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Abstract

The complexity of counting with polynomial time Turing machines has been well
studied1. But the concept of counting can not only be applied to Turing machines,
but also to other nondeterministic devices as e.g. nondeterministic finite automata.
One method to get a decision class from counting NFAs is to consider the ranges of
their counting functions. A first survey on these ranges has been given by Rich and
Slutzki [RS88] who proved a lower bound (regular languages) and an upper bound
(nondeterministic linear space) for their complexities. In this report we show that there
are NP-complete ranges of counting NFAs, thus significantly improving the previous
lower bound from [RS88]. A similiar result for probabilistic finite automata is proven.

1 Introduction

For any nondeterministic device M , such as a Turing machine or an automaton, we can
count the number of paths that halt in accepting states, getting the counting function
#M which maps every possible input to a natural number.

There are various methods to define decision classes on the basis of the counting
functions given by nondeterministic machine models. Using the counting functions of NP
machines as oracles for a deterministic polynomial time machine, for example, is known to
yield fairly powerful complexity classes ([Tod91]). Alternatively, we can obtain a decision
problems from counting functions by considering their ranges (i.e. their codomains).

In this paper we will focus on the class range(# NFA) of ranges of counting functions
of nondetermistic finite automata which were investigated by Craig A. Rich and Giora
Slutzki in 1988 ([RS88]). In this paper they proved constructively that for every regular
language there is a NFA whose counting function has a range equal to this language,
and that there are ranges which are context sensitive but not context free (0n1n0n). By
imposing a simple cap on the entries of the vector which holds the number of paths in
∗Extended abstract of the author’s Bachelor Thesis
1An up-to-date summary can be found in [AB09]
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each state during the simulation of a counting NFA on a Turing machine, they showed
that all ranges of NFAs can be decided in nondeterministic linear space.

In the following sections we will prove that there are NFAs whose counting functions
have NP-complete ranges, by defining and validating such a range which is essentially
equivalent to the subset sum problem. This shows that counting yields sets far more
complex than 0n1n0n on a model as simple as a finite automaton and implies a new lower
bound for the time complexity of range(# NFA).

In a short corollary, we transfer this result to probabilistic finite automata by showing
that there are PFAs for which the set of all acceptance probabilities is NP-complete.

2 Preliminaries

2.1 Definitions and Notations

In this report we will partially adopt the notation from [RS88]. Let B1 = 1{0, 1}∗ ∪ {ε}
be the language of all binary strings without leading zeroes. The function bin : N → B1

maps a natural number n to its binary representation without leading zeroes. Note that
bin(0) = ε (empty word) and bin is a bijection. The inverse function is bin−1 : B1 → N.
We extend these definitions to sets and functions by defining bin(N) = {bin(n) | n ∈ N},
bin(f)(x) = bin(f(x)), bin−1(B) = {bin−1(b) | b ∈ B} and bin−1(f ′)(x) = bin−1(f ′(x))
for N ⊆ N, B ⊆ B1, f : A→ N and f ′ : A→ B1 (A is an arbitrary set). At one point we
will also use the ordinary binary representation bin′ for which bin′(0) = 0.

A nondeterministic finite automaton (NFA) is a 5-tuple M = (S,Σ, δ, I, F ), where S
is the finite set of states, Σ is the finite input alphabet, δ : S ×Σ→ P(S) is the transition
function, I ⊆ S are the initial states and F ⊆ S is the set of final states. To obtain a class
of functions we define recursively a counting function #δ : S × Σ∗ → N by

#δ(q, ε) =

{
1
0

if q ∈ F
else

(2.1)

#δ(q, σx) =
∑

p∈δ(q,σ)

#δ(p, x) (2.2)

and a counting function #M : Σ∗ → N for the entire NFA by

#M(x) =
∑
q∈I

#δ(q, x) (2.3)

Informally, #δ(q, x) is the number of accepting paths of the NFA if the computation starts
in state q and the automaton reads the input x, and #M(x) is the number of accepting
paths of M starting from the initial states I and reading the input x. For languages
L ⊆ Σ∗ and a NFA with the input alphabet Σ we define #δ(q, L) = {#δ(q, x) | x ∈ L}
and #M(L) = {#M(x) | x ∈ L}. For an NFA M , range(#M) = #M(Σ∗) is the range
of #M . Finally, # NFA = {#M | M is an NFA} is the class of all counting functions of
NFAs and range(# NFA) = {range(#M) |M is an NFA} is the class of all their ranges.
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2.2 Linear Automata

To facilitate the formal verification of NFAs in the following sections, we use a well-known
extension of NFAs which can greatly reduce the number of states in some cases.

A linear automaton (LA) is a 5-tuple M = (S,Σ, δ, I, F ), where S is the finite set of
states, Σ is the finite input alphabet, δ : S × Σ× S → N is the transition function, I ⊆ S

are the initial states and F ⊆ S is the set of final states. Informally, δ maps a triple
(q, σ, p) of a current state q, an input symbol σ and a subsequent state p to the number of
paths leading from q to p when reading σ. Again, we recursively define a counting function
#δ : S × Σ∗ → N by

#δ(q, ε) =

{
1
0

if q ∈ F
else

(2.4)

#δ(q, σx) =
∑
p∈S

(δ(q, σ, p) ·#δ(p, x)) (2.5)

and an according counting function #M : Σ∗ → N for the entire LA by

#M(x) =
∑
q∈I

#δ(q, x) (2.6)

Additionally, we define the reverse counting function ξ : S × Σ∗ → N by

ξ(q, ε) =

{
1
0

if q ∈ I
else

(2.7)

ξ(q, xσ) =
∑
p∈S

(δ(p, σ, q) · ξ(p, x)) (2.8)

Informally, ξ(q, x) is the number of paths in state q when M has read the input x starting
from the initial states I. Since for all inputs x = σnσn−1...σ1 it can be easily shown that∑

p0∈F ξ(p0, x) =
∑

pn∈I #δ(pn, x) we can alternatively obtain #M(x) for an automaton
M by determining

∑
s∈F ξ(s, x), which will turn out to be more intuitive than the original

definition. The definitions of #δ(q, L), #M(L), # LA, range(#M), # LA, range(# LA)
for a LAs are analogous to those of NFAs.2

Lemma 1. LAs and NFAs are equivalent, that is, for every NFA M ′ = (S′,Σ′, δ′, I ′, F ′)
there is a LA M = (S,Σ, δ, I, F ) with #M = #M ′ and vice versa.

Proof. Trivially, we get a equivalent LA M for a given NFA M ′ by defining S = S′, Σ = Σ′,

δ(q, σ, p) =

{
1
0

if p ∈ δ′(q, σ)
else

, I = I ′ and F = F ′.

2We do not use the designation LA as it is usually used for various classes of decision problems for

linear automata.
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For a given LA M consider the LA M� = (S�,Σ�, δ�, I�, F �) defined by

S� =
⋃
s∈S

⋃
1≤m≤maxt∈S,σ∈Σ δ(t,σ,s)

{sm} (where the si are new states) (2.9)

Σ� = Σ (2.10)

δ�(qi, σ, pj) =

{
1
0

if j ≤ δ(q, σ, p)
else

(for all qi, pj ∈ Σ�) (2.11)

qi ∈ I� ↔ (q ∈ I ∧ i = 1) (for all qi ∈ Σ�) (2.12)

qi ∈ F � ↔ q ∈ F (for all qi ∈ Σ�) (2.13)

By a short induction on the length of the input x one can prove that #δ�(qi, x) = #δ(q, x)
holds for any qi ∈ S�. Since ∀(qi, σ, pj) ∈ S × Σ× S : (δ�(qi, σ, pj) ≤ 1) the NFA M ′ with
S′ = S�, Σ′ = Σ�, pj ∈ δ(qi, σ) ↔ δ�(qi, σ, pj) = 1, I ′ = I� and F ′ = F � is equivalent to
M�.

2.3 Graphical Representation of LAs

A LA can be straightforwardly represented by a classic automaton graph where we label
the edge from state si to state sj with δ(si, σ1, sj)∗σ1, δ(si, σ2, sj)∗σ2, ... , δ(si, σn, sj)∗σn
for all σi for which δ(si, σi, sj) ≥ 1. If δ(si, σi, sj) = 1 we omit the multiplicity. A simple
example is given in Figure 1. As usual, initial states are marked by a arrow without a
source, and final states are depicted as double circle.

1

2 ∗ 0, 2 ∗ 10, 1

s1s0

Figure 1: A LA for which bin(#M(x)) equals the input x without leading zeroes.

3 Basic Properties of NFAs

3.1 Auxiliary Functions

We prove that three auxiliary functions we will need for Lemma 12 are in #NFA.

Lemma 2. All constant functions, i.e. all functions fc : Σ∗ → N for some alphabet Σ
that satisfy ∀(x ∈ Σ∗) : (fc(x) = c) for some c ∈ N, are in # NFA.

Proof. For the LA M = (S,Σ, δ, I, F ) where S = I = F =
⋃

1≤i≤c{si} and δ(si, σ, sj) ={
1
0

if i = j

else
it evidently holds that ∀i : ξ(si, x) = 1, and thus #M(x) =

∑
s∈F ξ(s, x) =

c · 1 = c.
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Lemma 3. For a1, ..., am ∈ {0, 1} and x1, ..., xm ∈ N there is a NFA M for which
#M(#a1 bin(x1)...#am bin(xm)) =

∑m
i=1 aixi.

1

0, 10, 1,#

#

2 ∗ 0, 2 ∗ 1

# 1

0, 1,#

s1s0 s3s2 s4

Figure 2: A LA for the index set function.

Proof. Consider the linear automaton M given in Figure 2. We only discuss inputs
of the form #a1 bin(x1)...#am bin(xm). Obviously, we have ξ(s0, x) = 1 for all x ∈
{0, 1,#}∗. Now we prove by induction on m the claims ξ(s1,#...am bin(xm)) = 0,
ξ(s2,#...am bin(xm)) = am, ξ(s3,#...am bin(xm)) = amxm and ξ(s4,#...am bin(xm)) =∑m−1

i=0 aixi where a0 = x0 = 0. For m = 0 it is

ξ(s1, ε) = 0 (3.1)

ξ(s2, ε) = 0 = a0 (3.2)

ξ(s3, ε) = 0 = a0x0 (3.3)

ξ(s4, ε) = 0 =
−1∑
i=0

aixi (3.4)

For (m+ 1) > 1 we get for the symbol #

ξ(s1,#...bin(xm)#) = ξ(s0,#...#am bin(xm)) = 1 (3.5)

ξ(s2,#...bin(xm)#) = 0 (3.6)

ξ(s3,#...bin(xm)#) = 0 (3.7)

ξ(s4,#...bin(xm)#) = ξ(s4,#...#am bin(xm)) + ξ(s3,#...#am bin(xm)) (3.8)

ih= amxm +
m−1∑
i=0

aixi =
m∑
i=0

aixi (3.9)

We add am+1

ξ(s1,#...#am+1) = 0 (3.10)

ξ(s2,#...#am+1) = am+1 · ξ(s1,#...bin(xm)#) + ξ(s2,#...bin(xm)#) = am+1 (3.11)

ξ(s3,#...#am+1) = 2 · ξ(s3,#... bin(xm)#) + am+1 · ξ(s2,#...bin(xm)#) = 0 (3.12)

ξ(s4,#...#am+1) = ξ(s4,#...bin(xm)#) =
m∑
i=0

aixi (3.13)
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Now we can use a subinduction on |bin(xm+1)| to prove that ξ(s1,#...#am+1 bin(xm+1)) =
0, ξ(s2,#...#am+1 bin(xm+1)) = am+1, ξ(s3,#...#am+1 bin(xm+1)) = am+1xm+1 and
ξ(s4,#...#am+1 bin(xm+1)) =

∑m
i=1 aixi.

For bin(xm+1) = ε we get

ξ(s1,#...am+1) = 0 (3.14)

ξ(s2,#...am+1) = am+1 (3.15)

ξ(s3,#...am+1) = 0 = am+1xm+1 (3.16)

ξ(s4,#...am+1) =
m∑
i=0

aixi (3.17)

And for |bin(xm+1)σ| > 0 (where σ ∈ {0, 1})

ξ(s1,#...bin(xm+1)σ) = 0 (3.18)

ξ(s2,#...bin(xm+1)σ) = σ · ξ(s1,#...bin(xm+1)) + ξ(s2,#...bin(xm+1)) (3.19)
ih= am+1 (3.20)

ξ(s3,#...bin(xm+1)σ) = ξ(s3,#...bin(2 · xm+1 + σ)) (3.21)

= 2 · ξ(s3,#...bin(xm+1)) + σ · ξ(s2,#...bin(xm+1)) (3.22)
ih= 2 · am+1xm+1 + σ · am+1 = am+1(2 · xm+1 + σ) (3.23)

ξ(s4,#...bin(xm+1)σ) = ξ(s4,#...bin(xm+1)) =
m∑
i=0

aixi (3.24)

Based on the result of the induction we can now conclude that

#M(#...#am bin(xm)) = ξ(s3,#...#am bin(xm)) + ξ(s4,#...#am bin(xm)) (3.25)

= amxm +
m−1∑
i=0

aixi =
m∑
i=0

aixi =
m∑
i=1

aixi (3.26)

Lemma 4. The functions elc : Σ∗ → N with elc(x) = c|x| for an arbitrary alphabet Σ and
a constant c ∈ N are in # NFA.

Proof. The counting function of the automaton M = (S,Σ, δ, I, F ) where S = I = F =
{s0} and ∀(σ ∈ Σ) : δ(s0, σ, s0) = c evidently equals elc.

Lemma 5. For all regular sets A the characteristic function χA is in # NFA.

Proof. Using the usual techniques for decision DFAs and NFAs (cf. [HMU07] 3.2.3 and
2.3.5) we can easily obtain a DFA that decides the set A. If we regard this deterministic
automaton as a LA we get the automaton M which computes

#M(x) =

{
1
0

if x ∈ A
if x /∈ A

= χA(x) (3.27)
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3.2 Closure Properties

We will also need the closure of # NFA under addition and multiplication. The lemmas
are stated in the paper from Rich and Slutzki.

Lemma 6 ([RS88]). # NFA is closed under addition, that is, for two automata M,M ′

with the same alphabet Σ there is an automaton M+ satisfying #M+ = #M + #M ′.

Lemma 7 ([RS88]). # NFA is closed under multiplication, that is, for two automata
M,M ′ with the same alphabet Σ there is an automaton M? satisfying #M ·#M ′ = #M?.

From Lemma 2, Lemma 6, and Lemma 7 we conclude

Corollary 8. If a set A is in range(# NFA), then all Akm = {k · x + m | x ∈ A} for
k,m ∈ N are in range(# NFA).

4 A NFA with an NP-Complete Range

In this section we prove that there is a NFA with an NP-complete range, starting with a
short summary of related work concerning these ranges.

4.1 Related Work

In [RS88], counting functions for NFAs (cf. Section 2.1) and DFAs (every state-symbol-
tuple is assigned an output word that are concatenated when reading the input) are
introduced. Based on previous work ([GG67]), which shows that all ranges of DFAs
are regular, the authors prove that range(# DFA) ( range(# NFA) by constructing an
equivalent NFA for every DFA, and giving a NFA whose range is not context-free. They
also give an algorithm that decides the range of a NFA in NSPACE(n), and conjecture
that there might be NFAs whose ranges are complete for NSPACE(n) or NP.

4.2 The Proof

The idea is to reduce the subset sum (SS) problem, a classic NP-complete decision problem,
to a set in range(# NFA). Definitions for SS can be found in [CLRS01] 35.5, a proof of its
NP-completeness in [CLRS01] 34.5.5.

Definition (Subset sum problem). The subset sum problem is given by

SS =

{
(x1, ..., xm, S) | S ∈ N ∧ ∀i : (xi ∈ N) ∧ ∃(a1, ..., am ∈ {0, 1}) :

(
m∑
i=1

aixi = S

)}
(4.1)

The range SSb we want to construct is such that bin(SSb) equals{
bin

(
m∑
i=1

aixi

)
00 code(## bin(x1)...## bin(xm)) | ∀i : (ai∈{0, 1} ∧ xi∈N)

}
∪ {ε}

(4.2)
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where code is a 2-bit block code defined by code(0) = 01, code(1) = 10 and code(#) = 11.

Lemma 9. SSb is NP-hard.

Proof. We show that SS can be reduced to SSb in logarithmic space. Consider the function
f defined by

bin(f(x)) =

{
bin(S)00 code(## bin(x1)...## bin(xm))
1

if x = (x1, ..., xm, S) for xi, S ∈ N
else

(4.3)

f reduces SS to SSb since

x ∈ SS⇔ x = (x1, ..., xm, S) for some xi, S ∈ N (4.4)

and
m∑
i=1

aixi = S for some a1, ..., am ∈ {0, 1} (4.5)

⇔ 3 bin(f(x)) = bin(S)00 code(## bin(x1)...## bin(xm)) (4.6)

where
m∑
i=1

aixi = S for some a1, ..., am ∈ {0, 1} (4.7)

⇔ 4f(x) ∈ SSb (4.8)

The reduction f is easily computable in logarithmic space, as the set of all tuples
(x1, ..., xm, S) for some xi, S ∈ N (in a usual coding such as bin(x1)#...# bin(xm)#S) is
regular and therefore decidable without any space, and the rest is a simple rearrangement.

Lemma 10. SSb is in NP.

Proof. A decision algorithm for NP accepts if the input equals the empty word.
It can simulate a deterministic finite automaton to check whether the input equals
bin(S)00 code(## bin(x1)...## bin(xm)) for some S, xi ∈ N and reject if not. Then it
guesses nondeterministically a1, ..., am ∈ {0, 1} and accepts if (

∑m
i=1 aixi) = S.

For Lemma 12 we will need an auxiliary lemma.

Lemma 11. For a1, ..., am ∈ {0, 1} and x1, ..., xm ∈ N there is a NFA M for which
bin(#M(#a1 bin(x1)...#am bin(xm))) = code(## bin(x1)...## bin(xm)).

Proof. Consider the LA given in Figure 3. Obviously, we have ξ(s0,#...bin(xm−1)#) = 0,
ξ(s0,#...bin(xm−1)#am) = ξ(s0,#...#am bin(xm)) = 1, ξ(s1,#...bin(xm−1)#) = 1
and ξ(s1,#... bin(xm−1)#am) = ξ(s1,#...#am bin(xm)) = 0 for all m and lengths of

4Note that ∀x1, ..., xm, S ∈ N : bin(S)00 code(##bin(x1)...##bin(xm)) 6= 1.
5Note that ∀x : (f(x) 6= 0).
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0, 1

1 ∗ 0, 2 ∗ 1, 3 ∗#

4 ∗ 0, 4 ∗ 1, 4 ∗#
0, 1

# 3 ∗ 0, 3 ∗ 1

s1

s2
s0

Figure 3: A LA for Lemma 11.

bin(xm). We can prove by induction on m that ξ(s2,#a1 bin(x1)...#am bin(xm)) =
bin−1(code(## bin(x1)...## bin(xm))). For m = 0 we have

ξ(s2, ε) = 0 = bin−1(code(ε)) (4.9)

For (m+ 1) > 0 we get for the first two symbols

ξ(s2,#...#am+1) = 4 · ξ(s2,#...bin(xm)#) + (am+1 + 1) · ξ(s0,#...bin(xm)#) (4.10)

+ 3 · ξ(s1,#...bin(xm)#) (4.11)

= 4 · (4 · ξ(s2,#...bin(xm)) + 3 · ξ(s0,#...bin(xm)) (4.12)

+ 3 · ξ(s1,#...bin(xm))) + 3 (4.13)
ih= 4 · (4 · bin−1(code(## bin(x1)...## bin(xm))) + 3) + 3 (4.14)

= bin−1(code(## bin(x1)...## bin(xm)##)) (4.15)

By a subinduction on |bin(xm+1)| we show that ξ(s2,#...#am+1 bin(xm+1)) =
bin−1(code(## bin(x1)...## bin(xm+1))).

For | bin(xm+1)| = 0 we have

ξ(s2,#...#am+1ε) = bin−1(code(##...bin(xm)##ε)) (4.16)

And for |bin(2 · xm+1 + σ)| > 0 where σ ∈ {0, 1} we get

ξ(s2,#...bin(2 · xm+1 + σ) = 4 · ξ(s2,#...bin(xm+1)) (4.17)

+ (σ + 1) · ξ(s0,#...bin(xm+1)) (4.18)

+ 3 · ξ(s1,#... bin(xm+1)) (4.19)
ih= 4 · bin−1(code(##...bin(xm+1))) + (σ + 1) (4.20)

= bin−1(code(##...## bin(2 · xm+1 + σ))) (4.21)

Lemma 12. SSb is in range(# NFA).
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Proof. Consider the function g : {0, 1,#}∗ → N given by

bin(g(#a1...#am bin(xm))) = bin

(
m∑
i=1

aixi

)
00 code(## bin(x1)...## bin(xm)) (4.22)

for inputs of the form #a1 bin(x1)...#am bin(xm) for some ai ∈ {0, 1}, xi ∈ N, and for all
other inputs x by g(x) = 0. Note that range(g) = SSb. So it suffices to prove that g is the
counting funtion of a NFA.

Let A = {#a1 bin(x1)...#am bin(xm) | ∀(0 ≤ i ≤ m) : (ai ∈ {0, 1} ∧ xi ∈ N)}.
Evidently, A is the set of words over {0, 1,#} which match the regular expression R =
(#(0 + 1)(ε + 1(0 + 1)∗))∗ and therefore regular. Additionally, we define the functions
h1 : {0, 1,#}∗ → {0, 1}∗ and h2 : {0, 1,#}∗ → {0, 1}∗ for words from A by5

bin(h1(#a1...#am bin(xm))) = bin

(
m∑
i=1

aixi

)
(4.23)

bin(h2(#a1...#am bin(xm))) = code(## bin(x1)...## bin(xm)) (4.24)

Note that |h2(x)| = 2 · |x| for all x ∈ A. We can now express g(x) using these functions.

g(x) = χA(x) ·
(
h1(x) · 4 · 4|x| + h2(x)

)
(4.25)

And as χA ∈ # NFA (Lemma 5), h1 ∈ # NFA (Lemma 3), 4|x| ∈ # NFA (Lemma 4),
h2 ∈ # NFA (Lemma 11), the constant function x 7→ 4 is in # NFA (Lemma 2) and
# NFA is closed under addition and multiplication (Lemmas 6, 7), g is in # NFA.

Lemmas 9, 10 and 12 immediately prove the conjecture from [RS88].

Theorem 13. range(# NFA) contains NP-complete sets.

5 Transfering the Result to Probabilistic Automata

We will now prove a similar corollary for probabilistic finite automata (PFAs). A (rational)
PFA is a 5-tuple P = (S,Σ, δ, π, F ), where S = {s1, s2, ..., s|S|} is the finite set of states,
Σ is the finite input alphabet, δ : S × Σ × S → Q6 where ∀(s ∈ S)∀(σ ∈ Σ)∀(s′ ∈ S) :
(δ(s, σ, s′) ≥ 0) and ∀(s ∈ S)∀(σ ∈ Σ) :

(∑
s′∈S δ(s, σ, s

′) = 1
)

is the transition function,
π = (π1, π2, ..., π|S|) ∈ Q|S| where

∑
1≤i≤|S| πi = 1 is the initial state vector and F ⊆ S

is the set of final states. Informally, δ(q, σ, p) is the probability that the state p will be
assumed if the current state is q and input symbol is σ.

The probability that P is in state si having read the input x, is defined by

ρ(si, ε) = πi (5.1)

ρ(si, xσ) =
∑
s′∈S

(
ρ(s′, x) · δ(s′, σ, si)

)
(5.2)

5The results for all other inputs are arbitrary.
6As usual, Q is the set of rational numbers.
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The acceptance probability of P on the input x is given by

P (x) =
∑
s∈F

ρ(s, x) (5.3)

The equivalence of this definition to the usual matrix notation (e.g. [Mac94]) can again
be proved analogously to [RS88] Lemma 4.1. Additionally, we define the range of a PFA
P by range(P ) = {P (x) | x ∈ Σ∗}.

We can now link LAs to PFAs.

Lemma 14. For every LA M there is a PFA P and a constant k with

∀x : P (x) =
#M(x)
k|x|+1

(5.4)

Proof. The idea is to choose a denominator for all transitions in the PFA high enough such
that we can use the multiplicity from the transitions of the LA as the numerator. This
necessitates a new non-accepting state s|S|+1 for the excess probability which we don’t
need for the simulation.

For a given LA M = (S = {s1, s2, ..., s|S|},Σ, δ, I, F ) let

k = max

max
σ∈Σ

 ∑
s,s′∈S

δ(s, σ, s′)

+ 1, |I|+ 1

 (5.5)

Consider the PFA P = (SP ,ΣP , δP , πP , FP ) with

SP = S ∪ {s|S|+1} (5.6)

ΣP = Σ (5.7)

δP (s, σ, s′) =


δ(s, σ, s′)/k
1−

∑
s′∈S (δ(s, σ, s′)/k)

1
0

if s, s′ ∈ S
if (s ∈ S) ∧ (s′ = s|S|+1)
if (s = s|S|+1) ∧ (s′ = s)
if (s = s|S|+1) ∧ (s′ 6= s)

(5.8)

πP i =


1/k
1−

∑
1≤i≤|S| πP i

0

if si ∈ I
if si = s|S|+1

else

(5.9)

FP = F (5.10)

Note that that
(
1−

∑
s′∈S (δ(s, σ, s′)/k)

)
≥ 0 and

(
1−

∑
1≤i≤|S| πP i

)
≥ 0 due to the

definition of k. By an induction on the length of the input x one can easily prove that

ρP (si, x) =
ξ(si, x)
k|x|+1

(5.11)

The conditions for δP and πP are satisfied by their definitions.

Corollary 15. There exist PFAs whose range is NP-complete.
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Proof. Consider the PFA P = (SP ,ΣP , δP , πP , FP ) we get from Lemma 14 for the set
SSb

k
1 from Corollary 8, where SSb is from Section 4.2 and k from Lemma 14. We need

Corollary 8 since two inputs x, x′ where #M(x′) = #M(x) · kn for some n 6= 0 lead to the
same P (x) = P (x′) even though #M(x′) 6= #M(x) if |x′| = |x|+ n.

We can now reduce the subset sum problem to range(P ) by creating a new reduction f ′

based on the function f from Lemma 9. If the input to f ′ is not of the form (x1, ..., xm, S),
output 1. 1 /∈ range(P ) since (P (x) = 1) ⇒ (ρ(s|S|+1, x) = 0) ⇒ (πP |S|+1 = 0) and thats
not possible as ∑

1≤i≤|S|

πP i =
∑
si∈I

1
k

=
|I|
k
≤ k − 1

k
< 1 (5.12)

and therefore πP |S|+1 = 1−
(∑

1≤i≤|S| πP i

)
> 0. This format check can be done in linear

time, for example by simulating a finite automaton.
If the input x equals the tuple (x1, ..., xm, S) for some xi, S ∈ N, then calculate

l = |## bin(x1)...## bin(xm)|, which is the length of the input to M that leads to the
acceptance of f(x) if f(x) accepted by M . We need linear time for this. Now the reduction
outputs

f(x) · k + 1
kl+1

(5.13)

(k is from Lemma 14), in polynomial time since f is computable in logarithmic space.
Notice that the numerator is not divisible by k and it therefore holds that(

f(x) · k + 1
kl+1

=
f(x′) · k + 1

kl+1

)
⇔ ((f(x) = f(x′)) ∧ (l = l′)) (5.14)

Hence we get

(x1, ..., xm, S) ∈ SS⇔ f(x1, ..., xm, S) ∈ SSb (Lemma 9) (5.15)

⇔ f(x1, ..., xm, S) · k + 1 ∈ SSb
k
1 (5.16)

⇔ f ′(x1, ..., xm, S) ∈ range(P ) (5.17)

This proves the NP-hardness.
For an x

y ∈ Q a decision algorithm for range(P ) rejects if x is not of the form k · x′+ 1
for some x′ ∈ N. Otherwise, it inputs x−1

k in the algorithm from Lemma 10. Thus we can
nondeterministically decide range(P ) in polynomial time.

6 Summary and Open Questions

In Section 4 we proved that there is a NP-complete set in range(# NFA). As the current
nondeterministic upper space bound for range(# NFA) is NSPACE(n) (cf. 4.1) that leaves
room for a more difficult complete set in range(# NFA) as well as for a lower space bound.

A proof of range(# NFA) ⊆ NP might also be possible, but nontrivial as there are
automata M for which #M(x) ∈ Θ(log(x)) and therefore we cannot guess nondetermin-
istically all inputs that could yield a given output y in a time polynomial in |y|.

12



In Section 5 we showed that there is a PFA P for which range(P ) is NP complete.
Again, it remains to show whether or not range(P ) ⊆ NP or if range(P ) contains sets
more difficult then NP.
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