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Abstract

In applications of the fine hierarchies their characterizations in terms of the so called alternating
trees are of principal importance. Also, in many cases a suitable version of many-one reducibility
exists that fits a given fine hierarchy. With a use of Priestley duality we obtain a surprising result
that suitable versions of alternating trees and of m-reducibilities may be found for any given fine
hierarchy, i.e. the methods of alternating trees and m-reducibilities are quite general, which is of
some methodological interest.

Along with hierarchies of sets, we consider also more general hierarchies of k-partitions and in this
context propose some new notions and establish new results, in particular extend the above-mentioned
results for hierarchies of sets.

Key words. Hierarchy, m-reducibility, Boolean algebra, bounded distributive lattice, Stone
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1 Introduction

In applications of the fine hierarchies (see [Se08] for a recent survey), their characterisations in terms of
the so called alternating trees are of principal importance. Also, in many cases a suitable version of many-
one reducibility exists that fits a given fine hierarchy (FH). Here we establish a surprising result that
suitable versions of alternating trees and of m-reducibilities may be found for any given fine hierarchy, i.e.
the methods of alternating trees and m-reducibilities are quite general, which is of some methodological
interest for the hierarchy theory [Ad62, Se08]. The result is naturally described in terms of Priestley
duality [Pr70, DP94].

Note that, similar to [Se08], the term “fine hierarchy” is used in two senses: it denotes either an element
of a class of certain hierarchies or a distinguished element of this class — the fine hierarchy over a given
ω-base specified below. The term “m-reducibilities” denotes reducibilities having some common features
with the well-known m-reducibility from computability theory [Ro67].

For simplicity, we discuss our results in this introduction only for the difference hierarchy (DH) which is
the well-known and most important version of a FH; for the DH the alternating trees are simplified to
alternating chains. Let B = (B;∪,∩,̄ , 0, 1) be a Boolean algebra and L be a sublattice of (B;∪,∩, 0, 1).
Let L(k)(k < ω) be the set of all elements representable as

⋃
i(a2i \a2i+1) where ai ∈ L satisfy a0 ⊇ a1 ⊇

· · · and ak = 0. The sequence {L(k)}k<ω is called the difference hierarchy over L. It is well known that
L(k)∪Ľ(k) ⊆ L(k+1) and

⋃
k<ω L(k) is the Boolean algebra generated by L, where Ľ(k) = {x | x ∈ L(k)}.

Most useful results on the DH’s (for example, the non-collapse property or decidability properties) are
often obtained through their characterization in terms of the so called alternating chains. From many
examples in the literature we mention here only a couple:

1. Let L be the class of open sets in an ω-algebraic domain X. Then L(n) is the class of approximable
∗Supported by DFG-RFBR (Grant 436 RUS 113/1002/01, 09-01-91334, Grant 436 RUS 113/850/0-1.
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sets A ⊆ X such that there is no sequence a0 ≤ · · · ≤ an of compact elements with a2i ∈ A,
a2i+1 6∈ A. Here ≤ is the specialization order.

2. Let L be the level 1/2 of the Straubing-Thérien hierarchy of regular languages over a given alphabet.
Then L(n) is the class of languages A such that there is no sequence a0 ≤ · · · ≤ an of words with
a2i ∈ A, a2i+1 6∈ A. Here ≤ is the subword order.

3. Let L be the set of existential sentences of signature σ. Then L(n) is the set of σ-sentences ϕ such
that there is no sequence A0 ⊆ · · · ⊆ An of σ-structures with A2i |= ϕ, A2i+1 6|= ϕ.

Are there similar characterizations for an arbitrary DH? It is not obvious because there are also many
examples of DH’s in the literature for which the chain-characterisation was not known (even for the
thoroughly studied DH’s over the computably enumerable sets and over the NP-sets). Nevertheless, the
answer is positive, as we show with a heavy use of Priestley duality which is a basic tool in the study of
distributive lattices. Thus, the method of alternating chains (the name was coined in [Ad65]) is a general
tool for investigating the DH’s. Let us stress that the chain-characterisation of a given DH is not unique,
and different such characterisations may give sometimes new information about the hierarchy.

In many cases a suitable version of many-one reducibility exists that fits a given DH in the sense that
any level of the DH is closed and has a complete set under this reducibility [Se08]. This is of interest
because in many cases such reducibilities provide a finer classification than the DH itself. Again, we
recall some examples. For the example 1 above, a suitable reducibility is the Wadge reducibility (i.e., the
m-reducibility by continuous functions). For the example 2, a suitable reducibility was not considered but
for the closely related Brzozowski dot-depth hierarchy a suitable reducibility is the so called quantifier-
free reducibility found recently in [SW05]. For the example 3, a suitable reducibility was not known, to
our knowledge. For the DH’s over the computably enumerable sets (resp. over the NP-sets) a suitable
reducibility is the classical m-reducibility (resp. the polynomial-time m-reducibility).

Is there a suitable reducibility that fits arbitrary given DH? Again, the answer is positive, at least for
a rather broad natural class of DH’s, and it is also proved using the Priestley duality. We present the
mentioned results on the DH’s in Section 4, after some preliminary information in Section 3 on the Stone
and Priestley dualities and some of their extensions. Along with the DH, we establish similar results for
a rich class of fine hierarchies. Since the case of arbitrary FH’s is technically much more involved, we
consider first in Section 5 another particular case of a FH — the so called symmetric difference hierarchy
(SDH), and only then in Section 6 — the general case.

Along with the classical hierarchies of sets discussed so far we establish similar results for the DH’s
of partitions of a given set to k ≥ 2 parts (called k-partitions here) which were recently considered in
different fields of hierarchy theory [Ko00, Ko05, KW00, KW08, Se04]. In Section 7 we extend the results
about the DH of sets to the DH of k-partitions. Already this extension is non-trivial and in fact requires
a modification of the notion of Boolean hierarchy of k-partitions over posets in [Ko00, Ko05]. The desire
to find a natural extension of the chain charactrisation of DH’s to k-partitions was a main motivation
for finding this modification of the hierarchy from [Ko00, Ko05]. In fact, our modification is simpler and
has in general better properties than the hierarchy from [Ko00, Ko05].

The theory may be extended also to the FH of k-partitions which generalizes both the FH of sets and the
DH of k-partitions but this requires essential technical complications not always relevant to the main-
stream of this paper, so we decided to consider this extension in a separate publication (some impression
on this may be obtained from the conference abstract [Se10] which also contains the announcement of
the main results of this paper).

Our proofs are short for the DH and SDH but they become more and more technical (though remaining
rather elementary) when we move to the FH and the DH of k-partitions. We tried to organize the paper
in such a way that technical complications arise step by step. In this paper we consider only finite levels
of the FH’s. In fact, a good deal of the theory can, under suitable assumptions, be developed also for
the transfinite versions of the FH’s (including FH’s of k-partitions) but this leads to additional technical
complications. We hope to consider the transfinite case in a subsequent publication.
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2 Notation and Notions

Here we briefly recall some notation and notions used throughout the paper. We use standard logical
and set-theoretic notation and assume that the reader is familiar with the notions of structure and
substructure of a given signature, distributive lattice, upper and lower semilattice and Boolean algebra.
For a subset A of a Boolean algebra B, Ǎ = {ā | a ∈ A} is the dual set for A. For a bounded distributive
lattice L (i.e., distributive lattice with a smallest element 0 and a greatest elements 1), let Lc denote the
Boolean algebra formed by the elements of L that have a complement in L.

We use some standard notation and terminology on partially ordered sets (posets) which may be found e.g.
in [DP94]. Recall that a preorder is a structure (P ;≤) satisfying the axioms of reflexivity ∀x(x ≤ x) and
transitivity ∀x∀y∀z(x ≤ y∧y ≤ z → x ≤ z). A partial order is a preorder satisfying the antisymmetricity
axiom ∀x∀y(x ≤ y ∧ y ≤ x → x = y). A linear order (or a chain) is a partial order satisfying the
connectivity axiom ∀x∀y(x ≤ y ∨ y ≤ x). Any partial order ≤ on P induces the relation of strict order
< on P defined by a < b ↔ a < b ∧ a 6= b and called the strict order related to ≤. By x|y we denote
that elements x, y ∈ P are incomparable, i.e. x 6≤ y and y 6≤ x. A subset A of P is antichain if any
two distinct elements of A are incomparable. A poset (P ;≤) will be often shorter denoted just by P .
Any subset of a poset P may be considered as a poset with the induced partial order. In particular, this
applies to the “upper cones” ↑ x = {y ∈ P | x ≤ y} defined by any x ∈ P .

It is well known that any preorder (P ;≤) induces a partial order (P ∗;≤∗) called the factorization or
the quotient of P . The set P ∗ is the quotient set P/ ≡ of P under the equivalence relation defined by
a ≡ b↔ a ≤ b ∧ b ≤ a; the set P consists of all equivalence classes [a] = {x | x = a}, a ∈ P . The partial
order ≤∗ is defined by [a] ≤∗ [b]↔ a ≤ b (in fact, with an abuse of notation we usually use ≤ instead of
≤∗). For simplicity, we will often apply notions about posets also to preorders; in such cases we mean
the corresponding quotient-poset of the preorder. We call two preorders equivalent if the corresponding
partial orders are isomorphic.

We assume the reader to be acquainted with elementary notions of topology, like compactness or cartesian
product of (topological) spaces. For a subset A of a space X, A denotes the complement of A rather than
the topological closure of A.

Let ω∗ be the set of finite sequences (strings) of natural numbers. The empty string is denoted by ∅, the
concatenation of strings σ, τ by σaτ , by σ · τ or just by στ , the length of σ by |σ|. By ω+ we denote
the set of finite non-empty strings in ω. By σ v τ we denote that the string σ is an initial segment of
the string τ (please be careful in distinguishing v and ⊆). For any n, 1 < n < ω, let n∗ be the set of
finite strings of elements of {0, . . . , n− 1}, n∗ ⊆ ω∗. E.g., 2∗ is the set of finite strings of 0’s and 1’s. In
computer science people often consider the sets A∗ and A+ of finite (respectively, finite non-empty) words
over a finite alphabet A. Mathematically, these sets are of course the same as n∗ and n+ respectively,
where n is the cardinality of A.

We assume the reader to be acquainted with the notions of ordinal (see e.g. [KM67]) and to definitions
and proofs by induction on ordinals (and on elements of more complicated well-founded sets). Ordinals
are important for the hierarchy theory because levels of many hierarchies are often (almost) well ordered
by inclusion. We use some well-known notions and facts about the ordinal arithmetic. As usual, α + β,
α · β and αβ denote the addition, multiplication and exponentiation of ordinals α and β, respectively.
We will often mention the ordinals ω, ω2, ω3, . . . and ωω. The last ordinal is the order type of finite
sequences (k1, . . . , kn) of natural numbers k1 ≥ · · · ≥ kn, ordered lexicographically. Any non-zero ordinal
α < ωω is uniquely representable in the form α = ωk1 + · · ·+ ωkn with ω > k1 ≥ . . . ≥ kn. We will also
use the larger ordinal ε0 = sup{ω, ωω, ω(ωω), . . .}. It is well-known that any non-zero ordinal α < ε0 is
uniquely representable in the form α = ωγ0 + · · · + ωγk for a finite sequence γ0 ≥ · · · ≥ γk of ordinals
< α. The ordinal ε0 is the smallest solution of the ordinal equation ωκ = κ.

Since we discuss several hierarchies and relations between them in this paper, let us recall some corre-
sponding notions from [Ad65, Se08].

Definition 2.1 Let B be a Boolean algebra and η an ordinal.
1. By an η-hierarchy in B we mean a sequence {Hα}α<η of subsets of B such that Hα ∪ Ȟ ⊆ Hβ for
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all α < β < η.
2. The sets Hα \ Ȟα and Ȟα \Hα are called non-self-dual constituents of {Hα}, while the sets (Hα ∩

Ȟα) \ (
⋃
β<αHβ ∩ Ȟβ) are called self-dual constituents of {Hα}.

3. We say that hierarchy {Hα} does not collapse if Hα 6⊆ Ȟα for all α < η.
4. We call a hierarchy {Hα} is non-trivial if Hα 6⊆ Ȟα for some α < η.
5. A hierarchy {Hα} is called perfect in a level β if

⋃
γ<β(Hγ ∪ Ȟγ) = Hβ ∩ Ȟβ. A hierarchy is

(globally) perfect if it is perfect in all levels.

Note that in most cases B is the Boolean algebra P (X) of all subsets of X; in this case we also speak of
a hierarchy in X. From the Stone representation theorem it follows that this seemingly more restricted
notion is in fact equivalent to the definition above. The sets Hα, Ȟ (resp. Hα ∩ Ȟ) are often called
non-self-dual (resp. self-dual) levels of the hierarchy. Note that the constituents of {Hα} form a partition
of

⋃
αHα, so the hierarchy {Hα} really provides a classification of sets in

⋃
αHα.

Definition 2.2 Let {Hα} and {Gβ} be hierarchies in X.
1. {Hα} is a refinement of {Gβ} in a given level β if

⋃
γ<β(Gγ ∪ Ǧγ) ⊆

⋃
αHα ⊆ (Gβ ∩ Ǧβ). Such a

refinement is called exhaustive if
⋃
α(Hα ∪ Ȟα) = Gβ ∩ Ǧβ.

2. {Hα} is a (global) refinement of {Gβ} if for any β there is an α with Hα = Gβ, and
⋃
αHα =⋃

β Gβ.
3. A hierarchy is called discrete in a given level if it has no non-trivial refinements in this level. A

hierarchy is (globally) discrete if it is discrete in each level.
4. {Hα} is an extension of {Gβ} if the sequence {Gβ} is an initial segment of the sequence {Hα}.
5. A hierarchy {Hα} is called perfect in a level β if

⋃
γ<β(Hγ ∪ Ȟγ) = Hβ ∩ Ȟβ. A hierarchy is

(globally) perfect if it is perfect in all levels.

Obviously, if a hierarchy is perfect in some level (resp. globally perfect) then it is discrete in that level
(resp. globally discrete).

In descriptive set theory and theoretical computer science, people are interested in different reducibilities,
i.e. naturally defined preorders A ≤r B on subsets of a given set X. The intuitive idea behind this notion
is that A ≤r B is intended to mean that the “complexity” of a set A is less than or equal to that of B.
Following a well-established jargon, we call elements of the corresponding quotient-poset r-degrees. We
say that a pointclass C ⊆ P (X) is closed under r-reducibility if B ∈ C and A ≤r B imply A ∈ C. A set C
is r-hard for C (in symbols, C ≤r C) if A ≤r C for all A ∈ C. A set C is r-complete for C (in symbols,
C ≡r C) if C ∈ C and C is r-hard for C. Note that C = {A | A ≤r C} (i.e., C is a principal ideal of
(P (X);≤r)) iff C is closed under r-reducibility and C ≡r C.

The idea may be made precise in many different ways giving rise to a plenty of reducibilities. E.g., we
can relate to any hierarchy H = {Hα}α<η the reducibility ≤H as follows: A ≤H B iff B ∈ Hα (resp.
B ∈ Ȟα) implies A ∈ Hα (resp. A ∈ Ȟα) for each α < η. Obviously, the structure of H-degrees captures
exactly the information about the inclusions of levels of the hierarchy H.

Among all reducibilities, very simple and useful turned out to be the so called many-one reducibilities
(called m-reducibilities for short). Let F be a set of functions on a set X closed under composition and
containing the identity function (intuitively, functions in F are considered as “feasible” in some sense).
We say that A is F -m-reducible to B (in symbols, A ≤Fm B) if A = f−1(B) for some f ∈ F . Obviously,
≤Fm is a preorder on P (X).

A reducibility is especially useful if it is related to a hierarchy in the sense of the following definition.

Definition 2.3 Let {Hα}α<η be a hierarchy of sets in X and ≤r be a reducibility on P (X).
1. We say that the reducibility fits the hierarchy (or, symmetrically, the hierarchy fits the reducibility)

if any level Hα is a principal ideal of (P (X);≤m). Note that the dual levels will then also have this
property.
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2. We say that the reducibility as above perfectly fits the hierarchy if it fits the hierarchy, any non-empty
non-self-dual constituent of the hierarchy is an r-degree, and any non-empty self-dual constituent
of the hierarchy is an r-degree.

It is easy to see that the reducibility ≤H defined above perfectly fits the hierarchy H (moreover, ≤H is
the weakest among the reducibilities on

⋃
αHα that fit H). It is often useful to find a natural notion of

m-reducibility that fits a given hierarchy (see e.g. [Se08] for many examples).

3 Duality

In this section we briefly recall some well-known facts about Stone and Priestley dualities and make some
relevant observations on a slight extension of Priestley duality which is suitable for our purposes here. We
also explain why Priestley duality is useful in the study of fine hierarchies. We assume the reader to be
acquainted with basic notions and facts about Stone and Priestley duality (see e.g. [DP94, Si64, RS63]).
Moreover, we use in this section elementary notions from category theory, all of them are broadly known
and may be found in any text on the subject, see e.g. [BuD70].

3.1 Stone Duality

Let B be the category formed by the Boolean algebras as objects and the {∨,∧,̄ , 0, 1}-homomorphisms
as morphisms. Recall that a Stone space is a compact topological space X such that for any distinct
x, y ∈ X there is a clopen set U with x ∈ U 63 y. Let S be the category formed by the Stone spaces as
objects and the continuous mappings as morphisms.

The Stone duality [St36, St37] states the dual equivalence between the categories B and S. Recall that
the Stone space s(B) corresponding to a given Boolean algebra B is formed by the set of prime filters of B
with the base of open (in fact, clopen) sets consisting of the sets {F ∈ s(B) | a ∈ F}, a ∈ B. (Note that
one could equivalently take ideals in place of filters, as in [DP94].) Conversely, the Boolean algebra b(X)
corresponding to a given Stone space X is formed by the set of clopen sets (with the usual set-theoretic
operations). By Stone duality, any Boolean algebra B is canonically isomorphic to the Boolean algebra
b(s(B)) (the isomorphism f : B→ b(s(B)) is defined by f(a) = {F ∈ s(B) | a ∈ F}), and any Stone space
X is canonically homeomorphic to the space s(b(X)).

3.2 Priestley Duality

Recall that bounded distributive lattice is a distributive lattice L = (L;∨,∧, 0, 1) with a smallest element
0 and a largest element 1. Let D be the category formed by the bounded distributive lattices as objects
and the {∨,∧, 0, 1}-homomorphisms as morphisms. A Priestley space (X;≤) is a compact topological
space X equipped with a partial order ≤ such that for any x, y ∈ X with x 6≤ y there is a clopen up-set
U with x ∈ U 63 y (a subset U of X is up if x ∈ U and x ≤ y imply y ∈ U). Let P be the category formed
by the Priestley spaces as objects and the continuous monotone mappings as morphisms.

The Priestley duality [Pr70] states the dual equivalence between the categories D and P. Recall that
the Priestley space (p(L);⊆) corresponding to a given bounded distributive lattice L is formed by the
set of prime filters of L with the prebase consisting of the sets {F ∈ p(L) | a ∈ F}, a ∈ L, and their
complements. (Note that one could equivalently take ideals in place of filters, as in [DP94].) Conversely,
the bounded distributive lattice d(X;≤) corresponding to a given Priestley space (X;≤) is formed by
the set L of clopen up-sets under set inclusion.

If B is a Boolean algebra and L ⊂ B, let (L) denote the subalgebra of B generated by L. From Priestley
duality it follows that for any bounded distributive lattice L there is a Boolean algebra (L) such that L
is a substructure of ((L);∨,∧, 0, 1) and (L) is generated by L. Moreover, (L) is a unique (in a natural
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exact sense [Gr78]) Boolean algebra with these properties, and p(L) is homeomorphic to s((L)). We call
(L) the Boolean algebra generated by the lattice L.

For purposes of this paper, it is convenient to slightly weaken the notion of Priestley space. Namely, by a
pre-Priestley space we mean a pair (X;≤) formed by a compact topological space X and a preorder ≤ on
X such that for any x, y ∈ X with x 6≤ y there is a clopen up-set U with x ∈ U 63 y; as above, L denotes
the set of clopen up-sets in (X;≤). The relation between two notions is explained by the following

Lemma 3.1 1. If (X;≤) Priestley then it is pre-Priestley.
2. If (X;≤) is a pre-Priestley space then (X/ ≡;≤) is a Priestley space in the quotient-topology and

the set of clopen ≡-saturated subsets of X coincides with (L).

Proof. Assertion 1 is obvious.

2. Clearly, (X/ ≡;≤) is Priestley. Since the class of clopen ≡-saturated sets forms a Boolean algebra and
contains L, it contains also (L). Conversely, let A ⊆ X be clopen and ≡-saturated. Then for all a ∈ A
and b ∈ A we have a 6≡ b, hence a 6≤ b or b 6≤ a, and therefore a ∈ Sa,b 63 b for some Sa,b ∈ (L) (in fact, for
some Sa,b ∈ L∪Ľ). For any fixed a ∈ A, {Sa,b | b ∈ A} is then an open cover of A. Since A is clopen, there
is a finite subcover {Sa,bi)}i≤k, for some k < ω and b0, . . . , bk ∈ A. For the set Sa =

⋂
i≤k Sa,bi ∈ (L) we

then have a 6∈ Sa ⊇ A, hence a ∈ Sa ⊆ A. Then {Sa | a ∈ A} is an open cover of A. Since A is clopen,
there is a finite subcover {Sai)}i≤k, for some k < ω and a0, . . . , ak ∈ A. For the set S =

⋃
i≤k Sai ∈ (L)

we then have A ⊆ S ⊆ A, hence A = S ∈ (L). �

Pre-Priestley spaces naturally arise in the following situation. Let L be a sublattice (in signature
{∨,∧, 0, 1}) of a Boolean algebra B. Define the preorder ≤ on s(B) by: F ≤ G iff F ∩ L ⊆ G ∩ L.
Then we have:

Lemma 3.2 1. The structure (s(B);≤) is a pre-Priestley space.
2. The restriction f |L of the canonical Stone isomorphism f : B→ b(s(B)) to L is a lattice isomorphism

between L and L.
3. The Priestley space (s(B)/ ≡;≤) is homeomorphic with (p(L);⊆).

Proof. 1. Let F,G ∈ s(B) and F 6≤ G. Then a ∈ F \G for some a ∈ L, hence F ∈ f(a) 63 G. Since f(a)
is an up-set w.r.t. ≤, f(a) ∈ L.

2. By Stone duality and the proof of 1, f |L is an isomorphic embedding of L into L, so it remains to
check that for any A ∈ L there is a ∈ L with f(a) = A. Since ∀F ∈ A∀G ∈ A(F 6≤ G), there is a
family {aF,G | F ∈ A,G ∈ A} of elements of L such that aF,G ∈ F \G, i.e. F ∈ f(aF,G) 63 G and hence
F 6∈ f(aF,G) 3 G, for all F ∈ A,G ∈ A. For any fixed F ∈ A, {f(aF,G) | G ∈ A} is then an open cover
of A. Since A is clopen, there is a finite subcover {f(aF,Gi)}i≤k, for some k < ω and G0, . . . , Gk ∈ A.
For the element aF =

⋂
i≤k aF,Gi ∈ L we then have F 6∈ f(aF ) ⊇ A, hence F ∈ f(aF ) ⊆ A. Then

{f(aF ) | F ∈ A} is an open cover of A. Since A is clopen, there is a finite subcover {f(aFi)}i≤k, for
some k < ω and F0, . . . , Fk ∈ A. For the element a =

⋃
i≤k aFi ∈ L we then have A ⊆ f(a) ⊆ A, hence

A = f(a) as desired.

3. Follows from Priestley duality since L is isomorphic to any of L(p(L);⊆), L(s(B)/ ≡;≤). �

We conclude this subsection with establishing some additional properties of pre-Priestley spaces which will
be used in the sequel. For a pre-Priestley space (X;≤) and a set A ⊆ X, let ↓ A = {x | ∃a ∈ A(x ≤ a)}
and ↑ A = {x | ∃a ∈ A(a ≤ x)}.

Lemma 3.3 Let (X;≤) be a pre-Priestley space and A,B,B0, . . . , Bn be closed subsets of X.
1. If ∀a ∈ A∀b ∈ B(a 6≤ b) then A ⊆ U ⊆ B for some U ∈ L.
2. If ∀a ∈ A

∨
i≤n ∀b ∈ Bi(a 6≤ b) then there exist U0, . . . Un ∈ L such that A ⊆ U0 ∪ · · · ∪ Un and

A ∩ Ui ⊆ Bi for all i ≤ n.
3. The sets ↓ A and ↑ A are closed.
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Proof. 1. For any a ∈ A and b ∈ B, choose Ua,b ∈ L such that a ∈ Ua,b 63 b, so a 6∈ Ua,b 3 b. Then, for
any fixed a ∈ A, {Ua,b}b∈B is an open cover of B. Since B is closed and X is compact, there is a finite
subcover {Ua,bi}i≤k, for some k < ω and b0, . . . , bk ∈ B. For the set Ua =

⋂
i≤k Ua,bi ∈ L we then have

a 6∈ Ua ⊇ B, so a ∈ Ua ⊆ B. Then {Ua}a∈A is an open cover of A. Since A is closed, there is a finite
subcover {Uai}i≤k, for some k < ω and a0, . . . , ak ∈ A. For the set U =

⋃
i≤k Uai ∈ L we then have

A ⊆ U ⊆ B, as desired.

2. For any i ≤ n, define the family {Uai }a∈A as follows: for a given a ∈ A, if ∀b ∈ Bi(a 6≤ b), then let Uai
be any element of L (existing by the proof of item 1) with a ∈ Uai ⊆ Bi, otherwise let Uai = ∅ (note that
Uai ⊆ Bi for all i ≤ n and a ∈ A). Then {Ua0 ∪· · ·∪Uan}a∈A is an open cover of A. Since A is closed, there
is a finite subcover (

⋃
i≤n U

a0
i , . . . ,

⋃
i≤n U

ak
i ), for some k < ω and a0, . . . , ak ∈ A. For any i ≤ n, let

Ui =
⋃
j≤k U

aj
i ∈ L. Then U0, . . . , Un have the desired properties because A∩Ui =

⋃
j≤k(A∩Uaji ) ⊆ Bi.

3. We consider only the set ↓ A because for the other set the proof is similar. Let x ∈ X\ ↓ A, then
∀a ∈ A(x 6≤ a). Since {x} and A are closed, by item 1 there is U ∈ L with x ∈ U ⊆ A. We even
have U ⊆ ↓ A (otherwise, y ∈ U∩ ↓ A for some y; since y ≤ a for some a ∈ A, a ∈ U ∩ A which is a
contradiction). Thus, U is a neighborhood of x disjoint with A. Therefore, A is closed. �

3.3 α-Bases

Here we recall a technical notion of a base. Bases serve as a starting point to build hierarchies we are
interested in (see [Se08] for examples), and have nothing in common with bases in topology or linear
algebra.

Definition 3.4 For any ordinal α ≥ 1, by an α-base we mean a sequence L = {Lβ}β<α of bounded
distributive lattices such that, for all β < γ < α, Lβ is a sublattice (in signature {∨,∧, 0, 1}) of the
Boolean algebra f Lcγ of all elements of Lγ which have complements in Lγ .

Note that a 1-base is essentially a bounded distributive lattice. More generally, for any n < ω the (n+1)-
bases are sequences of bounded distributive lattices of the form (L0, . . . , Ln), with the corresponding
inclusions. Note also that any (n + 1)-base (L0, . . . , Ln) may be extended to the ω-base {Lk}k<ω by
setting Lk = (Ln) for all k > n. Similarly, any α-base may be extended to a β-base for β > α. In the
sequel we deal mostly with 1-bases, 2-bases and ω-bases.

For an α-base L, let L∗ be a smallest Boolean algebra that contains the lattice
⋃
β<α Lβ as a sublattice

(clearly, L∗ =
⋃
β<α Lβ if α is a limit ordinal and L∗ = (Lβ) if α = β + 1 is a successor ordinal). Let L

and M = {Mβ}β<α be α-bases. By a homomorphism f : L → M we mean a morphism f : L∗ → M∗

in the category B of Boolean algebras such that f(Lβ) ⊆ Mβ for each β < α. Let Bα be the category
formed by α-bases as objects and by homomorphisms of α-bases as morphisms.

Next we define some special types of ω-bases which are interesting for the further discussion. But first
we recall definitions of some “structural properties” which are important for the hierarchy theory (see
e.g. [Ke94]). We will often mention the following simplest versions of two such properties.

Definition 3.5 Let B be a Boolean algebra and C ⊆ B.
1. The set C has the separation property iff for any a, b ∈ C with a ∩ b = 0 there is c ∈ C ∩ Č with

a ⊆ c ⊆ b. We say that c separates a from b (note that it is equivalent to say that c separates b
from a).

2. The set C has the reduction property iff for all c0, c1 ∈ C there are disjoint c′0, c
′
1 ∈ C such that

c′i ⊆ ci for both i < 2 and c0 ∪ c1 = c′0 ∪ c′1. The pair (c′0, c
′
1) is called a reduct for the pair (c0, c1)

in C.

It is well-known and easy to see that if C has the reduction property then the dual set Č has the separation
property, but not vice versa. Also, if C has the reduction property then for any finite sequence (c0, . . . , cn)
of elements of C there is a reduct (c′0, . . . , c

′
n), c′i ∈ C for (c0, . . . , cn) (i.e., c′i are pairwise disjoint, c′i ≤ ci
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and c′0 ∪ · · · ∪ c′n = c0 ∪ · · · ∪ cn). The following types of ω-bases will be frequently mentioned in the
sequel.

Definition 3.6 Let L be an ω-base.
1. L is reducible iff any Ln has the reduction property.
2. L is interpolable if for each n < ω any two disjoint elements in Ľn+1 are separable by an element

of (Ln) (equivalently, for any n < ω Ľn+1 has the separation property and (Ln) = Ln+1 ∩ Ľn+1).

3.4 α-Spaces

Here we introduce and study α-spaces which are slight generalisation of Priestley spaces.

Definition 3.7 For any ordinal α ≥ 1, by an α-space we mean a compact topological space X equipped
with a sequence {≤β}β<α of preorders such that:

1. (X;≤β) is a pre-Priestley space for each β < α;
2. for all γ < β < α, x ≤β y implies x ≡γ y;
3. if x ≡β y for all β < α then x = y.

We denote such a space as (X;≤β)β<α or, abusing notation, just by X. Relate to any α-space (X;≤β)β<α
the sequence {Lβ}β<α where Lβ is the set of clopen ≤β-up subsets of X.

Lemma 3.8 Let (X;≤γ)γ<α be an α-space.
1. The sequence {Lγ}γ<α is an α-base.
2. If α = β+ 1 is a successor ordinal then (X;≤β) is a Priestley space and X is homeomorphic to the

Stone space s(Lβ).
3. If α is a limit ordinal then X is homeomorphic to the Stone space s(

⋃
γ<α Lγ).

Proof. 1. Since (X;≤γ) is a pre-Piestley space for each γ < α by item 1 of Definition 3.7, Lγ is a
bounded distributive lattice. Item 2 of Definition 3.7 implies that, for all γ < β < α, Lγ is a sublattice
of the Boolean algebra Lcβ .

2. Follows from item 3 of Definition 3.7.

3. By Stone duality, it suffices to check that the set of clopen subsets of X coincides with (L) =
⋃
γ<α Lγ .

The inclusion from right to left follows from item 1. Conversely, let A be a clopen subset of X. Since
α is limit, by item 3 of Definition 3.7 we have: for all a ∈ A and b ∈ A there is β = β(a, b) < α with
a 6≤β b, so a ∈ U 63 b for some U = Ua,b,β ∈ (L). For any fixed a ∈ A, {Ua,b,β(a,b) | b ∈ A} is then
an open cover of A. Since A is clopen, there is a finite subcover {Ua,bi,β(a,bi))}i≤k, for some k < ω and
b0, . . . , bk ∈ A. For the set Ua =

⋂
i≤k Ua,bi,β(a,bi) ∈ (L) we then have a 6∈ Ua ⊇ A, hence a ∈ Ua ⊆ A.

Then {Ua | a ∈ A} is an open cover of A. Since A is clopen, there is a finite subcover {Uai}i≤k, for some
k < ω and a0, . . . , ak ∈ A. For the set U =

⋃
i≤k Uai ∈ (L) we then have A ⊆ U ⊆ A, hence A = U ∈ (L).

�

We will need the following easy fact on subspaces of α-spaces.

Lemma 3.9 Let (X;≤β)β<α be an α-space, γ < α and let Y be a closed ≤γ-up subset of X. Then
(Y ;≤γ+δ)δ<α−γ (with the induced topology and preorders) is an (α− γ)-space.

Proof. Since Y is closed, the space Y is compact. The only item of Definition 3.7 which is not obvious
is 2. Let y, z ∈ Y and y 6≤β z, β = γ + δ; we have to find U ∈ Lβ(Y ) with y ∈ U 63 z. Since (X;≤γ)γ<α
is an α-space, there is V ∈ Lβ(X) with y ∈ V 63 z. Clearly, U = V ∩ Y is clopen in Y and y ∈ U 63 z, so
it remains to check that U is ≤β-up. Let u ∈ U and u ≤β v in Y , in particular v ∈ Y . Since Y is ≤γ-up
in X and γ ≤ β, Y is ≤β-up by item 2 of Definition 3.7. Therefore, U is ≤β-up. �

For any ordinal α ≥ 1, let Sα denote the category with the α-spaces as objects and the continuous
functions between α-spaces which are ≤β-monotone for each β < α, as morphisms.
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Lemma 3.10 For any ordinal α ≥ 1, the category Sα has products and coproducts.

Proof. Let {(Xi;≤iβ)β<α | i ∈ I} be an indexed family of α-spaces. Let X =
∏
iXi be the cartesian

product of sets Xi equipped with the standard Tychonoff topology and with preorders ≤β which are the
products of the preorders ≤iβ , i ∈ I. It is straightforward to check that (X;≤β)β<α (together with the
projection morphisms) is a product of {(Xi;≤iβ)β<α | i ∈ I} in the category Sα.

Let X =
∐
iXi be the disjoint union of sets Xi equipped with the standard coproduct topology and

with preorders ≤β which are the coproducts of the preorders ≤iβ , i ∈ I. It is straightforward to check
that (X;≤β)β<α (together with the injection morphisms) is a coproduct of {(Xi;≤iβ)β<α | i ∈ I} in the
category Sα. �

Remark 3.11 One can slightly relax Definition 3.7 by omitting item 3. Let us call (in this remark)
such a space pre-α-space. It is easy to see that pre-α-spaces are related to α-spaces in the same way as
pre-Priestley spaces are related to Priestley spaces (see Lemma 3.1).

3.5 α-Duality

We are now ready to formulate the following extension of Priestley duality:

Theorem 3.12 For any ordinal α ≥ 1, the categories Bα and Sα are dually equivalent.

Proof sketch. By definition of dual equivalence [BuD70], we have to find contravariant functors s :
Bα → Sα and b : Sα → Bα such that the functor b ◦ s (resp. s ◦ b) is naturally isomorphic to the identity
functor on Bα (resp. Sα).

For an α-base L = {Lβ}β<α, let s(L) = (X;≤β)β<α where X = s((L)) is the Stone space of the Boolean
algebra (L) and, for all β < α and F,G ∈ X, F ≤β G means F ∩Lβ ⊆ G∩Lβ . It is easy to check (using,
in particular, Lemmas 3.2 and 3.8) that s(L) is an α-space. For a morphism f : L → M of α-bases
L = {Lβ}β<α and M = {Mβ}β<α, define the function s(f) : s((M)) → s((L)) by s(f)(F ) = f−1(F ). It
is easy to check that s(f) is a morphism between the α-spaces s(M) and s(L), and s is a contravariant
functor.

For an α-space (X;≤β)β<α, let b(X) = {Lβ}β<α = L be the α-base from Lemma 3.8. For a morphism
f : X → of α-spaces (X;≤β)β<α and (Y ;≤β)β<α, define the function b(f) :

⋃
β<αMβ →

⋃
β<α Lβ , where

M = b(Y ), by b(f)(A) = f−1(A). It is easy to check that b(f) is a morphism between the α-bases b(Y )
and b(X), and b is a contravariant functor. Similar to the arguments of Priestley duality [Pr70, DP94]
one can check that functors s and b have the desired properties. �

From Theorem 3.12 and Lemma 3.10 we immediately obtain

Corollary 3.13 For any ordinal α ≥ 1, the category Bα has products and coproducts.

Remark 3.14 Priestley duality is a particular case of Theorem 3.12 (for α = 1) while Stone duality is
a particular case of Priestley duality [DP94].

3.6 ω-Bases and Fine Hierarchies

We conclude this section by defining the notion of fine hierarchy (FH) and by explaining why Priestley
duality is useful for the study of FH’s.

In the study of finite levels of FH’s, the notion of ω-base is central because such bases arise naturally in
different fields (the quantifier-alternation hierarchy in logic, the arithmetical hierarchy in computability
theory, the polynomial-time hierarchy in complexity theory and so on), and FH’s are refinements of such
bases (which are themselves hierarchies). Let us recall the notion of FH from [Se08].
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Definition 3.15 Let L be an ω-base and let H be a hierarchy in a Boolean algebra B. We call H a fine
hierarchy (w.r.t. L) if it is a refinement of L in some level or a global refinement of L.

By Theorem 3.12, any ω-base L is isomorphic (in the category Bω) to the ω-base L = {Ln}n<ω in the
dual ω-space s(L) = (X;≤0,≤1, . . .) of L. Since levels of FH’s are defined in the signature of Boolean
algebras, the corresponding levels of FH’s over L and L (with the inclusion relation) are isomorphic and
we may reduce the study of FH’s over abstract bases L to the study of FH’s over the bases L. Moreover,
the structure of ω-spaces provides important tools for a deeper study of FH’s. This is why Priestley
duality is useful in the study of FH’s (as well as in the study of many other fields related to distributive
lattices).

We show below that the levels of FH’s over L have nice characterisations in terms of chains and trees
formed from preorders ≤0,≤1, . . ., and the reducibility by morphisms of the category of ω-spaces (called
M -reducibility) behaves in a sense similarly to the classical Wadge reducibility [Wad84]. Let (X;≤0

,≤1, . . .) be an ω-space and A,B ⊆ X. We say that A is M -reducible to B (in symbols, A ≤M B) if
A = f−1(B) for some morphism f : X → X.

As already mentioned in the Introduction, for pedagogical reasons we will consider first technically easier
cases of some important concrete FH’s, then proceed to the general FH of sets and finally to the more
involved hierarchies of k-partitions.

4 Difference Hierarchy

In this section we discuss difference hierarchies (DH) which form the simplest and most important class of
the fine hierarchies. DH’s were first introduced and studied by F. Hausdorff [Ha14, Ha27] in an abstract
setting and in the topological context. In the 1960-s, DH’s were studied by J. Addison [Ad65] in the
context of logic and by Yu.L. Ershov [Er68] in the context of computability theory. Later, DH’s were
considered by many authors working in different fields of mathematics and computer science.

4.1 Preliminaries on Difference Hierarchy

We start with recalling well-known facts about DH. For a sublattice (L;∪,∩, 0, 1) of a Boolean algebra
B and for each k < ω, let L(k) be the set of elements

⋃
i(a2i \ a2i+1) where ai ∈ L satisfy a0 ⊇ a1 ⊇ · · ·

and ak = 0. The sequence {L(k)}k<ω is called the difference hierarchy over L. The following basic fact
is well known:

Proposition 4.1 For any k < ω, L(k) ∪ Ľ(k) ⊆ L(k + 1) and
⋃
k<ω L(k) = (L) is the Boolean algebra

generated by L.

The following characterization of the DH is due to several people (for additional information on this see
[Se95]). Let T be the set of finite Boolean terms (i.e. terms of signature {∪,∩, , 0, 1}) with variables
vk(k < ω). Relate to any t ∈ T the set t(L) of all values of t when its variables range over L.

Proposition 4.2 For any L specified above, {t(L) | t ∈ T} = {L(n), Ľ(n) | n < ω}.

The last result explains why many characterizations of the DH are possible. We mention the following
well-known characterizations:

Proposition 4.3 1. L(n) = tn(L), where t1 = v0, t2 = v0\v1, t3 = (v0\v1)∪v2, t4 = (v0\v1)∪(v2\v3),
and so on [Er68];

2. L(n) = L	L(n− 1) = L	 (· · · 	L) (n summands, parenthesis to the right) where A	C = {a \ c |
a ∈ A, c ∈ C} for A,C ⊆ B [KSW87];
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3. L(n) = L ⊕ · · · ⊕ L (n summands) where A ⊕ C = {a4c | a ∈ A, c ∈ C} for A,C ⊆ B and
a4c = (a \ c) ∪ (c \ a) is the symmetric difference of a and c [KSW87].

The next fact from [Se95, Se09] characterizes the self-dual levels of the DH over bases with the separation
property.

Proposition 4.4 Let L have the separation property and k < ω. Then L(k + 1) ∩ Ľ(k + 1) coincides
with the set of elements of the form (u ∩ a) ∪ (u ∩ b), where u ∈ L ∩ Ľ, a ∈ L(k) and b ∈ Ľ(k).

It is easy to check the following sufficient condition for the perfectness of the DH:

Proposition 4.5 Let 1 be join-irreducible in L. Then the DH over L is perfect and hence has no non-
trivial refinements.

Let (X;≤) be the pre-Priestley space corresponding to the pair (B,L) fixed above, and let L be the set of
clopen up-sets in X. By Priestley duality (see Lemma 3.2), there is a canonical isomorphism f between
the Boolean algebras (L) and (L) that sends L onto L. The next corollary of Priestley duality shows
that all questions about the DH’s over L and L are equivalent.

Proposition 4.6 The isomorphism f of Boolean algebras (L) and (L) induces isomorphisms of posets
(L(n);⊆) and (L(n);⊆) for each n < ω, as well as between posets {L(n), Ľ(n) | n < ω};⊆) and
({L(n), Ľ(n) | n < ω};⊆).

Proof. By Lemma 3.2, the first isomorphism is given by the restriction map f |L(n). Since f is a bijection
between (L) and (L), the image map A 7→ f(A) is an isomorphism of the powerset Boolean algebras
P ((L)) and P ((L)), hence it remains to check that this map sends L(n) (resp. Ľ(n)) to L(n) (resp. Ľ(n))
for each n < ω. But this again follows from Lemma 3.2. �

4.2 Chain Characterisation of Difference Hierarchy

Let again (X;≤) be a pre-Priestley space. Of course, the DH over L may collapse (e.g., if L is a
Boolean algebra then L = Ľ and the DH over L collapses to the first level). But many concrete DH’s do
not collapse, and now we discuss a notion variants of which are often used in proving the non-collapse
property as well as other non-trivial facts on the DH. Namely, the DH’s are closely related to the so
called alternating chains.

Definition 4.7 By an alternating chain of length k for A ⊆ X we mean a sequence (x0, . . . , xk) of
elements of X such that x0 ≤ · · · ≤ xk and xi ∈ A iff xi+1 6∈ A for each i < k. Such a chain is called a
1-chain if x0 ∈ A, otherwise it is called a 0-chain.

For A ⊆ X, i ≤ 1 and k ≥ 0, let A1 = A, A0 = A, and let Aik be the set of all x ∈ X such that x ≤ x0

for some i-alternating chain (x0, . . . , xk) for A.

Lemma 4.8 Let (X;≤) be a pre-Priestley space and A a clopen subset of X. Then Aik is closed for all
i ≤ 1 and k ≥ 0.

Proof. By induction on k. For k = 0 the assertion holds by item 3 of Lemma 3.3. For k ≥ 1 we have
Aik =↓ (Ai ∩A1−i

k−1), hence Aik is closed by induction and Lemma 3.3. �

The main result of this section is the following

Theorem 4.9 Let (X;≤) be a pre-Priestley space, A ⊆ X and k ≥ 0. Then A ∈ L(k) iff A ∈ (L) and
A has no 1-alternating chain of length k.
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Proof. Let A ∈ L(k), then A ∈ (L) and A =
⋃
i(A2i \ A2i+1), where A0 ⊇ A1 ⊇ · · · is a descending

sequence of L-sets with Ak = ∅. Toward a contradiction, suppose that (x0, . . . , xk) is an 1-alternating
chain for A. Since x0 ∈ A, x0 ∈ A0. Since A0 is an up-set and x0 ≤ x1, x1 ∈ A0. Since x1 6∈ A, x1 ∈ A1.
Continuing in this manner, we obtain xk ∈ Ak = ∅, a contradiction.

The converse implication is checked by induction on k, the cases k = 0, 1 being trivial. For k ≥ 2, we have
∀a ∈ A∀b ∈ A0

k−1(a 6≤ b). By Lemma 4.8 and item 1 of Lemma 3.3, A ⊆ U ⊆ A0
k−1 for some U ∈ L. The

set U \A is clopen and has no 1-chain of length k−1 (indeed, if (x0, . . . , xk−1) were such a chain it would
be also a 0-chain for A, hence x0 ∈ U ∩ A0

k−1 which is a contradiction). By induction U \ A ∈ L(k − 1),
hence A = U \ (U \A) ∈ L 	 L(k − 1). By item 2 of Proposition 4.3 A ∈ L(k) = L 	 L(k − 1). �

Note that if 1 is join-irreducible in a bounded distributive lattice L then {1} is the smallest element in
the Priestley space (p(L) ≤), so the following corollary extends Proposition 4.5.

Corollary 4.10 Let (X;≤) be a pre-Priestley space with a smallest element ⊥ or a greatest element >.
Then the DH over L is perfect.

Proof. We have to show that L(k) ∪ Ľ(k) = L(k + 1) ∩ Ľ(k + 1) for each k ≥ 0. The inclusion from
left to right is trivial, so it remain to check if a set A ∈ (L) is not in L(k) ∪ Ľ(k) then it is not in
L(k + 1) ∩ Ľ(k + 1). By Theorem 4.9, for any i ≤ 1 there is an i-chain (xi0, . . . , x

i
k) for A. Then one of

(⊥, xi0, . . . , xik), i ≤ 1, or one of (xi0, . . . , x
i
k,>), i ≤ 1, is an alternating chain for A. By Theorem 4.9, A

is not in L(k + 1) ∩ Ľ(k + 1). �

Remark 4.11 For a given DH over L, the chain characterisation is not unique, i.e. there might exist
a poset (Y ;�) and a sublattice M of P (Y ) such that the DH over L and M are isomorphic, chain
characterisation for DH over M holds, and (Y ;�) is not isomorphic to the Priestley space (X;≤) of
L. E.g., it is easy to check that (A∗;⊆) is not isomorphic to the Priestly poset for the level 1/2 of
the Straubing-Thérien hierarchy (see Introduction, Example 1). Different chain characterisations of a
given DH may provide useful information on the hierarchy. E.g., in [GS01, GSS08] two different chain
characterisations of the DH over the level 1/2 of the Brzozowski’s dot-depth hierarchy were found which
yield, respectively, polynomial-space and nondeterministic log-space algorithms deciding the levels of the
hierarchy.

4.3 Difference Hierarchy and M-Reducibility

Here we show that M -reducibility introduced in Subsection 3.6 is closely related to the DH. For the
context of pre-Pristley spaces definition of M -reducibility looks as follows. Let (X;≤) be a pre-Pristley
space and A,B ⊆ X. We say that A is M -reducible to B (in symbols, A ≤M B) if A = f−1(B) for some
monotone continuous function f : X → X.

Theorem 4.12 Let (X;≤) be a pre-Priestley space.
1. For any n ≥ 0, L(n) is closed under M -reducibility.
2. If C = L(n) \ Ľ(n) is non-empty then L(n) has an M -complete set and C forms an M -degree.
3. If Ľ has the separation property and C = (L(n+ 1) ∩ Ľ(n+ 1)) \ (L(n) ∪ Ľ(n)) is non-empty then
L(n+ 1) ∩ Ľ(n+ 1) has an M -complete set and C forms an M -degree.

Proof. 1. Since L is clearly closed under M -reducibility, so is also L(n).

2. It suffices to show that for all A ∈ L(n) and B ∈ (L) \ L(n) we have A ≤M B. By Theorem 4.9,
there is a 0-chain (b0, . . . , bn) for B. Since A ∈ L(n), A =

⋃
i(A2i \ A2i+1) for a descending sequence

A0 ⊇ A1 ⊇ · · · of L-sets with An = ∅. Define f : X → X by f(x) = bm(x) where m(x) = µk(x 6∈ Ak) (so
in fact f : X → {b0, . . . , bn}). Since x ≤ y and x ∈ Ak imply y ∈ Ak, f is monotone. Since f−1(C) is a
Boolean combination of A0, . . . , An−1 for each C ⊆ X, f is continuous. Since x ∈ A iff m(x) is odd iff
bm(x) ∈ B, A = f−1(B) and therefore A ≤M B.
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3. It suffices to show that for all A ∈ L(n+1)∩Ľ(n+1) and C ∈ (L)\(L(n)∪Ľ(n)) we have A ≤M C. By
Theorem 4.9, there are a 0-chain (c0, . . . , cn) and a 1-chain (d0, . . . , dn) for C. Since Ľ has the separation
property and A ∈ L(n + 1) ∩ Ľ(n + 1), by Proposition 4.4 there is U ∈ L ∩ Ľ such that A ∩ U ∈ L(n)
and A∩U ∈ Ľ(n), hence A∩U ∈ L(n). Let A0 ⊇ A1 ⊇ · · · and B0 ⊇ B1 ⊇ · · · be descending sequences
of L-sets such that An = Bn = ∅, A ∩ U =

⋃
i(A2i \ A2i+1) and A ∩ U =

⋃
i(B2i \ B2i+1). Define

f : X → X as follows: if x ∈ U then f(x) = ca(x), otherwise f(x) = db(x) where a(x) = µk(x 6∈ Ak) and
b(x) = µk(x 6∈ Bk) (so in fact f : X → {c0, . . . , cn, d0, . . . , dn}). Similar to the proof of 2, A ≤M C via f .
�

Remark 4.13 For a given DH over L, there might exist different m-reducibilities that fit isomorphic
copies of the hierarchy. E.g., qf -reducibility from [SW05] fits the DH over the level 1/2 of the Brzozowski’s
dot-depth hierarchy (denoted as L in this remark) but it is distinct from the corresponding M -reducibility
(because M -reducibility perfectly fits the isomorphic copy of the hierarchy by Proposition 4.12 and the
result in [SW05] that Ľ has the separation property while qf -reducibility does not). If Ľ has the separation
property, M -reducibility is the weakest among such reducibilities on (L) because it induces the reducibility
that perfectly fits the DH over L.

4.4 Typed Difference Hierarchy

Here we mention a simple natural global refinement of an arbitrary ω-base L (recall that we are interested
in natural refinements of L). For each n < ω, we can of course form the DH {Ln(m)}m over Ln; this is a
refinement of L in the (n+ 1)-st level. We can also define a global refinement of L, namely the sequence
{Ln(m)}n,m<ω which we call here the typed DH over L (actually, in order to obtain a hierarchy in the
sense of Definition 2.1, we have to renumerate the levels by ordinals α < ω2 in the obvious way). This
hierarchy has the length at most ω2 because, in case it does not collapse, we have: Ln(m) ⊆ Ln1(m1) iff
n < n1 or n = n1 ∧m ≤ m1, for all n,m, n1,m1 < ω, m,m1 > 0.

Let us formulate the chain characterisation of the typed DH. This is mainly for methodical reasons, in
order to make preparations for similar technically more complicated notions for the finer hierarchies to
be discussed later. Proposition 4.8 is obviously extended to the following:

Proposition 4.14 Let (X;≤0, . . .) be an ω-space. For all n,m < ω the class Ln(m) coincides with the
class of clopen subsets of X that have no 1-alternating chain in (X;≤n) of length m.

For subsets A,B of an ω-space X, the notion of M -reducibility is modified as follows: A is M -reducible
to B (in symbols, A ≤M B) if A = f−1(B) for some morphism f : X → X of ω-spaces. For this notion
we have the following obvious corollary of Theorem 4.12.

Proposition 4.15 Let (X;≤0, . . .) be an ω-space.
1. For any m,n ≥ 0, Ln(m) is closed under M -reducibility.
2. If C = Ln(m) \ Ľn(m) is non-empty then Ln(m) has an M -complete set and C forms an M -degree.

In many concrete examples of the typed DH the DH over L0 is discrete. In contrast, the DH’s over Ln
for n > 0 usually have natural refinements (this is the reason why the analog of item 3 of Theorem 4.12
does not hold for those levels). We discuss some of them in the next sections.

5 Symmetric Difference Hierarchy

Here we discuss a fine hierarchy that is a bit less obvious to discover than the long DH. It was introduced in
[Se94, Se95, Se99] under the name “plus-hierarchy” and renamed in [Wag98] to the “symmetric-difference
hierarchy” (SDH); we use the last name in this paper.
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5.1 Preliminaries on Symmetric Difference Hierarchy

Let L be an ω-base. By item 3 of Proposition 4.3, for all n ≥ 0 and m ≥ 1 we have Ln(m) = Ln⊕· · ·⊕Ln
(m summands). It is natural to ask what classes do we get if we also add the levels Ln for different n.
Let Alg denote the collection of classes obtained in this way. Let Seq be the set of finite non-empty
strings σ = (n0, . . . , nk) of natural numbers satisfying n0 ≥ · · · ≥ nk, and let < be the lexicographic
order on Seq. For σ = (n0, . . . , nk) ∈ Seq, let Pσ = Ln0 ⊕ · · · ⊕ Lnk ; we call the sets Pσ levels of the
symmetric-difference hierarchy over L. In other words, the non-zero levels of the SDH are sets of the
form Ln0(k0) ⊕ · · · ⊕ Lnl(kl), for some l ≥ 0, n0 > · · · > nl and k0, . . . , kl > 0. Let us recall some easy
properties of the defined objects from [Se99].

Proposition 5.1 1. The structure (Seq;<) is well-ordered with the corresponding ordinal ωω.
2. {Pσ | σ ∈ Seq} = Alg.
3. The SDH is a refinement of the typed DH.
4. For all σ, τ ∈ Seq, if σ < τ then Pσ∪P̌σ ⊆ Pτ , i.e. the SDH is a hierarchy in the sense of Definition

2.1 (after the obvious enumeration of levels by ordinals < ωω).

It is easy to check that the analog of Proposition 4.6 holds for the SDH, i.e. the SDH over a given ω-base
L is isomorphic to the SDH over the ω-base L in the dual ω-space (X;≤0, . . .), hence in most cases it
suffices to investigate the second hierarchy. We also recall two straightforward characterisations of SDH
from [Se95, Se99]. The first one is as follows:

Proposition 5.2 Let (X;≤0, . . .) be an ω-space, C ⊆ X, l > 0, n0 > · · · > nl, k0, . . . , kl > 0,
C = Ln0(k0)⊕· · ·⊕Lnl(kl) and D = Ln0(k0)⊕· · ·⊕Lnl−1(kl−1). The following conditions are equivalent:

1. C ∈ C.
2. There are Lnl-sets E0 ⊇ E1 ⊇ · · · such that Ekl = ∅, C ∩ E0 ∈ D and C ∩ (E2i+1 \ E2i+2) ∈ D,

C ∩ (E2i \ E2i+1) ∈ Ď for all i ≥ 0.
3. There are Lnl-sets E0 ⊇ E1 ⊇ · · · and D-sets D0, D1, . . . such that Ekl = ∅ and

C =
⋃
i

((D0 ∩ E0) ∪ (D2i+1 ∩ (E2i+1 \ E2i+2) ∪ ((D2i ∩ (E2i \ E2i+1).

The second characterisation is in terms of the following operation (introduced by W. Wadge [Wad84,
Lo83]) on subsets of a Boolean algebra B: Sep(A,B,C) = {(a ∩ b) ∪ (a ∩ c) | a ∈ A, b ∈ B, c ∈ C}.

Proposition 5.3 Let (X;≤0, . . .) be an ω-space, C ⊆ X, l > 0, n0 > · · · > nl, k0, . . . , kl > 0,
C = Ln0(k0)⊕ · · · ⊕ Lnl(kl) and D = Ln0(k0)⊕ · · · ⊕ Lnl−1(kl−1). Then we have:

1. Ln(0) = {∅} and Ln(k + 1) = Sep(Ln, Ľn(k),Ln(0)) for all n, k ≥ 0.
2. D ⊕ Lnl = Sep(Ln, Ď,Ln(0)) and C ⊕ Lnl = Sep(Ln, Č,Ln(0)).

5.2 Chain Characterisation of Symmetric Difference Hierarchy

Here we adapt the alternating chains to the context of SDH. This is mainly also for methodical reasons,
as a particular case of a more general notion in the next section.

Definition 5.4 Let (X;≤0, . . .) be an ω-space and L the corresponding ω-base. Define chains of type
((n0, k0), . . . , (nl, kl)), for all l < ω, n0 > · · · > nl and k0, . . . , kl > 0, by induction on l as follows:

1. Chain of type (n0, k0) is a sequence (x0, . . . , xk0) in X satisfying x0 ≤n0 · · · ≤n0 xk0 . Atoms of
such a chain are by definition the components x0, . . . , xk0 .

2. For l > 0, chain of type ((n,k0), . . . , (nl, kl)) is by definition a sequence (X0, . . . , Xkl) of chains of
type ((n0, k0), . . . , (nl−1, kl−1)) satisfying X0 ≤nl · · · ≤nl Xkl where Xi ≤nl Xj means that for some
(equivalently, for all) atoms x of Xi and y of Xj it holds x ≤nl y. Atoms of (X0, . . . , Xkl) are the
atoms of the components.
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Note that chains of type ((1, k0), (0, k1)) essentially coincide with the corresponding “superchains” intro-
duced in [Wag79]. From induction on l and Definition 5.4 we immediately obtain

Lemma 5.5 If (X0, . . . , Xkl) is a chain of type ((n0, k0), . . . , (nl, kl)) then there is a ≤nl-smallest atom
in the set of all atoms in X0, . . . , Xkl (hence a ≡n b for all atoms a, b and all n < nl).

Next we generalize the notion of 1-alternating chain from Subsection 4.2.

Definition 5.6 Let A ⊆ X, l < ω, n0 > · · · > nl and k0, . . . , kl > 0. We define 1-alternating chains of
type ((n0, k0), . . . , (nl, kl)) for A by induction on l as follows:

1. 1-Alternating chain of type (n0, k0) for A is a chain (x0, . . . , xk0) of type (n0, k0) in X such that
x2i ∈ A and x2i+1 6∈ A.

2. For l > 0, 1-alternating chain of type ((n0, k0), . . . , (nl, kl)) for A is a chain (X0, . . . , Xkl) of type
((n0, k0), . . . , (nl, kl)) such that X2i are 1-alternating chains for A and X2i+1 are 1-alternating
chains for A.

The next result extends Theorem 4.9 to the context of the SDH.

Theorem 5.7 Let (X;≤0, . . .) be an ω-space, L the corresponding ω-base, l < ω, n0 > · · · > nl and
k0, . . . , kl > 0. Then the level C = Ln0(k0)⊕ · · · ⊕ Lnl(kl) of the SDH over L coincides with the class of
clopen subsets of X that have no 1-alternating chains of type ((n0, k0), . . . , (nl, kl)).

Proof. By induction on l. The case l = 0 holds by Theorem 4.9, so let l > 0. Let C ∈ C, then
of course C is clopen. Toward a contradiction, suppose that (X0, . . . , Xkl) is a 1-chain for C of type
((n0, k0), . . . , (nl, kl)). Represent C as in item 2 of Proposition 5.2. We have X0 ∈ E0 (i.e. any atom
of X0 is in E0) because otherwise X0 would be a 1-chain for C \ E0 ∈ D, contradicting the inductive
hypothesis. Since X0 ≤nl X1, X1 ∈ E0. We even have X1 ∈ E1 (otherwise, X1 would be a 1-chain
for C ∩ (E0 \ E1) ∈ D, contradicting the inductive hypothesis). Continuing in this manner, we obtain a
contradiction Xnl ∈ Enl = ∅.

Conversely, let C be clopen and have no 1-alternating chain of type ((n0, k0), . . . , (nl, kl)). We argue by
induction on kl. For kl = 1, consider the set A (resp. B) of all elements a ∈ X such that a ≤nl−1 Y0

(resp. a ≤nl−1 Y1) for some 1-chain Y0 (resp. 0-chain Y1) for C of type ((n0, k0), . . . , (nl−1, kl−1)). Here
a ≤nl−1 Y of course means that a ≤nl−1 y for each atom y of Y . By the analog of Lemma 4.8, the sets A,B
are closed, and they satisfy ∀a ∈ A∀b ∈ B(a 6≤nl b) because otherwise (Y0, Y1) would be a 1-alternating
chain for C of type ((n0, k0), . . . , (nl, kl)). By item 1 of Lemma 3.3, A ⊆ U ⊆ B for some U ∈ Lnl . The
set C ∩ U has no 1-chain of type ((n0, k0), . . . , (nl−1, kl−1)) (if (X0, . . . , Xkl−1) were such a chain then,
by Lemma 5.5, X0, . . . , Xkl−1 ∈ U , so (X0, . . . , Xkl−1) is also a 1-chain for C, hence X0 ∈ A ⊆ U , a
contradiction). Similarly, C ∩ U has no 0-chain of type ((n0, k0), . . . , (nl−1, kl−1)). By induction on l,
C ∩ U ∈ D and C ∩ U ∈ Ď. By item 2 of Proposition 5.3, C ∈ D ⊕ Lnl , as desired.

Now let kl > 1. Let A be the same set as in the previous paragraph and B be the set of all b ∈ X
such that b ≤nl−1 Y1 for some 0-chain Y1 for C of type ((n0, k0), . . . , (nl−1, kl−1), (nl, kl − 1)). As above,
the sets A,B are closed, and they satisfy ∀a ∈ A∀b ∈ B(a 6≤nl b) because otherwise (Y0, Y1) would be a
1-alternating chain for C of type ((n0, k0), . . . , (nl, kl)). By Lemma 3.3, A ⊆ U ⊆ B for some U ∈ Lnl .
The set C ∩U has no 1-chain of type ((n0, k0), . . . , (nl−1, kl−1, (nl, kl − 1))) (if (X0, . . . , Xkl) were such a
chain then, by Lemma 5.5, X0, . . . , Xkl ∈ U , so (X0, . . . , Xkl) is also a 1-chain for C, hence X0 ∈ A ⊆ U ,
a contradiction). Similarly, C ∩U has no 0-chain of type ((n0, k0), . . . , (nl−1, kl−1)). By induction on kl,
C ∩ U ∈ D ⊕ Lnl(kl − 1) and C ∩ U ∈ Ď. By item 2 of Proposition 5.3, C ∈ D ⊕ Lnl , as desired. �

5.3 Symmetric Difference Hierarchy and M-Reducibility

Here we show that M -reducibility (i.e. the many-one reducibility by morphisms of ω-spaces) is closely
related to the SDH.
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Theorem 5.8 Let (X;≤0, . . .) be an ω-space and L the corresponding ω-base.
1. Any level of the SDH over L is closed under M -reducibility.
2. If C is a non-selfdual level of the SDH such that C \ Č 6= ∅ then C has an M -complete set and C \ Č

forms an M -degree.

Proof. 1. Since any level of the ω-base L is clearly closed under M -reducibility, so is also any level of
the SDH over L.

2. To simplify notation, let us consider only the typical particular case l = 1 (see Proposition 5.2), i.e.
C = Ln0(k0) ⊕ Ln1(k1) for some n0 > n1 and k0, k1 > 0. It suffices to show that for any A ∈ C and
any clopen set B 6∈ Č we have A ≤M B. By Theorem 5.5, there is a 0-chain (X0, . . . , Xk1) of type
((n0, k0), (n1, k1)) for B. Let Xi = (xi0, . . . , x

i
k0

) for each i ≤ k1, so in particular xi0 ≤n0 · · · ≤n0 x
i
k0

.
Since A ∈ C, by Proposition 5.2 there are Ln1 -sets A0 ⊇ A1 ⊇ · · · , Ak1 = ∅, and, for each i, Ln0 -sets
F i0 ⊇ F i1 ⊇ · · · , F ik0 = ∅, such that

F 0
0 ⊆ A0, F

i+1
0 ⊆ Ai \Ai+1, A ∩A0 =

⋃
j

(F 0
2j \ F 0

2j+1),

A ∩ (A2i+1 \A2i+2) =
⋃
j

(F 2i+2
2j \ F 2i+2

2j+1), A ∩ (A2i \A2i+1) = F
2i+2

0 ∪
⋃
j

(F 2i+1
2j+1 \ F

2i+1
2j+2).

Define f : X → X by f(x) = xij where i is the smallest number with x 6∈ Ai (note that i ≤ k1 because
Ak1 = ∅) and j is the smallest number with x 6∈ F ij (note that i ≤ k0 because F ik0 = ∅). One easily checks
that f is an endomorphism of (X;≤0, · · · ) and A ≤M B via f . �

As for the typed DH, the SDH is not discrete in most of its levels, which is the main reason why the
analog of item 3 of Theorem 4.12 does not hold for those levels. This defect disappears for a further
refinement of the SDH.

6 Fine Hierarchy

Are there other natural refinements of a given ω-base L? The answer is positive, and in principle we
could continue the sequence typed DH, SDH,... indefinitely. Since any next element of this sequence
would have more and more involved definitions, we choose another possibility. Namely, in this section
we introduce a refinement which is in many cases the richest one, i.e. it refines all other reasonable (in a
sense) refinements. We call this richest refinement the fine hierarchy (FH) over L. It was first discovered
by the author in the context of computability theory [Se83] in terms of some jump operations. After
acquaintance with some set-theoretic operations introduced by W. Wadge [Wad84, Lo83], the author
[Se89, Se95] characterized the FH in terms of (some versions) of these operations and developed the
abstract version of the FH.

6.1 Preliminaries on Fine Hierarchy

Here we recall some notions and results from [Se89, Se95, Se08]. We need the following operation Bisep
[Se89, Se95] (a version of the corresponding operation of W. Wadge [Wad84, Lo83]) on subsets of a
Boolean algebra B:

Bisep(A,B0, B1, B2) = {(a0∩a0)∪ (a1∩a1)∪ (a0∩a1∩B2) | ai ∈ A, aj ∈ Bj , a0∩a1∩a0 = a0∩a1∩a1}.

Definition of the fine hierarchy below uses the ordinal ε0 = sup{ω, ωω, ωωω , . . .} (see Subsection 2).

Definition 6.1 Let L be an ω-base. By the fine hierarchy over L we mean the sequence {Sα}α<ε0 , where
Sα = S0

α and the sets Snα, n < ω, are defined by induction on α as follows:
1. Sn0 = {0}; Snωγ = Sn+1

γ for γ > 0;
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2. Snβ+1 = Bisep(Ln, Snβ , Š
n
β , S

n
0 ) for all β < ε0, and

3. Snβ+ωγ = Bisep(Ln, Snβ , Š
n
β , S

n
ωγ ) for γ > 0 and β of the form β = ωγ · β1 > 0.

Recall that any non-zero ordinal α < ε0 is uniquely representable in the form α = ωγ0 + · · ·+ ωγk for a
finite non-empty sequence γ0 ≥ · · · ≥ γk of ordinals < α. Applying Definition 6.1 we subsequently get
Snωγ0 , Snωγ0+ωγ1 , . . ., S

n
α. The sets Snγ for n > 0 play only a technical role, they are all among the levels

Sα of the FH.

It is easy to check that the analog of Proposition 4.6 holds for the FH, i.e. the FH over a given ω-base L
is isomorphic to the FH over the ω-base L in the dual ω-space (X;≤0, . . .), hence in most cases it suffices
to investigate the second hierarchy. Let us recall some properties of the FH.

Proposition 6.2 Let (X;≤0, . . .) be an ω-space and L the corresponding ω-base.
1. The FH over L is a hierarchy, i.e. Sα ∪ Šα ⊆ Sβ for all α < β < ε0.
2. For any limit ordinal β < ε0 and any n < ω, Snβ+1 coincides with the class of sets A ⊆ X such that

for some Ln-sets U0, U1 we have A ⊆ U0 ∩ U1 and A ∩ U0, A ∩ U1 are in Snβ .
3. Let n < ω, 1 ≤ γ < ε0 and α = β + ωγ for some non-zero β of the form β = ωγ · β1. Then Snα

coincides with the class of sets A ⊆ X such that for some Ln-sets U0, U1 we have: A ∩ U0 ∩ U1 is
in Snωγ and A ∩ U0, A ∩ U1 are in Snβ .

Next we recall [Se89] characterisations of some levels of the FH in terms of the operation Sep from the
previous section (cf. Proposition 5.3).

Proposition 6.3 Let (X;≤0, . . .) be an ω-space and L the corresponding ω-base.
1. For all n,m < ω, Snm+1 = Sep(Ln, Šnm,Sn0 ). Hence, Snm = Ln(m).
2. For any successor ordinal β > ω and any n < ω, Snβ+1 = Sep(Ln, Šnβ ,Sn0 ). Furthermore, Snβ+1

coincides with the class of sets A ⊆ X such that for some Ln-set U we have A ⊆ U and U \A ∈ Snβ .
3. For all n < ω, 1 ≤ m < ω and 1 ≤ γ < ε0, Snωγ(m+1) = Sep(Ln, Šnωγm,Snωγ ). Furthermore,
Snωγ(m+1) coincides with the class of sets A ⊆ X such that for some Ln-set U we have A \U ∈ Snωγ
and U \A ∈ Snωγm.

4. For all n < ω, 1 ≤ m < ω, 1 ≤ γ < ε0 and β = ωγ · β1 > 0, Snβ+ωγ(m+1) = Sep(Ln, Šnβ+ωγm,Snωγ .
Furthermore, Snβ+1 coincides with the class of sets A ⊆ X such that for some Ln-set U we have
A \ U ∈ Snωγ and U \A ∈ Snβ .

As an immediate corollary of the last proposition and Proposition 5.3 we see that the FH over L is a
refinement of the SDH over L. Properties of the FH strongly depend on the properties of the corresponding
ω-base. First we consider the interpolable ω-bases (see Subsection 3.3). It turns out that in this case the
FH is often the finest possible.

Proposition 6.4 Let the ω-base L in a given ω-space be interpolable. Then the fine hierarchy over L
is perfect in all limit levels, i.e. Sα ∩ Šα =

⋃
β<α Sβ for all limit ordinals α < ε0. If, in addition, X is

join-irreducible in (L0;∪) then the fine hierarchy over L is perfect and, consequently, has no non-trivial
refinements.

The FH as defined above seems rather artificial. It turns out that the FH’s over reducible ω-bases have
a nice characterization similar to the characterization of the DH by Boolean terms (cf. Proposition 4.2).
Let T ∗ be the set of terms of signature {∪,∩, , 0, 1} with variables vnk (k, n < ω); we call them typed
Boolean terms. Relate to any t ∈ T ∗ the set t(L) of values of t when the variables vnk (k < ω) of type n
range through Ln, for each n < ω.

Proposition 6.5 Let the base L in a given ω-space be reducible. Then {Sα, Šα | α < ε0} = {t(L) | t ∈
T ∗} and there are algorithms that compute from any ordinal α < ε0 the corresponding Boolean term t ∈ T
and vice versa.
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Now let us return to the general case and recall a characterization of the FH in terms of trees. For any
string τ ∈ ω∗ and any ω-base L as above, by a τ -tree in L we mean a family {Aσ}σ∈2∗ of sets such
that Aσ = ∅ for |σ| > |τ |, Aσk ∈ Lτ(|σ|) for |σ| < |τ | and k < 2, and Aσ ⊇ Aσk. A tree is reduced,
if Aσ0 ∩ Aσ1 = ∅ for all σ. We say that a set A is defined by a tree {Aσ} as above, if A ⊆ A0 ∪ A1,
A ∩ Aσ0 ⊆ Aσ00 ∪ Aσ01 and A ∩ Aσ1 ⊆ Aσ10 ∪ Aσ11. This notion does not depend on A∅; applying it
we usually think that A∅ = X (if not, just replace A∅ by X). Let Tτ (resp. Rτ ) denote the class of sets
defined by the τ -trees (resp. by the reduced τ -trees) in L.

Define strings τnα (n < ω) by induction on α as follows: τn0 = ∅, τnα+1 = nτnα , τ
n
ωγ = τn+1

γ for γ > 0, and
τnδ+ωγ = τnωγnτ

n
δ for δ = ωγ · δ′ > 0, γ > 0. Let τα = τ0

α. Then we have the following characterization of
the FH:

Proposition 6.6 Let X be an ω-space and α < ε0. Then Sα = Tα. If, in addition, L is reducible then
Sα = Rα and, furthermore, Sα+1 ∩ Šα+1 is the class of sets defined by the reduced τα+1-trees {Aσ} with
A0 ∪A1 = X.

6.2 Tree Characterisation of Fine Hierarchy

Here we extend the characterisation of SDH from Theorem 5.7 to a similar chracterisation of the FH.
The alternating chains are now extended to alternating trees as follows. Let (X;≤0, . . .) be an ω-space,
A ⊆ X and τ ∈ ω∗. By a τ -alternating tree for A we mean a family {pσ | σ ∈ 2∗, |σ| ≤ |τ |} of elements
of X such that p∅ 6∈ A and pσ0 6∈ A, pσ1 ∈ A, pσ ≤τ(|σ|) pσk for |σ| < |τ | and k < 2.

Theorem 6.7 Let (X;≤0, . . .) be an ω-space and α < ε0. Then the level Sα of the fine hierarchy over L
coincides with the class of clopen A ⊆ X such that A does not have τα-alternating trees.

Proof. Obviously, any A ∈ Sα is clopen. To show the absence of alternating trees, by Proposition 6.6 it
suffices to show that for all µ ∈ ω∗ and A ∈ Tµ there is no µ-alternating tree for A. This is proved by
induction on |µ|. Let |µ| = 0, then µ-alternating tree for A has the form {u∅}, for u∅ ∈ A. Nonexistence
of such a tree is equivalent to A = ∅, i.e. to A ∈ Tµ. Let |µ| > 0, then µ is uniquely representable in
the form µ = νnξ for some ν, ξ ∈ ω∗ and n ∈ ω with ∀i < |ν|(n < ν(i)) and ∀i < |ξ|(n ≤ ξ(i)). Toward
a contradiction, suppose that A is defined by a µ-tree {Aσ} over L and there is a µ-alternating tree
{uσ}σ∈2≤µ for A, so in particular u∅, uσ0 ∈ A, uσ1 6∈ A. Let B =

⋂
{Aδk|δ ∈ 2|ν|, k < 2}, C∅ = X and

Cσ = AσB for σ 6= ∅. For any δ ∈ 2|ν| let Dδ
∅ = Eδ∅ = X and Dδ

τ = Aδ0τ , E
δ
τ = Aδ1τ̄ for τ 6= ∅. From the

choice of ν, n, ξ it follows that {Cσ} is a ν-tree that defines A∩B, and for any δ ∈ 2|ν| the families {Dδ
τ}

and {Eδτ} are ξ-trees that define respectively A ∩Aδ0 and A ∩Aδ1.

Now consider the following three cases: uδk 6∈ Aδk for all δ ∈ 2|ν|, k < 2; uδ0 ∈ Aδ0 for some δ ∈ 2|ν|;
uδ1 ∈ Aδ1 for some δ ∈ 2|ν|. In the first case, uσ ∈ B for all σ ∈ 2≤|ν| (because Aδk ∈ Ln, uσ ≤n uδk for
σ ⊆ δ ∈ 2|ν| and uσ ≡n uρ for σ, ρ ∈ 2≤|ν|), hence {uσ}σ∈2≤|ν| is a ν-alternating tree for A∩B ∈ Tν . In the
second case, uδ0τ ∈ Aδ0 for all τ ∈ 2≤|ξ| (because uδ0 ∈ Aδ0 ∈ Ln and uδ0 ≤n uδ0τ ), hence {uδ0τ}τ∈2≤|ξ|

is a ξ-alternating tree for A ∩ Aδ0 ∈ Tξ. In the third case, {uδ1τ̄}τ∈2≤|ξ| is similarly a ξ-alternating tree
for A ∩Aδ1 ∈ Tξ. In all cases we get contradictions with the induction hypothesis, because |ν|, |ξ| < |µ|.
This completes the proof of one direction.

In the other direction, it suffices to show that if A is a clopen subset of X and A does not have τnα -
alternating trees then A ∈ Snα . We argue by induction on α and distinguish several cases. Let first α < ω,
then τnα is the sequence of n’s of length α. Then A has no 1-alternating chain of length α w.r.t. ≤n. By
Theorem 4.9 and Proposition 6.3, A ∈ Ln(α) = Snα .

Let now α = β+1 where β is a limit ordinal, then τnα = naτnβ and the first element m of τnβ is larger than
n. Let C0 (resp. C1) be the set of all c ∈ X such that there is a τnβ -tree Y for A (resp. for A) such that
c ≤n Y . As in Lemma 4.8, C0 and C1 are closed. We also have ∀a ∈ A(∀c ∈ C0(a 6≤n c)∨∀c ∈ C0(a 6≤n c))
(otherwise, there are a ∈ A, c0 ∈ C0, c1 ∈ C1, a τnβ -tree Y0 for A and a τnβ -tree Y1 for A with a ≤n c0 ≤n Y0,
a ≤n c1 ≤n Y1, yielding a τnα -tree (a, Y0, Y1) for A which is a contradiction). By item 2 of Lemma 3.3,
for some Ln-sets U0, U1 we have A ⊆ U0 ∪ U1, A ∩ U0 ⊆ C0 and A ∩ U1 ⊆ C1. Note that A ∩ U0 has no
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τnβ -tree. Indeed, suppose Y0 = {pσ | σ ∈ 2∗, |σ| ≤ |τ |} is such a tree then (since n < m and all elements
of τnβ are ≥ n) all elements of Y are in U0, hence Y0 is also a τnβ -tree for A, so p0 ≡n p∅ ∈ C0. Then
p0 ∈ A ∩ U0 ⊆ C0, a contradiction. Similarly, A ∩ U1 has no τnβ -tree. By induction, A ∩ U0 and A ∩ U1

are in Snβ . By item 2 of Proposition 6.2, A ∈ Snα .

Let now α = β + 1 where β > ω is a successor ordinal, then τnα = naτnβ and the first element of τnβ is n.
Let C be the set of all c ∈ X such that there is a τnβ -tree Y for A with c ≤n Y . As in Lemma 4.8, C
is closed. We also have ∀a ∈ A∀c ∈ C(a 6≤n c) (otherwise, there are a ∈ A, c ∈ C0 and a τnβ -tree Y for
A with a ≤n c ≤n Y , yielding a τnα -tree (a, Y ) for A which is a contradiction). By Lemma 3.3, for some
Ln-set U we have A ⊆ U ⊆ C. The set U \A has no τnβ -tree (if Y were such a tree then (since all elements
of τnβ are ≥ n) all elements of Y are in U , hence Y is also a τnβ -tree for A, so p∅ ∈ C, contradicting to
p∅ ∈ U ⊆ C). By induction, U \A is in Snβ . By item 4 of Proposition 6.3, A ∈ Snα .

It remains to consider the case when α is a limit ordinal. If α = ωγ for some γ ≥ 1, the assertion holds
by induction, so let α = β + ωγ for some non-zero β of the form β = ωγ · β1. We have τnα = τna

ωγ n
aτnβ

and the first element m of τnβ is larger than n. Let B be the set of all b ∈ X such that there is a
τnωγ -tree Z for A with b ≤n+1 Z. Let C0 (resp. C1) be the set of all c ∈ X such that there is a
τnβ -tree Y for A (resp. for A) such that c ≤n Y . As in Lemma 4.8, B,C0 and C1 are closed. We
also have ∀b ∈ B(∀c ∈ C0(a 6≤n c) ∨ ∀c ∈ C0(a 6≤n c)). Indeed, suppose the contrary: there are
b ∈ B, c0 ∈ C0, c1 ∈ C1, a τnωγ -tree Z = {zσ | σ ∈ 2∗, |σ| ≤ |τnωγ |} for A with b ≤n+1 zε, a τnβ -tree
Y0 = {y0

ρ | ρ ∈ 2∗, |σ| ≤ |τnβ |} for A with b ≤n c0 ≤n y0
ε , and a τnβ -tree Y1 = {y1

σ | ρ ∈ 2∗, |ρ| ≤ |τnβ |}
for A with b ≤n c1 ≤n y1

ε . Define the family T = {tσ | σ ∈ 2∗, |σ| ≤ |τnα |} as follows: tσ = zσ for each
σ ∈ 2∗, |σ| ≤ |τnωγ |; tσiρ = yiρ for all σ ∈ 2∗, |σ| = |τnωγ |, i ≤ 1, and ρ ∈ 2∗, |ρ| ≤ |τnβ |. Then T is a
τnα -tree for A which is a contradiction. By Lemma 3.3, for some Ln-sets U0, U1 we have B ⊆ U0 ∪ U1,
B ∩ U0 ⊆ C0 and B ∩ U1 ⊆ C1. As above, A ∩ U0 has no τnβ -tree and A ∩ U1 has no τnβ -tree. Similarly,
A ∩ U0 ∩ U1 has no τnωγ -tree. By induction, A ∩ U0 ∩ U1 is in Snωγ , and A ∩ U0 and A ∩ U1 are in Snβ . By
item 3 of Proposition 6.2, A ∈ Snα . �

Remark 6.8 One may wonder which levels of the FH can be characterised by alternating chains and
which can not. With some additional efforts (and using Proposition 6.3 and alternating trees from [Se89])
it can be shown that a level of the FH over L can be characterised by alternating chains iff it is a level if
the SDH over L. All other levels do need alternating trees, though the width of the trees may be made
less than of the trees used above.

6.3 Fine Hierarchy and M-Reducibility

Here we extend Theorems 4.12 and 5.8 to the FH. Of course, by M -reducibility we mean here the
reducibility by morphisms of ω-spaces.

Theorem 6.9 Let (X;≤0, . . .) be an ω-space and L the corresponding ω-base.
1. Any level Sα of the FH over L is closed under M -reducibility.
2. If L is reducible and C = Sα \ Šα is non-empty then Sα has an M -complete set and C forms an

M -degree.
3. If L is reducible and C = (Sα+1∩Šα+1)\(Sα∪Šα) is non-empty then Sα+1∩Šα+1 has an M -complete

set and C forms an M -degree.

Proof. 1. Since L is closed under the M -reducibility, so is Sα (use induction and Definition 6.1).

2. It suffices to show that for any A ∈ Sα and any clopen set B 6∈ Sα we have A ≤M B. By Theorem
6.7, there is a τα-tree {tσ | σ ∈ 2∗, |σ| ≤ |τα|} for B. Since A ∈ Sα, by Proposition 6.6 A is defined by a
reduced τα-tree {Aσ}. Define f : X → X by f(x) = tσ where σ is the unique sting with x ∈ Ãσ. It is
easy to check that f is a morphism of ω-spaces and A = f−1(B), hence A ≤M B.

3. It suffices to show that for any A ∈ Sα+1 ∩ Šα+1 and any clopen set B 6∈ Sα ∪ Šα we have A ≤M B.
By Theorem 6.7, there are τα-trees {tσ | σ ∈ 2∗, |σ| ≤ |τα|} and {sσ | σ ∈ 2∗, |σ| ≤ |τα|} for C and C,
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respectively. By Proposition 6.6 A is defined by a reduced τα-tree {Aσ} such that A0 ∪A1 = X. Define
f : X → X by f(x) = tσ where σ is the unique string with x ∈ Ãσ. It is easy to check that f is a
morphism of ω-spaces and A = f−1(B), hence A ≤M B. �

Remark 6.10 As for the DH, for a given FH over an ω-base L there might exist different m-reducibilites
that fit isomorphic copies of the hierarchy. If L is reducible and interpolable then M -reducibility is the
weakest among such reducibilities on (L) because, by the last theorem and Proposition 6.4, it induces
the reducibility that perfectly fits the FH over L. There are examples when our M -reducibility induces
the preorders on

⋃
n Ln which were already known in the literature. E.g., if we apply our construction

to the 2-base (Σ0
1 ∩ R,Σ0

2 ∩ R) (more precisely, to the corresponding ω-base, see Definition 3.4 and the
next paragraph) we obtain the Wagner’s DA-reducibility on the class R of regular ω-languages [Wag79],
and if we apply our construction to the 2-base (Σ0

1 ∩ A,Σ0
2 ∩ A) we obtain the author’s AA-reducibility

on the class A of regular aperiodic ω-languages [Se08a].

7 Difference Hierarchies of k-partitions

In this section we extend the DH of sets to the DH of k-partitions. Note that in general our definition
of the DH of k-partitions is distinct from the definition of Boolean hierarchy of k-partitions over posets
introduced and studied in [Ko00, Ko05].

7.1 Hierarchies and m-Reducibilities of k-Partitions

By Definition 2.1, levels of hierarchies of sets are semi-well-ordered by inclusion, in particular there
are no three levels which are pairwise incomparable by inclusion. It turns out that the structure of
hierarchies of k-partitions for k ≥ 3 is usually more complicated than the structure of the hierarchies of
sets, in particular, for k ≥ 3 the poset of levels of hierarchies of k-partitions under inclusion usually has
antichains with any finite number of elements.

In this subsection we propose a definition of a hierarchy of k-partitions that covers all hierarchies we
discuss below and extends Definition 2.1. We start with the following very general notions:

Definition 7.1 1. For any poset P and any set A, by a P -hierarchy in A we mean a family {Hp}p∈P
of subsets of A such that p ≤ q implies Hp ⊆ Hq.

2. Levels (resp. constituents) of a P -hierarchy {Hp} are the sets Hp0 ∩ · · · ∩ Hpn (resp. the sets
Cp0,...,pn = (Hp0 ∩ · · · ∩Hpn) \

⋃
{Hq | q ∈ P\ ↑ {p0, . . . , pn}}) where n ≥ 0 and {p0, . . . , pn} is an

antichain in P .
3. A P -hierarchy {Hp} is precise if p ≤ q is equivalent to Hp ⊆ Hq.
4. A P -hierarchy {Hp} is perfect if {Cp}p∈P is a partition of

⋃
p∈P Hp.

Note that hierarchies in Definition 2.1 are obtained from the above definition if B = A and P = 2̄ · η
is the poset obtained by replacing any element of the ordinal η by an antichain with two elements, and
that the notion of preciseness extends the non-collapse property of hierarchies in Subsection 2. As was
already mentioned, for hierarchies of k-partitions we cannot hope to deal only with semi-well-ordered
posets P = 2̄ · η in the definition above. Fortunately, a slight weakening of this property is sufficient
for our purposes: we can confine ourselves with the so called well posets (wpo) or, more generally well
preorders (wqo). Recall that a wqo is a preorder P that has neither infinite descending chains nor infinite
antichains. The theory of wqo (widely known as the wqo-theory) is a well developed field with several
deep results and applications, see e.g. [Kru72]. It is also of great interest to hierarchy theory.

Note that if P is a wpo then the structure ({Hp | p ∈ P};⊆) of levels of a P -hierarchy under inclusion
is also a wpo, hence some important features of the hierarchies of sets hold also for the hierarchies of
partitions. Moreover, for such hierarchies we have the following important properties of consituents
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(especially important is property 1 without which the hierarchy {Hp} does not provide a classification of
sets in

⋃
pHp):

Lemma 7.2 Let P be a wpo and {Hp} a P -hierarchy.
1. The constituents of {Hp} form a partition of

⋃
pHp.

2. {Hp} is perfect iff Hp ∩Hq =
⋃
{Hr | r ≤ p, r ≤ q} for all p, q ∈ P .

Proof. 1. First we check that constituents Cp0,...,pn and Cq0,...,qm are disjoint for all distinct antichains
{p0, . . . , pn} and {q0, . . . , qm}. Suppose x in the both constituents. Then ↑ {p0, . . . , pn} =↑ {q0, . . . , qm},
hence also {p0, . . . , pn} = {q0, . . . , qm}. Indeed, by symmetry it suffices to show that pi ∈ {q0, . . . , qm}
for each i ≤ n. Since pi ∈↑ {p0, . . . , pn} =↑ {q0, . . . , qm}, qj ≤ pi for some j ≤ m. By symmetry, pl ≤ qj
for some l ≤ n. Then pl ≤ pi, hence l = i and pi = qj ∈ {q0, . . . , qm}. It remains to check that any
x ∈

⋃
pHp is in some constituent. Let B = {p | x ∈ Hp}. Since P is a wpo, there is an antichain

{p0, . . . , pn} such that B =↑ {p0, . . . , pn}. Then x ∈ Cp0,...,pn .

2. Follows from 1. �

If {Hp} is a P -hierarchy and Q ⊂ P is such that {Hp | p ∈ P} = {Hq | q ∈ Q} then {Hq}q∈Q is
a Q-hierarchy which is in a sense “more precise” than {Hp}p∈P . For this reason we are interested in
finding as small such Q as possible. But reducing of P to Q may change constituents which is clearly
not desirable. Next two lemmas gives sufficient conditions for the reducing procedure being safe in this
sense.

Lemma 7.3 Let P be a poset, {Hp} a P -hierarchy, Q ⊆ P , f : P → Q a monotone function such that
f(p) ≤ p and Hp = Hf(p) for each p ∈ P , and f(q) = q for each q ∈ Q. Then any constituent of {Hq}q∈Q
is a constituent of {Hp}p∈P .

Proof. We claim that any constituent Cq0,...,qn(Q) of {Hq} coincides with the constituent Cq0,...,qn(P )
of {Hp}. The inclusion Cq0,...,qn(P ) ⊆ Cq0,...,qn(Q) is obvious. Conversely, take x ∈ Cq0,...,qn(G) and
suppose, toward a contradiction, that x 6∈ Cq0,...,qn(P ). Then x ∈ Hr for some r ∈ P with q0 6≤
r, . . . , qn 6≤ r. Then x ∈ Hf(r), f(r) ∈ Q and q0 6≤ f(r), . . . , qn 6≤ f(r), a contradiction. �

Lemma 7.4 Let P be a wpo which is a lower semilattice w.r.t. u, let Q be a subset of P which generates
P under u, and let {Hp} be a P -hierarchy such that Hp ∩Hr = Hpur for all p, r ∈ P . Then {Hq} has
the same levels as {Hp} and any constituent of {Hq}q∈Q is a constituent of {Hp}p∈P .

Proof. The first assertion is obvious. We claim that any constituent Cq0,...,qn(Q) of {Hq} coincides
with the constituent Cp(P ), p = q0 u . . . u qn of {Hp}. The inclusion Cp(P ) ⊆ Cq0,...,qn(Q) is obvious.
Conversely, let x ∈ Cq0,...,qn(Q), then x ∈ Hp and x 6∈ Hr for all r ∈ Q with q0 6≤ r, . . . , qn 6≤ r. Suppose,
toward a contradiction, that x 6∈ Cp(P ). Then x ∈ Hs for some s ∈ P with p 6≤ s. For some m ≥ 0 and
r0, . . . , rm ∈ Q we have s = r0 u · · · u rm, hence p 6≤ ri for some i ≤ m. Then q0 6≤ ri, . . . , qn 6≤ ri which
is a contradiction. �

We conclude this subsection by a discussion of some specific features of hierarchies and m-reducibilities
of k-partitions. Notions related to m-reducibilities are extended to k-partitions in a straightforward way.
Let F be a set of functions on a set X closed under composition and containing the identity function.
For k-partitions A,B ∈ kX , A ≤Fm B means that A = B ◦ f for some f ∈ F . As for the F -m-reducibility
on subsets of X, ≤Fm is a preorder on kX . Standard notions related to reducibilities on k-partitions (like
completeness) are defined similarly to the case of sets. Observe that if C is F -m-complete in C ⊆ kX and
h ∈ Sk is a permutation of k = {0, . . . , k − 1} then h ◦ C is F -m-complete in Ch = {h ◦A | A ∈ C}.

To capture some essential properties of hierarchies of k-partitions, we introduce the notion of k-symmetric
poset: this is a triple (P ;≤, ϕ) consisting of a poset (P ;≤) and an isomorphic embedding ϕ : Sk → Aut(P )
of the symmetric group Sk into the automorphism group of (P ;≤). Simplifying notation, we sometimes
denote (P ;≤, ϕ) just by P . The idea comes from the fact that the group Sk acts on the set kX of
k-partitions of X according to the rule h 7→ λA.h ◦A, and P -hierarchies of k-partitions should somehow
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respect this fact. An example of a k-symmetric poset is (k · α;≤, ϕ) where α is an ordinal, (k · α;<)
is obtained by replacing any point of α by the antichain with k elements and ϕ(h) = ϕh permutes the
elements of each copy of the antichain according to h. We use the bar in k in order to distinguish the
antichain with k elements from the ordinal k which is a chain with k elements.

Definition 7.5 1. Let (P ;≤, ϕ) be a k-symmetric poset. A P -hierarchy of k-partitions of X ia a
P -hierarchy {Hp} in kX such that Hφh(p) = {h ◦A | A ∈ Hp} for all h ∈ Sk and p ∈ P .

2. A Q-hierarchy {Gq} of k-partitions of X is called a refinement of a P -hierarchy of k-partitions of
X in a level p ∈ P if

⋃
{Hr | ∀p1 ∈ Orb(p)(r < p1)} ⊆

⋃
q∈QGq ⊆

⋂
p1∈Orb(p)Hp1 where Orb(p) is

the orbit of p under the action ϕ.
3. The hierarchy {Hp} is discrete in a level p if it has no non-trivial refinement in this level.

Because of Lemma 7.2 we are mostly interested in P -hierarchies of k-partitions for the case when P is
a wpo. Note that for k = 2 and P = 2 · η the notion of P -hierarchy of 2-partitions essentially coincides
with the notion of η-hierarchy of sets. As for hierarchies of sets, any perfect hierarchy of k-partitions is
discrete in any level.

For a k-symmetric poset (P ;≤, ϕ), we say that F -m-reducibility fits a P -hierarchy {Hp} of k-partitions
if any level Hp is a principal ideal of (kX ;≤Fm). Other notions from Subsection 2 relating hierarchies and
reducibilities are extended to k-partition in the straightforward way.

Remark 7.6 Similar to Subsection 4.1, instead of k-partitions of a set we could consider the more
abstract case of k-partitions of the greatest element of a Boolean algebra B, i.e. of sequences (a0, . . . , ak−1)
of pairwise disjoint elements of B with a0∪· · ·∪ak−1 = 1. The notions related to hierarchies of k-partitions
are generalized to this case in a straightforward way. We do not do it explicitly because such “abstract”
hierarchies are again isomorphic to the “concrete” hierarchies, via the duality theorems. Note that the
notions related to m-reducibilities do not generalize to the abstract case directly.

7.2 Preliminaries on h-Preorders

In this subsection we recall some facts on the so called h-preorders studied in [Her93, Ko00, Ko05, KW00,
KW08, Se04, Se07] in relation to the DH’s and the Wadge reducibility of k-partitions, and make some
additional remarks.

By a finite forest we mean a finite nonempty poset P in which every upper cone ↑ x, x ∈ P , is a chain.
A finite tree is a finite forest having the largest element (called the root of the tree). Since (ω∗;w) is
the infinite branching tree, any finite forest (P ;≤) is isomorphic to a forest (Q;w) where Q is an initial
segment of (ω+;v)) such that ∀σ ∈ ω∗∀n < ω∀m < n(σan ∈ Q→ σam ∈ Q). We will use this obvious
fact a couple of times which sometimes simplifies notation because we can use standard notation related
to strings.

Let k ≥ 2. A k-poset is a triple (P,≤, c) consisting of a finite nonempty poset (P ;≤), P ⊆ ω, and a
labeling c : P → k. A morphism f : (P,≤, c) → (P ′,≤′, c′) between k-posets is a monotone function
f : (P ;≤) → (P ′;≤′) satisfying c = c′ ◦ f . Let Pk, Fk, Tk and T ik (where i < k) denote the sets of all
finite k-posets, k-forests, k-trees, and k-trees carrying label i on the root, respectively. The h-preorder
≤h on Pk is defined as follows: (P,≤, c) ≤ (P ′,≤′, c′), if there is a morphism from (P,≤, c) to (P ′,≤′, c′).
The h-equivalence ≡h on Pk is the equivalence relation induced by the h-preorder. The quotient-posets
of Pk, Fk, Tk and T ik with the induced partial order ≤ are denoted Pk, Fk, Tk and Tik, respectively.

We need a couple of results from [Se04] which are formulated below without proofs or with short proof
hints (when it helps to explain some related things). For a finite poset P , h(P ) will denote the height
of P , i.e. the number of elements of the longest chain in P . For any i, 1 ≤ i ≤ h(P ), let P (i) = {x ∈
P | h(↑ x) = i}. Then P (1), . . . , P (h(P )) is a partition of P on “levels”; note that P (1) is the set of all
maximal elements of P . For any x ∈ P , let x ↓ denote the set of all immediate predecessors of x in P ,
i.e. x ↓= {y < x | ¬∃z(y < z < x)}. Note that x ↓= ∅ iff x is minimal in P .
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Proposition 7.7 1. For any finite poset P there exist a finite forest F and a monotone function f
from F onto P so that h(F ) = h(P ), f establishes a bijection between F (1) and P (1), and for any
x ∈ F function f establishes a bijection between x ↓ and f(x) ↓.

2. For any finite k-poset (P,≤, c) there exist a finite k-forest (F,≤, d) and a morphism f from F onto P
with the properties specified in item 1. Moreover, F is a largest element in ({G ∈ Fk | G ≤h P};≤h).

Proof hint. 1. The forest F = F (P ) is constructed by a natural top-down unfolding of P (for additional
details see [Se04]).

2. For the first assertion, it suffices to expand the forest F = F (P ) by the labeling d = c ◦ f . The second
assertion (the analog of which was not included in [Se04]) is checked by a straightforward top-down
induction: from a morphism g : G→ P , G ∈ Fk, one constructs a morphism h : G→ F with g = f ◦ h.
�

Recall that a minimal k-forest is a finite k-forest not h-equivalent to a k-forest of lesser cardinality. As
observed in [Se04], any finite k-forest is equivalent to a unique (up to isomorphism) minimal k-forest.
The next characterisation of the minimal k-forests from [Se04] is often of use. This characterisation is a
kind of inductive definition (by induction on the cardinality) of the minimal k-forests. The proof is also
by induction.

Proposition 7.8 1. Any singleton k-forest is minimal.
2. A non-singleton k-tree (T,≤, c) is minimal iff the h-forest (T \ T (1), c) is minimal and c(x) 6= c(y)

for all x ∈ T (1) and y ∈ T (2).
3. A proper (i.e., not h-equivalent to a k-tree) k-forest is minimal iff all its k-trees are minimal and

pairwise incomparable under ≤h.

As observed in [Ko00, Se04], the structure (Pk;≤h) (and even its substructure (Lk;≤) formed by finite
k-lattices) has for k ≥ 3 infinite antichains and infinite descending chains (moreover, any countable poset
is embeddable in (Pk;≤) [Le08]). In contrast, the structure of (Fk;≤h) is much simpler as the following
result (depending on a fact of wqo-theory [Kru72]) from [Se04] shows. Let F′k be the structure obtained
from Fk by adjoining the bottom element ⊥ (which corresponds to the empty forest). By a canonical
representation of x ∈ F′k we mean representation x = tY for some finite antichain Y ⊆ Tk. For h-posets
P and R, let P tR be their disjoint union, P tR ∈ PQ.

Recall some natural objects related to any wpo P . There are a unique ordinal rk(P ) and a unique
rank function rkP from P onto rk(P ) satisfying a < b → rkP (a) < rkP (b). It is defined by induction
rkP (x) = sup{rkP (y) + 1 | y < x}. The ordinal rk(P ) is called the rank of P , and the ordinal rkP (x)
is called the rank of the element x ∈ P in P . By the spectrum function on P we mean the function
sp : rk(P ) → ω where sp(α) is the number of elements of rank α < rk(P ) in P . The width w(P ) of P
defined as follows: if P has antichains with any finite number of elements, then w(P ) = ω, otherwise
w(P ) is the greatest natural number n for which P has an antichain with n elements.

Proposition 7.9 1. For any k ≥ 2, F′k is a distributive lattice, the set of non-zero join-irreducible
elements of which coincides with Tk.

2. (T0
k, . . . ,T

k−1
k ) is a partition of Tk.

3. For any k ≥ 2, F′k is a wpo of rank ω.
4. w(F′k) = 2 and w(F′k) = ω for k ≥ 3
5. Any element of F′k has a unique canonical representation.
6. The symmetric group Sk acts on the automorphisms of F′k by permuting the labels.

Proof hint. 1. The operation t induces the operation of least upper bound on Pk and Fk.

The greatest lower bound of h-posets (P,≤, c) and (R,≤, d) in (P ′k;≤h) (denoted by P uR) is defined in
[Le06]. It is induced by the k-poset (S; e) where S is the set of pairs (p, r) ∈ P ×R such that c(p) = d(r),
the partial order in S is induced by the product partial order on P × R, and the label e(p, r) is c(p).
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The greatest lower bound of Q-forests (P,≤, c) and (R,≤, d) in F′k is induced by F (S) (see the proof of
Proposition 7.7) where S is the k-poset defined above. �

For any F ∈ F ′k and and i < k, let pi(F ) denote a k-tree obtained from F by adding a new smallest
element with the label i. Operations pi on F ′k induce operations on F′k which we denote again by pi.

Lemma 7.10 For all x, y ∈ F′k and for all distinct i, j < k we have: x ≤ pi(x), x ≤ y → pi(x) ≤ pi(y),
pi(pi(x)) = pi(x), pi(x) ≤ pj(y) → pi(x) ≤ y, and pi(F′k) = Tik. Moreover, for any x ∈ F′k there are
y0, y1 ∈ Tk such that x = y0 u y1.

Proof. For the first assertion, see [Se04]. For the second one, take y0 = p0(x) and y1 = p1(x). We
have to check that z ≤ y0, y1 implies z ≤ x. For z = ⊥ this is obvious, otherwise consider the canonical
representation z = z0 t · · · t zn where zi ∈ Tk = T0

k ∪ · · · ∪ Tk−1
k . From the first assertion it follows that

zi ≤ x for all i ≤ n, hence z ≤ x. �

For any x ∈ F′k, let M(x) be the set of minimal elements in Ax = {y ∈ F′k | y 6≤ x}, so M(x) is a finite
antichain and ↑M(x) = Ax. Let also S(x) = {y ∈ Tk | y 6≤ x}.

Lemma 7.11 1. For any x ∈ F′k, M(x) ⊆ Tk.
2. For all x, y ∈ F′k, S(x u y) = S(x) ∪ S(y) and S(x t y) = S(x) ∩ S(y).

Proof. 1. Let y ∈ M(x), then clearly y 6= ⊥. Assume y = y1 t y2. Since y 6≤ x, y1 6≤ x or y2 6≤ x. By
minimality of y, y = y1 or y = y2, hence y is join-irreducible and so y ∈ Tk by Proposition 7.9.

2. Follows from 1 because for any t ∈ Tk we have t 6≤ x u y (resp. t 6≤ x t y) iff t 6≤ x ∨ t 6≤ y (resp.
t 6≤ x ∧ t 6≤ y). �

Any word w ∈ {0, . . . , k − 1}∗ is naturally identified with a chain in Fk of length |w|. From Proposition
7.8 it follows that such a chain is minimal iff w is repetition-free. It is easy to see that the minimal
(in the sense of Proposition 7.8) forests in F2 are in the bijective correspondence with the elements of
{tn, t̄n, tn t t̄n | n ≥ 1} where t1 = 0, tn+1 = 0 · t̄n and w̄ = (1 − i0) · · · (1 − ik) for w = i0 · · · ik, il ≤ 1.
Thus, F2 is very simple, in particular its rank is ω, its width is 2 and its monadic second order theory
is decidable. Also, the function M on F′2 is easy to compute: M(⊥) = {t1, t̄1}, and, for each n ≥ 1,
M(tn) = {t̄n}, M(t̄n) = {tn}, M(tn t t̄n) = {tn+1, t̄n+1}.

In contrast, the poset Fk for k ≥ 3 is much more complicated. E.g., its first order theory is computably
isomorphic to the first-order arithmetic [KS07]. Nevertheless, the structure Fk is clearly computably
presentable, and some natural functions and predicates on the structure are computable. E.g., it is easy
to see that the rank and spectrum functions are computable. Below we will need the following information
on the function M on F′k. For simplicity of notation we formulate it in terms of k-forests rather that for
the corresponding classes of h-equivalence.

Lemma 7.12 1. M(⊥) = {0, . . . , k − 1} where i < k is identified with the singleton tree labeled by i.
2. For any i < k, M(i) = k \ {i}.
3. If F = F0 t · · · tFn is a minimal (in the sense of Proposition 7.8) k-forest which is not a tree then

M(F ) ⊆ {pj(G0 t · · · tGn) | j < k,G0 ∈M(F0), . . . , Gn ∈M(Fn)}.
4. If F = pi(G) is a minimal (in the sense of Proposition 7.8) k-tree and G is nonempty then M(F ) ⊆
{pj(K) | j ∈ k \ {i},K ∈M(G)}.

5. The function F : F′k → P (Tk) is computable.

Proof. Assertions 1 and 2 are obvious.

3. Let Z ∈ M(F ), then Z ≡h pj(Z) for some j < k by Lemmas 7.11 and 7.10, and Z 6≤h F . Then
Z 6≤ Fl for all l ≤ n, hence for any l ≤ n there is Gl ∈ M(Fl) with Gl ≤h Z. By Lemma 7.10,
pj(G0t· · ·tGn) ≤h Z. But, again by Lemma 7.10, pj(G0t· · ·tGn) 6≤h F , so in fact pj(G0t· · ·tGn) ≡h Z.

4. Let Z ∈M(F ), then Z ≡h pj(Y ) for some minimal (in the sense of Proposition 7.8) k-tree pj(Y ), and
Z 6≤h F . Then j = i (otherwise, Y <h pi(Y ), so Y ≤h F and hence Z ≡h pi(Y ) ≤h F by Lemma 7.10,
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a contradiction). Since Z 6≤h G, K ≤h Z for some K ∈ M(G), hence pj(K) ≤h Z by Lemma 7.10. But
pj(K) 6≤h F (otherwise, K ≤h pj(K) ≤h G by Lemma 7.10, a contradiction), so in fact pj(K) ≡h Z.

5. Note that item 1 takes care of the zero element, items 2 and 4 — of the nonzero join-irreducible
elements, and item 3 — of all other elements of F′k. Altogether, items 1 — 4 provide an algorithm which
produces (by induction on the rank) for any given x ∈ F′k, a finite set Y ⊆ Tk with M(x) ⊆ Y . Since for
any y ∈ Y we can effectively check whether y ∈M(x), M(x) is computable. �

7.3 Definition and Basic Facts

Let again (X;≤) be a pre-Priestley space and L the class of clopen up-sets in X. By a k-partition of X
we mean a function A : X → k often written as a tuple (A0, . . . , Ak−1) where Ai = {x ∈ X | A(x) = i}.
By a partial k-partition of X we mean a function A : Y → k for some Y ∈ L. Let P ∈ Pk. We say that
a partial k-partition A is defined by a P -family {Bp}p∈P of L-sets if Ai =

⋃
p∈Pi B̃p for each i < k where

B̃p = Bp \
⋃
q<pBq and Pi = c−1(i); note that in this case A ∈ kY where Y =

⋃
p∈P Bp.

Lemma 7.13 Let P,Q ∈ Pk, P ≤h Q via ϕ : P → Q, let A be defined by a P -family {Bp} of L-sets, and
let {Cq} be a Q-family of L-sets such that

⋃
q∈Q Cq =

⋃
p∈P Bp and C̃q ⊆

⋃
{B̃p | p ∈ ϕ−1(q)}. Then A

is defined by {Cq}.

Proof. We have to check that Ai =
⋃
q∈Qi C̃q for each i < k. Let x ∈ C̃q for some q ∈ Qi, i < k. Then

x ∈ B̃p for some p ∈ ϕ−1(q) ⊆ Pi, hence x ∈ Ai and we have checked the inclusion
⋃
q∈Qi C̃q ⊆ Ai. In

the other direction, let x ∈ Ai. Then x ∈ B̃p for some p ∈ Pi. Since
⋃
q∈Q Cq =

⋃
p∈P Bp, x ∈ C̃q for

some q ∈ Q, hence x ∈ B̃p1 for some p1 ∈ ϕ−1(q). Since Ai =
⋃
{B̃p | p ∈ Pi}, the components of A are

pairwise disjoint, B̃p ⊆ Ai and B̃p ∩ B̃p1 6= ∅, B̃p1 ⊆ Ai. Therefore, q ∈ Qi and x ∈
⋃
q∈Qi C̃q. �

We denote by LY (P ) the set of partitions A : Y → k defined by some P -family {Bp}p∈P of L-sets. In case
Y = X we omit the superscript X and call (temporarily) the family {L(P )}P∈Pk the DH of k-partitions
over L. The idea behind definition of L(P ) is to take the most liberal generalization of levels L(n) of the
DH of sets, with the chain of n elements replaced by a poset P .

Lemma 7.14 1. If A ∈ LY (P ) then A|Z ∈ LZ(P ) for each Z ⊆ Y , Z ∈ L.
2. Any A ∈ LY (P ) is defined by a monotone P -family {Cp} (monotonicity means that Cq ⊆ Cp for

q ≤ p).
3. Let f be a function on X such that f−1(A) ∈ L for each A ∈ L. Then A ∈ LY (P ) implies

f−1(A) = (f−1(A0), . . . , f−1(Ak−1)) ∈ Lf−1(Y )(P ).
4. If P ≤h Q then LY (P ) ⊆ LY (Q).
5. LY (P ) = LY (F (P )) where F (P ) is the unfolding of P to a k-forest from Proposition 7.7.
6. The collection {L(P ) | P ∈ Pk} is well partially ordered by inclusion.

Proof. 1. If A is defined by a P -family {Bp} of L-sets then the restriction A|Z = (A0∩Z, . . . , Ak−1∩Z)
is defined by the P -family {Bp ∩ Z} of L-sets.

2. Let A be defined by a P -family {Bp} of L-sets. then A is defined also by the monotone P -family {Cp}
of L-sets where Cp =

⋃
q≤pBq.

3. Let A ∈ LY (P ), so A is defined by a P -family {Bp}p∈P of L-sets. Then f−1(A) is defined by the
P -family {f−1(Bp)}p∈P of L-sets, hence f−1(A) ∈ Lf−1(Y )(P ).

4. Let ϕ : P → Q be a monotone function such that Pi = ϕ−1(Qi) for each i < k. Let A ∈ LY (P ),
so A is defined by a P -family {Bp}p∈P of L-sets. Define the Q-family {Cq}q∈Q of L-sets by Cq =⋃
{Bp | p ∈ ϕ−1(q)}, so in particular Cq = ∅ for q 6∈ rng(ϕ). It remains to check that A is defined

by {Cq} (then A ∈ LY (Q)). Since
⋃
q∈Q Cq =

⋃
p∈P Bp, by Lemma 7.13 it suffices to check that

C̃q ⊆
⋃
{B̃p | p ∈ ϕ−1(q)}. Let x ∈ C̃q, i.e. x ∈ Cq and x 6∈ Cr for all r < q. Then x ∈ Bp for
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some p ∈ ϕ−1(q); choose a minimal such p. Then x 6∈ Br for all r < p (if x ∈ Br, then x ∈ Cϕ(r) and
ϕ(r) ≤ ϕ(p) = q, hence ϕ(r) = q, contradicting to minimality of p). Therefore, x ∈ B̃p, as desired.

5. Let F = F (P ). Since F ≤h P via the function ϕ = ϕP : F → P in Proposition 7.7, LY (F ) = LY (P )
by 4. Conversely, let A ∈ LY (P ), then A is defined by a P -family {Bp}p∈P of L-sets. Define the F -family
{Cq}q∈F of L-sets by Cq = Bϕ(q). By construction of F and ϕ, rng(ϕ) = P and C̃q = B̃ϕ(q) for each
q ∈ F . By Lemma 7.13, A is defined by {Cq}, hence A ∈ LY (F ).

6. By 4 and 5, F 7→ L(F ) is a monotone function from (Fk;≤h) onto D = ({L(P ) | P ∈ Pk};⊆). By a
well-known fact of wqo-theory, D is a wpo. �

By the last lemma and Subsection 7.1, it is better to denote the DH of k-partitions over L by {L(F )}P∈Fk ,
so from now on by DH of k-partitions over L we usually mean the last family. By Lemmas 7.14 and 7.3,
this reduction of Pk to Fk is safe.

For F ∈ Fk, by a reduced F -family of L-sets we mean a monotone F -family {Bp}p∈F of L-sets such that
Bp ∩ Bq = ∅ for all incomparable p, q ∈ F . Let A ∈ LYr (F ) be the set of partial k-partitions defined by
reduced F -families {Bp}p∈F of L-sets such that

⋃
pBp = Y . The next result is similar to Theorem 3.1

in [Se04] and is proved by essentially the same argument.

Proposition 7.15 Let L have the reduction property, Y ∈ L and F ∈ Fk. Then LY (F ) = LYr (F ).

Proof. For the non-trivial inclusion, let A ∈ LY (F ), so by item 2 of Lemma 7.14 A is defined by a
monotone F -family {Bp}p∈F of L-sets such that

⋃
pBp = Y . Assuming w.l.o.g. the standard embedding

of F in ω+ (see the beginning of Subsection 7.2), we define Cp for p ∈ F by induction on |p| as follows. Let
{0, . . . , n} be the set of minimal elements in (F ;v). Let (C0, . . . , Cn) be any reduct of (B0, . . . , Bn) in L
(see Definition 3.5). Suppose by induction that Cp is already defined and let p be not a maximal element
in (F ;v). Let {p0, . . . , pm} be the set of all immediate successors of p in (F ;v). Let (Cp0, . . . , Cpm) be
any reduct of (Cp ∩Bp0, . . . , Cp ∩Bp0) in L.

By construction, {Cp} is a reduced F -family of L-sets and C0 ∪ · · · ∪ Cn = B0 ∪ · · · ∪ Bn. By Lemma
7.13 (taken for the identity function ϕ on F ), it suffices to check (by induction on |p|) that C̃p ⊆ B̃p for
each p ∈ F . Let |p| = 1, so p ≤ n. Let x ∈ C̃p, so x ∈ Cp and x 6∈ Cq for q A p. Since (C0, . . . , Cn) is
a reduct of (B0, . . . , Bn), x ∈ Bp. Toward a contradiction, suppose that x ∈ Bq for some q A p. Since
{Bp} is monotone, x ∈ Bpi for some i ≤ m where {p0, . . . , pm} is the set of all successors of p in (F ;v).
Then x ∈ Cp ∩Bpi. Since (Cp0, . . . , Cpm) is a reduct of (Cp ∩Bp0, . . . , Cp ∩Bp0), x ∈ Cpj for some j ≤ m
which is a contradiction. The same proof works for |p| > 1. �

Remark 7.16 Our DH of k-partitions is a modification of the “generalized Boolean hierarchy of k-
partitions over posets” from [Ko00, Ko05] denoted in this remark by {L′(P )}P∈Pk . Recall from [Ko00,
Ko05] that L′(P ) is the set of k-partitions defined by the monotone P -families {Bp}p∈P of L-sets such
that Bp ∩ Bq =

⋃
{Br | r ≤ p ∧ r ≤ q} for all p, q ∈ P . Note that the last condition implies that

{B̃p}p∈P is a partition of X which is not in general the case for our P -families. Since {L′(P )}P∈Pk is
a Pk-hierarchy in the sense of Definition 7.5 [Ko00, Ko05], items 4 and 5 of Lemma 7.14 imply that⋃
{L′(Q) | F (Q) ≤h P} ⊆ L(P ) for each P ∈ Pk, i.e. our hierarchy is in general much coarser than the

hierarchy in [Ko00, Ko05]. The collection of levels of our DH of k-partitions is well partial ordered by
inclusion, in contrast to the hierarchy in [Ko00, Ko05]. Another advantage of our definition of the DH
compared with the definition from [Ko00, Ko05] is that the results of Section 4 may be naturally extended
to our DH of k-partitions, as we show in the next subsection. On the other hand, the hierarchy from
[Ko00, Ko05] over NP enables to make fine classification of some problems in complexity theory. For the
important particular case when L has the reduction property both definitions are equivalent (this follows
from Proposition 7.15 and a similar fact about the hierarchy {L′(P )}P∈Pk established in Theorem 3.1 of
[Se04]).
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7.4 Tree Characterisation of DH of k-Partitions

We again work with an arbitrary pre-Priestley space (X;≤) and the class L of clopen up-sets in X. For
a partial k-partition A and a class C of subsets of X, let A ∈ C mean that all components A0, . . . , Ak−1

of A are in C. The next result extends Theorem 4.9 to the DH hierarchy of k-partitions (to see this note
that the second conjunct below is equivalent to “there is no T ∈ M(F ) with T ≤h (X;≤, A)” and look
at the description of the operation M for k = 2 in the example before Lemma 7.12).

Theorem 7.17 Let (X;≤) be a pre-Priestley space, k ≥ 2, A ∈ kX and F ∈ Fk. Then A ∈ L(F ) iff
A ∈ (L) and T ≤h F for all T ∈ Tk with T ≤h (X;≤, A).

Proof. Let A ∈ L(F ), then A is defined by an F -family {Bp}p∈F of L-sets, i.e. Ai =
⋃
p∈Fi B̃p for each

i < k. Then Ai ∈ (L) for each i < k, hence A ∈ (L).

Let now (T,≤, c) ∈ Tk and T ≤h (X;≤, A), i.e. there is a monotone function ϕ : T → (X;≤) such that
ϕ−1(Ai) = Ti for each i < k where Ti = c−1(i). We have to show that T ≤h F , i.e. to find a monotone
function ψ : T → F such that ψ−1(Fi) = Ti for each i < k (or, equivalently, ψ(Ti) ⊆ Fi for each i < k).
Assuming w.l.o.g. that T is embedded in ω+ in the standard way explained in Subsection 7.2, we define
ψ(t), t ∈ T , by induction on |t| as follows. Let first |t| = 1, i.e. t = 0, and let i be the unique number
with t ∈ Ti. Then ϕ(t) ∈ Ai, so ϕ(t) ∈ B̃p for some p ∈ Fi. Choose any such p and set ψ(t) = p, so
ψ(t) ∈ Fi and ϕ(t) ∈ B̃ψ(t). Let now s ∈ T and |s| > 1, then s = tl and s ∈ Tj for unique t ∈ T , l < ω,
j < k, and assume by induction that ψ(t) is defined and ϕ(t) ∈ B̃ψ(t). Since t @ s, ϕ(s) ≥ ϕ(t) ∈ Bψ(t).
Since Bψ(t) ∈ L, ϕ(s) ∈ Bψ(t). Then there is p ≤ ψ(t) with ϕ(s) ∈ Aj (if j = i, p = ψ(t), otherwise
p < ψ(t)). Choose any such p and set ψ(s) = p. Then ψ has the desired properties.

In the other direction, let A ∈ (L) and T ≤h F for all T ∈ Tk with T ≤h (X;≤, A). The second conjunct
implies that T 6≤h (X;≤, A) for all T ∈ M(F ). We prove A ∈ L(F ) by induction on the cardinality of
the forest F (assuming w.l.o.g. that F is minimal in the sense of Proposition 7.8). For singleton forests
F the assertion follows from item 2 of Lemma 7.12. Let now the cardinality of F be ≥ 2 and F be not
a tree, i.e. F = F0 t · · · t Fn for some n ≥ 1 and minimal k-trees F0, . . . , Fn. By item 3 of Lemma 7.12,
for all G0 ∈ M(F0), . . . , Gn ∈ M(Fn) and j < k we have H = pj(G0 t · · · tGn) 6≤h (X,≤, A), i.e. there
is no monotone function ϕ : H → X with ϕ(Hi) ⊆ Ai for i < k. For any l ≤ n. let Cl be the set of all
y ∈ X such that for some K ∈M(Fl) there is a morphism ψ : K → (X,≤, A) with y ≤ ψ(gl) where gl is
the root of Gl. Then we have ∀x ∈ X(∀y ∈ C0(x 6≤ y) ∨ · · · ∨ ∀y ∈ Cn(x 6≤ y)) (otherwise it is easy to
obtain a morphism from H to (X,≤, A) which is a contradiction). Similar to Lemma 4.8, C0, . . . , Cn are
closed. By item 2 of Lemma 3.3, there are L-sets U0, . . . , Un such that X ⊆ U0 ∪ · · · ∪ Un and Ul ⊆ Cl
for each l ≤ n. Then for the partial k-partitions A|Ul , l ≤ n we have ∀K ∈ M(Fl)(K 6≤ (Ul;≤, A|Ul)
because Ul are up-sets. By induction (applied to the pre-Priestley spaces (Ul,≤), l ≤ n, see Lemma 3.9),
A|Ul ∈ L(Ul, Fl) = LUl(Fl) for each l ≤ n, i.e. A|Ul is defined by an Fl-family {Blp} of L-sets. Then A is
defined by the F -family {Cq} of L-sets where Cq = Blq for all q ∈ Fl, l ≤ n.

Finally, let F = pi(G) for some i and nonempty k-forest G. By item 4 of Lemma 7.12, S 6≤h (X;≤, A)
for all S in the set {pj(K) | j ∈ k \ {i},K ∈ M(G)}. Let C be the set of all y ∈ X such that
there are K ∈ M(G) and a morphism ψ : K → (X,≤, A) with y ≤ ψ(r) where r is the root of K.
Then we have ∀x ∈ Ai∀y ∈ C(x 6≤ y) (if there are x ∈ Ai, y ∈ C with x 6≤ y, it is easy to obtain
an h-morphism from S = pj(K), x ∈ Aj , to (X,≤, A) which is a contradiction). By Lemmas 4.8
and 3.3, there is an L-set U such that Ai ⊆ U ⊆ C. Then for the partial k-partition A|U we have
∀K ∈ M(G)(K 6≤ (U ;≤, A|U ) because U is an up-set. By induction (applied to the pre-Priestley space
(U ;≤), see Lemma 3.9), A|U ∈ LU (G), i.e. A|Ul is defined by a G-family {Bp} of L-sets. Then A is
defined by the F -family {Cq} of L-sets where Cp = Bp for all p ∈ G, and Cr = X for the root r of F . �

The last theorem implies the following nice properties of the DH of k-partitions over L.

Corollary 7.18 Let (X;≤) be a pre-Priestley space and k ≥ 2.
1. For all F,G ∈ Fk, L(F ) ∩ L(G) = L(F uG). Here we assume that L(⊥) = ∅.
2. If X has a bottom element ⊥ then L(F ) ∪ L(G) = L(F t G) for all F,G ∈ Fk, and the hierarchy
{L(T )}T∈Tk is perfect.
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Proof. 1. The inclusion from right to left follows from item 4 of Lemma 7.14. Conversely, let A ∈
L(F )∩L(G) and suppose, toward a contradiction, that A 6∈ L(F uG). Then, in particular, F and G are
h-incomparable. By Theorem 7.17, T ≤h (X,≤, A) for some T ∈ S(F u G). By item 2 of Lemma 7.11,
T ∈ S(F ) or T ∈ S(G). By Theorem 7.17, A 6∈ L(F ) of A 6∈ L(G), a contradiction.

2. The inclusion L(F )∪L(G) ⊆ L(F tG) holds by item 4 of Lemma 7.14. Conversely, let A ∈ L(F tG)
and suppose, toward a contradiction, that A 6∈ L(F ) ∪ L(G). By Theorem 7.17, there are T1 ∈ S(F )
and T2 ∈ S(G) with T1, T2 ≤h (X,≤, A). Let T = pi(T1 t T2) where i = A(⊥), then T ∈ S(F ) ∩ S(G)
and T ≤h (X,≤, A). By item 2 of Lemma 7.11, T ∈ S(F t G). By Theorem 7.17, A 6∈ L(F t G), a
contradiction.

For the second assertion, we have to show that L(F ) ∩ L(G) ⊆
⋃
{L(T ) | T ∈ Tk, T ≤h F u G} for all

F,G ∈ Tk. For some n < ω and some Ti ∈ Tk we have F uG =
⊔
i<n Ti. By the previous two paragraphs,

L(F ) ∩ L(G) = L(F uG) =
⋃
i<n L(Ti). �

Corollary 7.19 Let (X;≤) be a pre-Priestley space, k ≥ 2 and A ∈ (L) a k-partition of X. Then there
is an ≤h-greatest element FA in IA = {G ∈ Fk | G ≤h (X,≤, A)}, and A is in the FA-constituent of the
DH over L (see Lemma 7.2), i.e. A ∈ L(FA) \

⋃
{L(H) | H ∈ Fk, FA 6≤h H}.

Proof. By [Ko00], A ∈ L′(C) for some k-chain C ∈ Ck, hence A ∈ L(F ) for some F ∈ Fk. By Theorem
7.17, G ≤h F for each G ∈ IA, hence IA is finite modulo ≡h. Then FA =

⊔
IA is an ≤h-greatest element

in IA. Now, G ≤h FA for all G ≤h (X,≤, A). By Theorem 7.17, A ∈ L(FA). It remains to show that
A 6∈ L(H) for each H ∈ Fk, FA 6≤h H, i.e. A ∈ L(H) implies FA ≤h H. This again follows from Theorem
7.17 because FA ≤h (X,≤, A). �

Remark 7.20 Corollary 7.18 shows that levels L(T ), for T ∈ Tk, are analogs of the non-self-dual levels
L(n), Ľ(n), n ≤ ω, of the DH of sets: any other (“self-dual”) level is an intersection of finitely many of
the levels L(T ) (interestingly, for hierarchies of k-partitions the distinction of self-dual and non-self-dual
levels is not related to automorphisms, as for hierarchies of sets). Therefore, the precise analog of the DH
of sets is in fact the hierarchy {L(T )}T∈Tk rather than the hierarchy {L(F )}F∈Fk . Note that, by Lemmas
7.10 and 7.4, this reduction from Fk to Tk is safe. The perfectness property of the DH of k-partitions
extends Proposition 4.5 (interestingly, the additional sufficient condition of perfectness of the DH of sets
in terms of > from Corollary 4.10 is not extended to the DH of k-partitions for k ≥ 3). For some natural
examples of L the hierarchy {L(F )}F∈Fk is exact and discrete for each k ≥ 2 [Se04, Se07a].

7.5 DH of Partitions and M-Reducibility

Here we find an extension of Theorem 4.12 to the DH of k-partitions.

Theorem 7.21 Let (X;≤) be a pre-Priestley space and k ≥ 2.
1. For any F ∈ Fk, L(F ) is closed under the M -reducibility.
2. If L has the reduction property then A ≤M C for all A ∈ L(F ) and C ∈ (L) with F ≤h (X,≤, C).
3. If L has the reduction property then A ≡M L(FA) for all A ∈ (L).
4. If L has the reduction property and C ∈ L(F ) \

⋃
{L(H) | H ∈ Fk, F 6≤h H} then C ≡M L(F ).

5. If L has the reduction property then the quotient-structure of ({A ∈ kX | A ∈ (L)};≤M ) is embed-
dable into ({L(F ) | F ∈ Fk};⊆).

6. If L has the reduction property and all constituents of {L(F )}F∈Fk are nonempty then the quotient-
structure of ({A ∈ kX | A ∈ (L)};≤M ) is isomorphic to ({L(F ) | F ∈ Fk};⊆) and to (Fk;≤).

Proof. 1. Since L is closed under M -reducibility, the assertion follows from item 3 of Lemma 7.14.

2. By Proposition 7.15, A is defined by a reduced F -family {Bp} of L-sets. Let ϕ : F → X be a
witness for F ≤h (X,≤, C. Define f : X → X by f(x) = ϕ(p) where p is the unique element of F with
x ∈ B̃p. Since f−1(Y ) is clopen for each Y ⊆ X, f is continuous. If x ≤ y and x ∈ B̃p, y ∈ B̃q then
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p ≤ q, hence f(x) = ϕ(p) ≤ ϕ(q) = f(y) and f is monotone. If x ∈ Ai and x ∈ B̃p then p ∈ Fi, hence
f(x) = ϕ(p) ∈ Ci. Therefore, A ≤M C via f .

3. By Corollary 7.19, A ∈ L(FA) and FA ≤h (X,≤, A). By 2, A ≡M L(FA).

4. By Corollaries 7.18 and 7.19, FC ≡h F . By item 4 of Proposition 7.14, L(FC) = L(F ). By 3,
C ≡M L(F ).

5. We show that A 7→ FA induces a desired embedding, i.e. A ≤M B iff L(FA) ⊆ L(FB). Let A ≤M B
and C ∈ L(FA). By 3, C ≤M A, hence C ≤M B. Since B ∈ L(FB), C ∈ L(FB) by 1. Therefore,
L(FA) ⊆ L(FB). Conversely, let us assume the last inclusion. Since A ∈ L(FA), A ∈ L(FB). By 3,
A ≤M B.

6. By 4 and 5, the quotient-structure of ({A ∈ kX | A ∈ (L)};≤M ) is isomorphic to ({L(F ) | F ∈ Fk};⊆).
Since all constituents are nonempty, the DH {L(F )}F ]∈Fk is exact, hence ({L(F ) | F ∈ Fk};⊆) is
isomorphic to (Fk;≤). �

Remark 7.22 For some F the assertion 2 above holds also for L without the reduction property. E.g.,
this is the case when F is a k-chain or if any label in F occurs only once. In both cases any x ∈ X is in
exactly one of the sets. B̃p, p ∈ F .

8 Conclusion

The theory of hierarchies originated in the work of A. Mostowski and S. Kleene who discovered deep
analogies between hierarchies in descriptive set theory and in computability theory. In the work of J.
Addison [Ad62, Ad65] more analogies between different hierarchies were discovered, the name “hierarchy
theory” was coined, and some basic definitions of the theory were proposed. In [Se83] and subsequent
publications of the author some further notions of hierarchy theory were developed in the context of FH’s.
Many interesting and useful concrete hierarchies were studied in different parts of theoretical computer
science (partially systematized in [Se08]).

But “theory” should probably be something more than a collection of analogies between many objects
with similar properties. In hierarchy theory two methods were used frequently: the method of alternating
chains (and trees) and the method of m-reducibilities. This paper shows that these two methods apply
essentially to arbitrary hierarchy and they may be even treated uniformly using an extension of Priestley
duality. For this reason we hope that this paper is of some methodological interest to the theory of
hierarchies of sets.

Along with hierarchies of sets, more general hierarchies of k-partitions were considered recently in the
literature (in fact, implicitly some related objects were implicitly considered in computability theory
earlier). The first examples of Boolean hierarchy of k-partitions were studied in [Ko00, KW00, Se04]. As
the discussion in Subsection 7.3 shows, even the basic concept of a DH of k-partitions is far from obvious.
We hope that the properties of DH of k-partitions in Section 7 show that the corresponding notion is
“right”. In fact, notions of Subsection 7.1 are sufficient for development of the FH of k-partition, as we
hope to demonstrate in a subsequent publication. Thus, this paper is also a step in development of the
theory of hierarchies of k-partitions.

Acknowledgement. I am grateful to Sergey Odintsov for useful discussions of Priesltley duality.
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[KSW87] J. Köbler, U. Schöning and K. Wagner. The difference and truth-table hierarchies for NP.
Theor. Informatics and Appl., 21 (1987), 419–435.

[KW00] S. Kosub and K. Wagner. The boolean hierarchy of NP-partitions. STACS-2000 proceedings,
Lecture Notes of Computer Science, 1770 (2000), 157–168, Berlin, Springer.

[KW08] S. Kosub and K. Wagner. The boolean hierarchy of NP-partitions. Information and Computa-
tion, 206(5): 538-568 (2008).

[Le06] E. Lehtonen. Descending chains and antichains of the unary, linear, and monotone subfunction
relations. Order, 23 (2006), 129-142.

[Le08] E. Lehtonen. Labeled posets are universal. European Journal of Combinatorics, 29 (2008),
493-506.

[Lo83] A. Louveau. Some results in the Wadge hierarchy of Borel sets. Lec. Notes in Math., No 1019
(1983), p.28–55.

[Pr70] H.A. Priestley. Representation of distributive lattices by means of ordered Stone spaces, Bull.
London Math.Soc., 2 (1970), 186-190.

[Ro67] H. Rogers jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967.

30



[RS63] H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics. Panstwowe Wydawnictwo
Naukowe, Warszawa, 1963.

[Se83] V.L. Selivanov. Hierarchies of hyperarithmetical sets and functions. Algebra and Logic, 22
(1983), p.473–491.

[Se89] V.L. Selivanov. Fine hierarchies of arithmetical sets and definable index sets. Trudi Mat. Inst.
SO AN SSSR, v.12 (1989), p.165–185 (Russian).

[Se94] V.L. Selivanov. Two refinements of the polynomial hierarchy. In: Proc. of STACS–94, Lecture
Notes in Computer Science, v. 775. Springer: Berlin 1994, p. 439–448.

[Se95] V.L. Selivanov. Fine hierarchies and Boolean terms. Journal of Symbolic Logic, 60 (1995),
289–317.

[Se98] V.L. Selivanov. Fine hierarchy of regular ω-languages. Theoretical Computer Science, 191
(1998), 37–59.

[Se99] V.L. Selivanov. Refining the polynomial hierarchy. Algebra and Logic, 38 (1999), N 4, 248–258.

[Se01] V.L. Selivanov. A logical approach to decidability of hierarchies of regular star-free languages.
Lecture Notes in Computer Science, v. 2010. Berlin, Springer, 2001, 539–550.

[Se04] V.L. Selivanov. Boolean hierarchies of partitions over reducible bases. Algebra and Logic, 43,
N 1 (2004), 44–61.

[Se07] V.L. Selivanov. Hierarchies of ∆0
2-measurable k-partitions. Mathematical Logic Quarterly, 53

(2007), 446–461.

[Se07a] V.L. Selivanov. Classifying omega-regular partitions. Preproceedings of LATA-2007, Universi-
tat Rovira i Virgili Report Series, 35/07, 529–540.

[Se07b] V.L. Selivanov. The quotient algebra of labeled forests modulo h-equivalence. Algebra and Logic,
46, N 2 (2007), 120–133.

[Se08] V. L. Selivanov. Fine hierarchies and m-reducibilities in theoretical computer science. Theoret-
ical Computer Science, 405 (2008), 116–163.

[Se08a] V. L. Selivanov. Fine hierarchy of regular aperiodic ω-languages. International Journal of Foun-
dations of Computer Science, 19, No 3 (2008) 649–675.

[Se09] V. L. Selivanov. Hierarchies and reducibilities on regular languages related to modulo counting.
RAIRO Theoretical Informatics and Applications, 41 (2009), 95–132.

[Se10] V. L. Selivanov. Fine hierarchies via Priestley duality. Proc. of Workshop on Logical Approaches
to Barriers in Computing and Complexity in Greifswald, 2010.

[Si64] R. Sikorski. Boolean Algebras. Springer-Verlag, Berlin, 1964.

[St36] M.H. Stone. The theory of representations for Boolean algebras. Transactions of American
Mathematical Society, 40 (1936), 37-111.

[St37] M.H. Stone. Applications of the theory of Boolean rings to general topology. Transactions of
American Mathematical Society, 41, No 3 (1937), 375-481.

[SW05] V.L. Selivanov and K.W. Wagner. A reducibility for the dot-depth hierarchy. Theoretical Com-
puter Science, 345, N 2-3 (2005), 448–472.

[Wad84] W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis, University of
California, Berkely, 1984.

[Wag79] K. Wagner. On ω-regular sets. Information and Control, 43 (1979), 123—177.

[Wag98] K.W. Wagner. A note on parallel queries and the symmetric-difference hierarchy. Information
Processing Letters, 66 (1998), 13–20.

31


