one polyline T by compar-
ing T to its reverse Tr. Since T equals Tr except in reverse,
a point in the Fréchet diagram corresponds to two points on
T . See Fig. 1 for an example.

A visually prominent feature of such diagrams is the strip
of free space connecting the upper left and the lower right
corner along the diagonal: see Fig. 2. In particular, for points
on the diagonal from the upper left to the lower right corner,
the point on T and on Tr necessarily coincide. Call this the
main diagonal of the diagram. It also follows that ε is a lower
bound on the width of this strip in parameter space: Any
point on T is free when compared to any other point that
lies within distance ε along T : by the triangle inequality, the
Euclidean distance between these two points is at most ε.
Then a line segment of slope 1, placed symmetrically about
the main diagonal, must be completely free if it has length
at most

√
2ε. We call this the basic length since it will serve

as unit of scale later. Note that the Fréchet diagram for T
and Tr has a mirror symmetry along the main diagonal.

Fig. 2a shows a trajectory that passes close to itself, but in
reverse. The trajectory contains two subtrajectories that are

1Imagery: DigitalGlobe, GeoBasis-DE/BKG, GeoContent,
Geomimage Austria, Salzburg AG / Wenger Oehn.
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Figure 2: Different shapes of holes in Fréchet dia-
grams and their corresponding subtrajectories.

parallel and next to each other. This corresponds to a hole
in the Fréchet diagram as indicated by the red line. The line
has positive slope, but does not intersect the main diagonal.
This means that the corresponding intervals on T and Tr do
not overlap. Parallel subtrajectories that are traversed in
the same direction lead to a similar hole, but with negative
slope. Fig. 2b shows the same situation, except that one of
the two subtrajectories is substantially longer than the other.
This is expressed by the different slope of the corresponding
red line segment. Fig. 2c shows a trajectory that contains a
hotspot and a corresponding large disc in free space.

Now we look at Fig. 1 again. The Fréchet diagram on the
right includes several maximally-long slope-1 line segments
that cross the main diagonal. By our earlier observations,
we see that these correspond to long nearly-parallel subtra-
jectories that are traversed in reverse direction. We call such
line segments turning intervals and predict a turning point
at their intersection point with the main diagonal. Note that
this is accurate in Fig. 1.

3. CLASSIFYING TURNING POINTS
Based on the discussion above, we are interested in long,

slope-1 line segments in the free space that cross the main
diagonal. We call a line segment maximal if it cannot be
moved within the free space. Given two polylines of n and m
vertices, the set of maximal line segments of given slope in
the Fréchet diagram can be enumerated in O(nm) time (algo-
rithm omitted for space). This set includes many irrelevant
turning points: not all maximal line segments correspond to
actual turning intervals. First we remove all line segments
that do not intersect the main diagonal. Short line segments



might correspond to small bends in the trajectory that do
not actually represent turning points from a semantic point
of view. We use a discrimination threshold τ that only passes
long line segments, where τ is a factor on the basic length
(see Section 2): a line segment of length 2` will be selected
if and only if ` ≥ τ ·

√
2 · ε. (Note that τ is a dimensionless

constant.) Appropriate values for τ in real-world data are
discussed in the next section.

4. CASE STUDY
In this section we apply our algorithm to a set of real-world

data and show that it is suitable for practical applications.
As part of a research project in Berchtesgaden National
Park, 637 GPS trajectories tracking outdoor activities have
been collected by Schamel [16]. The trajectories in this data
set have a high sampling rate (1 Hz) and an average length
of 9.7 km. They were manually segmented by a geography
student temporarily employed for this purpose, splitting at
turning points and when the mode of travel changes (the
latter being determined from external information). This
manual process took approximately 50 hours.

In this section we compare the results of our algorithm to
this manually-generated ground truth. Since our algorithm
knows nothing about travel-modes, we focus on the subset
of trajectories that were only cut at turning points. We have
run our experiments on 284 such trajectories, with an average
of 1.51 ground-truth turning points (median 1). Note that
we do not expect to replicate the ground truth exactly, since
the concept of turning point is vague to begin with, and
the student was instructed to omit “very short” segments
(without formal criterion).

We have used only every 150th point of each trajectory.
This results in an effective sampling rate of once per two and a
half minutes, which is reasonable for the activities in this case
study (mostly hiking). This reduced sampling rate represents
lower quality data that might be more easily obtainable in
practice (e.g. the energy-saving mode on consumer GPS
devices). Even on this relatively crude data, our algorithm
performs well.

We have implemented our algorithm in Java. No effort was
made to optimise this implementation for runtime; signifi-
cantly improved constant factors are surely possible. On a
representative trajectory of 100 points we measured a runtime
of 0.24 s on commodity hardware; n ≈ 600 took 2.7 s.

4.1 Statistical Accuracy
We have run our algorithm on all 284 trajectories and used

ε = 0.003◦ as value for the Fréchet distance calculations.
This corresponds to about 333 m in this area and was picked
by hand based on visual inspection of some of the trajectories.
Given a discrimination threshold τ , we compare the position
of the turning points according to the ground truth and the
detected turning intervals. If a detected interval contains
at least one ground-truth turning point, it is considered a
true positive; otherwise, a false positive. The ground-truth
turning points that were not contained in any detected in-
terval are considered false negatives. Based on these classes,
we evaluated our algorithm using ROC analysis [10] and
calculate the area under the curve (AUC). In this experiment
we find an AUC of 0.914, which is considered excellent [13].
This shows that the maximal line segments in Fréchet dia-
grams are a successful data reduction step for finding turning
intervals in GPS trajectories and that the length of the line

Table 1: Classification performance depending on
discrimination threshold τ .

τ Recall Precision F1 Score Distance (median)

1.13 0.94 0.73 0.82 50.2 m

1.55 0.78 0.85 0.82 55.0 m

4.12 0.50 0.99 0.66 63.2 m

segment is a meaningful feature for classifying the hits.
The ROC analysis aggregates over the discrimination

threshold τ . In practice, a particular value for τ must be
used. Inspection of the ROC curve suggests 4.12, 1.55 and
1.13 as promising values for τ . Table 1 shows the statistics.
Note that τ = 1.13 and τ = 1.55 lead to the same F1 score,
where the lower threshold leads to an increased recall at the
cost of some precision. Choosing τ = 4.12 leads to a lower F1

score, but ensures a very high precision (99 %). This might
be desirable depending on the application.

4.2 Geographic Accuracy
Now we consider the (geographic) distance between our

predicted turning points and their counterparts in the ground
truth. Table 1 gives the median distance, which lies between
50.2 m and 63.2 m depending on τ . This can be considered
very precise, since the median distance between subsequent
points in the trajectories is 91.2 m. Specifically for τ = 1.55,
more than a third of the ground-truth turning points have a
predicted turning point within 25 m.

When considering Table 1, it is noteworthy that the dis-
tance value actually improves for lower thresholds, that is,
more loose classification. Recall that our algorithm initially
detects intervals that it predicts contain a turning point,
and that the exact locations of these turning points is only
estimated afterwards. This means that long intervals are
fairly certain to include a turning point (improved precision),
but allow many possible geographic locations of the actual
turning point (increased geometric error). Shorter intervals,
while being less reliable indicators, provide tighter constraints
on where the turning point is located geographically. For
this reason, admitting shorter intervals decreases statistical
precision, but improves the geographic precision.

4.3 Influence of Scale
Recall that ε can be interpreted as a Fréchet distance that

must be admissible within a detected turning interval. This
shows that ε influences the scale of the turning intervals our
algorithm locates. Consider Fig. 3. With ε1, the resulting
Fréchet diagram contains only one hole that allows a slope-1
line segment of significant length. The resulting turning
interval captures turning point A well and ignores point B
altogether. Depending on the context, the scale, and the size
of turning areas one is interested in, this might well be the
desired result. If we pick ε2 instead, we increase the scale of
allowed turning areas. In the Fréchet diagram for ε2, we see
an additional distinct hole that will contain long maximal
line segments. The turning interval described by this hole
corresponds to turning point B. This experiment shows that
our algorithm is capable of locating turning intervals at
different scales, intuitively controllable by setting ε: it is a
natural parameter for which a reasonable value can be picked
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Figure 3: A crop of a trajectory from our data set.
The value of ε in the Fréchet-distance calculation
influences the scale at which turning points are de-
tected.

based on the input data and the intended scale of turning
points. Thus, it can also be applied to trajectories that
contain turning behaviour on considerably larger or smaller
scales than the hiking trajectories considered in this paper.

5. CONCLUSION
We have introduced a new characterisation of turning

points in trajectories, based on free-space diagrams for Fréchet
distance. In particular, we interpret the trajectory as a poly-
line and compare this polyline with its reverse. If intervals of
these two polylines are Fréchet-similar, then those intervals
represent a part of the trajectory that is similar in both
directions. This directly relates to turning points and we
have shown how to ‘read’ this from the holes of the free-space
diagram. We chose to find long slope-1 line segments within
the free space. While this may seem overconstrained and
somewhat arbitrary, it has a clear interpretation and works
well in our case study. We provide a classifier to actually
detect the turning points from this set. An advantage of
our method over previous work is that it takes the entire
trajectory into account and has a natural scale parameter (ε).

In this paper we have focused specifically on our char-
acterisation of turning points—to the exclusion of possible
additional features such as local turning angles [15] and ker-
nel density approaches. Additional information may come
from a point-of-interest data set, or map matching when
a road network is available. A practical system will want
to combine multiple features in order to arrive at better
classification performance (for example through classifier
committees); here we have demonstrated that this particular
feature already works well on its own.

Further work may want to investigate if other semantically
meaningful properties of trajectories can be derived from the
Fréchet diagram. A clear extension of the current work is a
more general analysis of parallel subtrajectories: What can
we detect that is relevant for the various sciences dealing
with GPS trajectories, such as tourism studies and biology?
The inclusion of turning points could improve segmentation
of trajectories in tourism, which by now is for the most
part based on detecting stop locations [11, 18]. In our case
study, we have detected slope-1 line segments. It may be
fruitful to generalise this to other shapes within the free space.
(Compare how Buchin et al. [6] detect single-file movement
in sets of trajectories.)
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