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Abstract. It is shown that every conjunctive language is generated by
a conjunctive grammar of a special form, in which every nonterminal A
has at most one rule of the general form A — ai1&...&ay,, while the
rest of the rules for A must be of the type A — w, where w is a termi-
nal string. For context-free grammars, a similar property does not hold
(S. A. Greibach, W. Shi, S. Simonson, “Single tree grammars”, 1992).

1 Introduction

Context-free grammars are the most obvious mathematical model of syntax,
which represents inductive definition of a set of strings. This is done using one
Boolean operation: the disjunction, which is implicit in having multiple rules
for one nonterminal symbol. These natural expressive means together with effi-
cient parsing algorithms, make context-free grammars the most practically used
method of defining formal languages.

As conjunction of syntactical conditions is not expressible in context-free
grammars, this model can be extended by allowing an explicit conjunction in the
formalism of rules. The resulting extension is known as conjunctive grammars [8],
it maintains the principle of defining a language inductively and still possesses
efficient parsing algorithms. At the same time, using conjunction in addition to
disjunction considerably increases the expressive power of the model. Besides
being able to represent many standard examples of non-context-free languages,
such as {a"b"c" | n >0} and {wew | w € {a,b}* } [§], conjunctive grammars
are notable for their non-trivial expressive power over a one-letter alphabet,
studied by Jez [4] and by Jez and Okhotin [BJ6]. This work, in particular, led to
unexpected strong results on equations over sets of numbers [7].

This paper continues the investigation of the power of Boolean operations in
context-free grammars with a subclass of conjunctive grammars, in which every
occurrence of disjunction must have a terminal string as one of its arguments.
In other words, each nonterminal A may have only one rule referring to other
nonterminals, while the rest of its rules must be of the form A — w, where
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w is a terminal string. The same restriction on the context-free grammars has
been studied by Greibach et al. [3] under the name of single tree grammars.
These grammars have quite a limited expressive power; in particular, they can-
not generate the language of all palindromes. The latter language, as shown by
Reitwiefiner [I0] is not even in the union closure of single tree grammars. This
means that unrestricted use of disjunction is essential for context-free grammars.

Similarly to single tree grammars, one can expect conjunctive grammars using
disjunction only with terminal strings to be much weaker than the conjunctive
grammars of the general form. However, the results of this paper contrast this in-
tuition, and it is shown that in fact every conjunctive grammar can be effectively
transformed to an equivalent grammar with restricted disjunction. Unrestricted
disjunction is thus redundant in conjunctive grammars. The form with restricted
disjunction may thus be regarded as a normal form for conjunctive grammars.

The proof of this result is based upon another normal form for conjunc-
tive grammars, the odd normal form, in which every nonterminal other than
the start symbol generates only strings of odd length. In Section |3| it is shown
how to transform every conjunctive grammar to this form. The main result of
the paper, that every conjunctive language can be generated by a conjunctive
grammar with restricted disjunction, is obtained in Section [d] Finally, the ques-
tion of eliminating e-rules in conjunctive grammars with restricted disjunction is
addressed in Section [5} though it is not determined whether this is always possi-
ble, a construction of e-free restricted conjunctive grammars for a subfamily of
conjunctive languages including all regular languages is given.

2 Conjunctive grammars

Let us define the main operations on languages used in this paper. Boolean
operations: union, intersection, complementation L = X* \ L. Concatenation:
K-L=KL={uw |ueK,veL}. Quotient with a singleton: for L C X*
and u € X*, the languages u 'L := {w | vw € L} and Lu~! := {w | wu € L}
are the left and right quotients of L with v, respectively. This operation is
extended to languages as K 'L := {v|Ju€e K: we L} and LK~ ! := {u |
JveK:uwel}for K,L CX*

Definition 1 (Okhotin [8]). A conjunctive grammar is a quadruple G =
(X,N,P,S), in which X and N are disjoint finite nonempty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules, each
of the form

A—-a&.. . &a, (withAe N, n>21and ay,...,an € (XUN)Y) (1)
and S € N is a nonterminal designated as the start symbol.

Informally, a rule states that if a string is generated by each «;, then it is
generated by A. This semantics can be formalized using term rewriting, which
generalizes Chomsky’s string rewriting.
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Definition 2 ([8]). Given a grammar G, consider terms over concatenation
and conjunction with symbols from X U N as atomic terms. The relation = of
immediate derivability on the set of terms is defined as follows:

— Using a rule A — a1& ... &ay,, a subterm A € N of any term p(A) can be
rewritten as p(A) = p(ar& ... &ay).

— A conjunction of several identical strings can be rewritten by one such string:
o(w& ... &w) = p(w), for every w € X*.

The language generated by a term ¢ is Lg(p) = {w | we X*, o =*w}.
The language generated by the grammar is L(G) = Lg(S) = {w |
weXs S=*w}.

An equivalent definition can be given using language equations. This defi-
nition generalizes the well-known characterization of the context-free grammars
by equations, due to Ginsburg and Rice [1].

Definition 3. For every conjunctive grammar G = (X, N, P, S), the associated
system of language equations is a system of equations in variables N, in which
each variable assumes the value of a language over X, and which contains the
following equation for every variable A:

A= U ﬁai (for all A€ N) . (2)

A—a1&..&am€eP i=1

Each occurrence of a symbol a € X in such a system defines a constant language
{a}, while each empty string denotes a constant language {e}. A solution of a
system is a vector of languages (..., Lc,...)cen, such that the substitution of
L¢ for C, for all C € N, turns each equation (@ into an equality.

Every such system has at least one solution, and among them the least solu-
tion with respect to componentwise inclusion. This solution consists of exactly
the languages generated by the nonterminals of the original conjunctive gram-
mar: (..., La(C),..)cen-

Let us give some examples of conjunctive grammars. Every language rep-
resentable as an intersection of finitely many context-free languages, such as
{a™b"c™ | n > 0}, can be straightforwardly specified using conjunction for the
start symbol. It is more interesting to construct a grammar for a language not
in the intersection closure of the context-free languages, such as the following.

Ezample 1 (Okhotin [§]). The conjunctive grammar

S — C&D

C —aCa | aCb | bCa | bCH | ¢
D — aA&aD | bB&bD | cE

A — ada | aAb | bAa | bAb | cEa
B — aBa | aBb | bBa | bBb | cEb
E—aFE |bE | €

generates the language {wew | w € {a,b}* }. In particular, L(D) = {uczu |
u,z € {a,b}* }.
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The rules for D match a single symbol in the left part to the corresponding
symbol in the right part using A or B, and the recursive reference to aD or bD
makes the remaining symbols be compared in the same way. The intersection
with the language { ucv | u,v € {a,b}*, |u| = |v| } generated by C completes the
grammar.

Ezample 2 (Jez [4]]). The following conjunctive grammar with the start symbol
Aj generates the language {a*" |n >0}:

Al — AQAQ&AlAg | a
A2 — A6A2&A1A1 | aa
Ag — AgAe,&AlAQ | aaa
Ag — Az As& Ay Ay

Each nonterminal A; generates the language { a**" | n > 0}.

A generalization of the Chomsky normal form for conjunctive grammars is
known.

Definition 4 (Binary normal form [8]). A conjunctive grammar G =
(X, N, P,S) is in the binary normal form if every rule in P is of the form

AHBlcl&&BnCn (n} 1, Bi,Ci EN)
A—a

S — ¢ (ounly if S does not appear in right-hand sides of rules)

Every conjunctive grammar can be effectively transformed to a conjunctive
grammar in the binary normal form generating the same language [g].

For context-free grammars, there is another important normal form: the
Greibach normal form [2], in which every rule is either A — aa with a €
(XY UN)*, or A — e. This definition naturally carries on to conjunctive gram-
mars. It can be said that a conjunctive grammar G = (X, N, P, S) is in Greibach
normal form if every rule in P is of the form

A—am&.. . &aa, (n>=1, a; € N*) or

A—e.
However, it is not known whether every conjunctive grammar can be transformed
to this form.

Let us establish another normal form for conjunctive grammars, which will
be crucial for the subsequent constructions.

3 The odd normal form

The odd normal form for conjunctive grammars proposed in this section has the
following main property: every nonterminal (possibly except the start symbol)



Conjunctive grammars with restricted disjunction 5

may only generate strings of odd length. As the parity of the length of strings is
going to play an important role in all constructions below, let us introduce the
notation Even := (X?)* and Odd := X(X?)* (where X is the implicitly assumed
alphabet) for the sets of all strings of even and odd length, respectively.

Definition 5 (Odd normal form). A conjunctive grammar G = (X, N, P, S)
18 said to be in odd normal form if all rules in P are of the form

A—a with A€ N, a € X, or
A— Bia1Ci & ... & B,a,C,, with n > 1, A,Bi,CiEN, a; € X

If S does not occur in the right-hand sides of the rules, then the following two
types of rules, called even rules, are also allowed:

S — aA with a € X, Ae N
S —e

Note that if there are no even rules in a grammar in odd normal form, then
it generates a subset of Odd. Thus even rules are needed for some languages,
but regardless of whether are used, the main part of the grammar operates on
odd strings only. The main step towards the transformation to the odd normal
form is taking an arbitrary grammar in binary normal form and representing its
operation on all strings using only odd strings.

Lemma 1. For every conjunctive grammar G = (X, N, P,S) in binary nor-
mal form there exists and can be effectively constructed a conjunctive grammar
G = (X,N', P, 5" in odd normal form without even rules, in which the set of
nonterminals is N' := (X U{e}) x N x (X' U{e}) and the language generated by
each nonterminal (z, A,y), denoted z A, is

Lar(oAy) = 2~ La(A)y~" N 0Odd,

where A € N and z,y € X U {e}. The start symbol is S' := .Sc, and hence
L(G") = L(G) N Odd.

Proof. Tt can be assumed that G does not contain the rule S — ¢, since the
languages " 1Lg(S)y~ N Odd consist of strings of length at least one, and
hence the membership of € in L(G) does not affect them.

The grammar G’ is construted as follows. For every rule

A— BYCcWg .  &BM™Mc™ e p,

each nonterminal , A, with x,y € YU{e} in the new grammar G’ has all possible
rules of the form

+Ay = V& &pal)
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such that for every i =1,...,n,
xay(j) e{,BY .qa. €Czsi) |lae X} U (3a)
{:BW .a. aCZSi) |ae X} U (3b)
{oBY |y € La(C)} U (3¢)
{-.C\) |z € La(BW)}. (3d)

Additionally, for every A, € N’ and every a € X such that zay € Lg(A), the
new grammar contains the rule

Ay — a. (4)

It is easy to check that no nonterminal in G or G’ generates the empty string
and that all strings generated by nonterminals in N’ have odd length.
Now it is claimed that for each ,A, € N and for every w € X*,

w € Lar(4Ay) if and only if zwy € Lg(A) and w € Odd.

The proof in each direction is by induction on the length of w, and inside this in-
duction there is another induction on |xy|. It is omitted due to space constraints.

The grammar G’ constructed above is not yet in the odd normal form,
because it may contain so-called unit conjuncts, that is, rules of the form
A — B&.... The known procedure for elimitating such conjuncts [§] is a se-
quence of substitutions of the bodies of all rules for B inside a rule A — B& .. ..
Accordingly, once these substitutions are done, the grammar G’ will contain
conjuncts of the form and , while all conjuncts of the form and
will be eliminated. Then G’ will be in the odd normal form. a

The grammar constructed in Lemma [I] generates the odd subset of the given
language. However, it actually encodes the entire information defined in the
original grammar, and using the “even rules” allowed in the odd normal form
one can generate the original language as it is.

Theorem 1. For every conjunctive grammar there exists and can be effectively
constructed a conjunctive grammar in odd normal form generating the same
language.

Proof (sketch). Tt is sufficient to take the grammar in Lemma |1 and add a new
start symbol S’ with the rules 8" — .S., S’ — a,S: for all a € X and S’ — ¢ if
¢ should be in the language. a

Some corollaries can be inferred. The first one concerns Greibach normal
form for conjunctive grammars. As already mentioned, it is unknown whether
every conjunctive grammar can be transformed to that form. However, Theo-
rem [1] straightforwardly implies a transformation to Greibach normal form for
grammars over a one-letter alphabet.
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Corollary 1 (Unary Greibach normal form). For every conjunctive gram-
mar over a unary alphabet there exists and can be effectively constructed a con-
Jjunctive grammar in Greibach normal form generating the same language.

Indeed, since concatenation of languages over {a} is commutative, each term
BaC in an odd normal form grammar can be equivalently replaced by aBC'.

The second consequence of Theorem [I] is actually quite obvious, but never-
theless it is new:

Theorem 2. Conjunctive languages are effectively closed under quotient with
letters, and hence under quotient with finite languages.

4 Restricted conjunctive grammars

Now let us define a restricted subfamily of conjunctive grammars that will be
studied in this paper.

Definition 6. A restricted conjunctive grammar is a conjunctive grammar, in
which every monterminal may have at most one rule not of the form A — w,
with w € X*. In other words, the rules for every nonterminal A are of the form:

A-a&.. . &ap |wr | ... Jwym (21, m>20, 0 € (XUN)", w; € X7)

A context-free grammar satisfying this restriction is known as a single tree
grammar, see Greibach et al. [3].

The grammar in Example [2] is restricted conjunctive, while the grammar in
Example[T)is not. The next example illustrates the key expressive power of these
grammars.

Ezxample 3. The following restricted conjunctive grammar generates the set of
palindromes of odd length over {a,b}:

S — AB&O | a | b
A—aSale
B—bSb|e
O—000|al|b

Here the nonterminal O generates the set Odd, and hence S may generate only
strings of odd length. Then the rule S — AB&O generates

(aSaU{e})(bSbU{}) N Odd = (aSabSbUaSaUbSbU {c}) N Odd = aSa UbSH,

that is, it is equivalent to two rules S — aSa and S — bSb. Thus the set of
odd-length palindromes is generated inductively, starting from a and b.

This representation of union of two languages actually works in the general
context, as long as both languages consist of strings of odd length. As in the

proof in the appendix
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above example, it is sufficient to add the empty string to both languages, con-
catenate them and then filter out the strings of even length. This gives a way
to simulate every conjunctive grammar in which every nonterminal generates a
subset of Odd. Since grammars in odd normal form have this property and every
conjunctive grammar can be transformed to this form, the following statement
can be proved.

Lemma 2. For every conjunctive grammar G = (X, N, P,S) generating a sub-
set of Odd there exists and can be effectively constructed a restricted conjunctive
grammar generating the same language.

Proof. Assume G is in odd normal form without even rules (by Theorem [1)).
Further assume that it is decomposed so that for every A € N there is either
a unique rule of an arbitrary form A — aj& ... &ay,, or two rules A — B| C.
Note that the resulting grammar still has L(A) C Odd for all A € N.

Construct a restricted conjunctive grammar G’ = ({a}, NUN'U{O}, P', S),
in which N' = { A’ | A€ N} is a disjoint copy of N, O is a new nonterminal,
and P’ contains the following rules:

A'—-Ale (A€eN)

A—-a&.. &a, (A— a&... &y is the unique rule for A in P)
A—BC'&0 (A— B, A—CeP)

0 — 000

O—a (a€elX)

It is now claimed that Lg/(A) = Lg(A) and L/ (A) = Lg(A) U {e} for every
A € N. The proof is omitted to fit the page limit. From this, the lemma will
follow. a

Lemma [2] can be used to construct a restricted conjunctive grammar for the
language containing all odd strings belonging to a given conjunctive language
L and no even strings. In order to get the whole language L later, it is useful
to generate all even strings: this will be a superset of L, which could be inter-
sected with some other languages to obtain L. The addition of all even strings
is performed in the following lemma.

Lemma 3. For every conjunctive language L C X*, the language (L N Odd) U
Even is generated by a restricted conjunctive grammar.

Proof. Let G = (X, N, P, S) be a restricted conjunctive grammar generating the
language L N Odd, which is given by Lemma [2| Construct a new grammar G’
with the following rules:

S — AB&C' | Cc—-cc
A— S C—w (we(XNL)uX?ux?)
A—a (aeld) 0 — 000

B—O]|e O—a (ael)
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This concatenation AB generates the following language:
(LN0Odd)U X) - (0ddUe) = (Even\ &) U (LNOdd) U X

Its intersection with L(C) = (Xt \{a€ X | a¢ L}) produces (Even \ ¢) U
(L N Odd), and taking the rule S’ — ¢ into account, the grammar generates
Even U (L N Odd). O

The above construction cannot be used symmetrically to obtain the language
(L N Even) U Odd directly. However, the method of Lemma [3| can be elaborated
to generate the following superset of L:

Lemma 4. For every conjunctive language L C X* and for every symbol a € X,
the language (L N aOdd) U aOdd is generated by some restricted conjunctive
grammar.

Proof. Let L be a conjunctive language over X and let a € Y. Define L, :=
a(a™*L N Odd): these are all even strings in L that start with a, that is, L, =
L N aOdd. Define the following three languages:

Ly =euU(X\{a})X7,
L2 = La U5,
L3 =0ddUe.

Each of these languages has a restricted conjunctive grammar. It is not difficult
to construct such grammars for L, and Ls3. For Lo, since L is conjunctive, the
language a='L N Odd is conjunctive by Theorem [2| and therefore, by Lemma
there is a restricted conjunctive grammar generating this language. This gram-
mar can be easily modified to generate L.

Now consider the concatenation of these three languages:

LiLoLs = (U Ly U(Z\ {a}) X" Lo U(Z\ {a})Z*) - (Odd Ue) =
=(eUL,U X\ {a})X*)-(0ddUe) =
=cUL,U(Y o La b $*0dd =
5 (X \{a})X*U0dd U L,0dd U (X'\ {a})X*0dd
€0dd C(X\{a}) 2z
=L, U0ddU (Even \ aX*) = L, UaOdd = (L N aOdd) UaOdd

Now, using the grammars for L1, Lo and Ls, it is easy to construct a restricted
conjunctive grammar for the desired language. ad

It remains to intersect |X| + 1 languages constructed in Lemmata [3] and [4] to
obtain a grammar for any L. This gives the main result of this paper:

Theorem 3. FEvery conjunctive language is generated by a restricted conjunctive
grammar.
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5 Restricted conjunctive grammars without e

The above simulation of an arbitrary conjunctive grammar by a conjunctive
grammar with restricted disjunction essentially uses rules of the form A — ¢,
known as e-rules. On the other hand, it is known that conjunctive grammars
of the general form do not need e-rules, and a transformation to binary normal
form leads to their elimination. This raises the question of whether restricted
conjunctive grammars without e-rules are as powerful as conjunctive grammars
of the general form.

First of all, this stronger restriction on conjunctive grammars is still gives a
non-trivial family. For instance, the important unary grammar given in Exam-
ple 2| is of this form. Grammars for interesting languages over larger alphabets
can be constructed as well.

Ezample 4. The following restricted conjunctive grammar generates the set of
all palindromes:

S — XSX&T |a|b]aalbb A—bE|alb
T — AB&CD&XXE B—Eal|al|b
E—-XFE|al|b C—aFE|alb
X oalb D—Eb|a|b

In particular, L(E) = X*, L(A) = bX* U {a}, L(B) = Y*a U {b}, L(C) =
aX* U{b}, L(D) = X*bU{a}, and L(T) = aXta UbXTh.

Consider the intersection L(AB) N L(C'D) used in the rule for T

OX*U{a})(Z*aU{b}) N (aXZ* U{b})(X*bU{a}) =
= (bX*aUbX*bUaX*a U {ab}) N (aX*bUaX*aUbX*bU {ba}) =
=aX*aUbX*bU {ab,ba},
and the subsequent intersection with the set of all strings of length at least 3

produces the intended language aX"a U bX ). Finally, the rule S — XSX&T
generates the language

{a,b}S{a,b} N (aX*a U bX"b) = aSa U bSD,

and hence operates as if two rules S — aSa and S — bSb. This is enough to
generate all palindromes inductively, starting from the base set {a, b, aa, bb}.

Lemma 5. The family of languages generated by restricted conjunctive gram-
mars without e-rules is closed under union with finite sets, concatenation and
intersection.

Lemma 6. Any finite and co-finite language can be generated by a restricted
conjunctive grammar without e-rules.
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The following theorem exhibits a significant subfamily of conjunctive gram-
mars that can be simulated by restricted conjunctive grammars without e-rules.
This form generalizes deterministic Greibach normal form.

Theorem 4. Let G = (X, N, P,S) be a conjunctive grammar without e-rules,
in which there is a disjoint partition of its nonterminals N = NgU N UNg into
simple, left and right nonterminals, respectively, such that:

— for every A € Np and for every a € X there is at most one rule A —
acn & ... &ac, withn > 1 and o; € N, and all complex rules for A are of
this form;

— for every A € Nr and for every a € X there is at most one rule A —
arale ... &aya withn > 1 and oy € NV, and all complex rules for A are of
this form;

— every A € Ng has at most one complex rule.

Then there exists (and can be effectively constructed) a restricted conjunctive
grammar without e-rules that generates the same language.

For instance, the grammar in Example|[l| can be easily transformed to fit this
statement with N, = {D, A, B} and N = @. Therefore, there is a restricted
conjunctive grammar without e-rules for { wew | w € {a,b}* }.

Proof. Let G = (X, N, P, S) be a conjunctive grammar of the stated form. Con-
struct a grammar G’ := (X, N’, P’,S) such that

N :=NU{A,|AeN,ae X} U{X,|ae X} U{, X |ae X}U{T}UN,

(where N is a set of auxiliary nonterminals we will not explicitly describe) and
P’ is obtained from P in the following way:

— All rules of the form A — w for w € X' are retained.

— All rules for simple nonterminals are retained.

— Additionally, for every a € X, rules are added such that Lg/ (X,) = {a} U
(X \ {a})X*, Lar(oX) = {a} UX*(X\ {a}) and Lg/(T) = X+ \ X2 This
can be done by the Lemmas [5] and [f] using the additional nonterminals from
the set Ns.

— The rules A, — b are added for every A € N and every a,b € Y.

— Rules of the form A — aa1& ... &aw,, (for left nonterminals) are replaced

by the rules A, — o1& ... &a, and A — T & XCE(XG “AL).
ac

— Similarly, rules of the form A — aja& ... &apa (for right nonterminals) are
replaced by the rules A, — o1& ... &a, and A - T & &Z(Aa “aX).
ac

Note that because of the restrictions on G, there is at most one complex rule
for every nonterminal A € N'.

G’ is obviously of the restricted form without s-rules. The correctness of the
construction is stated as follows:
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For every A € N and a € X it holds that

n if P contains a rule A — ao1&...&aq,, or a rule
UMz Lea) A— aja&... &opaforn>1, o € NT

X otherwise.

2. Lg/(A) = Lg(A) for all A€ N.

1. Ler(Ag) =

proof in the appendix This, in particular, will imply Lg/(S) = Lg(S). The proof is omitted. O

Corollary 2. Every reqular language L C X is restricted conjunctive without
e-rules.

Proof. Let L C X7 be regular via the deterministic finite automaton A =
(X,Q,q0,9,F). Then the grammar G := (X, N,P,S) with N = {4, | ¢ Q},
P ={A; — aAsga) | 4 € Qac X} U{A; — a|d(qg,a) € F} and S = A,
generates L and is in the form required by Theorem[4 Then the theorem implies
that there is a restricted conjunctive grammar without e-rules for L. O

The exact expressive power of conjunctive grammars with restricted disjunc-
tion and without e-rules is left as an open question to study. In particular, it
would be interesting to investigate it in the case of a unary alphabet: perhaps
they can generate all unary conjunctive languages. For larger alphabets, these
grammmars likely generate a proper subfamily of conjunctive languages.
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Appendix

A Proof of the odd normal form.

Lemma For every conjunctive grammar G = (X, N, P,S) in binary nor-
mal form there exists and can be effectively constructed a conjunctive grammar
G':=(X,N’,P',S") in odd normal form without even rules, in which the set of
nonterminals is N’ := (YU {e}) x N x (YU {e}) and the language generated by
each nonterminal (z, A,y), denoted A, is
Lar(Ay) = o7 La(A)y™' N 0dd,

where A € N and z,y € X U {e}. The start symbol is S’ := .S, and hence
L(G@') = L(G) N Odd.

Proof (full version). It can be assumed that G does not contain the rule S — ¢,
since the languages =1 Lg(S)y~! NOdd consist of strings of length at least one,
and hence the membership of € in L(G) does not affect them.

The grammar G’ is construted as follows. For every rule

A— BYoWg .. &BM™MC™ ¢ P,

each nonterminal , A, with x,y € YU{e} in the new grammar G’ has all possible
rules of the form
2 Ay = olV& L &pal)

such that for every i =1,...,n,
Iag(f) e{.BY .a- EC?Si) |ae XU
{:B" a-,C) [ae X}U
{oBY |y € La(C™)} U
{Cf) | @ € La(BY)}. B

Additionally, for every A, € N’ and every a € X such that zay € Lg(A), the
new grammar contains the rule

BEE

Ay — a. (14)

It is easy to check that no nonterminal in G or G’ generates the empty string
and that all strings generated by nonterminals in N’ have odd length.
Now it is claimed that for each ,A, € N’ and for every w € X*,

w € Lar(4Ay) if and only if zwy € Lg(A) and w € Odd.

The proof in each direction is by induction on the length of w, and inside this
induction there is another induction on |zy|.

© Let w € Lg/(3A,); it has to be proved that zwy € Lg(A). The proof will
be done by induction on the length of w. More precisely, for each string, the
statement is first proved for nonterminals with shorter indices. This means that
the induction is actually on 3|w| + |zy|).
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Induction basis |w| =1. If w € Lg/(,Ay) with |w| = 1, then w is either gen-
erated directly by a rule of type (4) (in which case the assertion obviously
holds), or it can be generated via a “long” rule. Note that such a rule must
consist entirely of unit conjuncts of the form and 7 since all other
conjuncts generate longer strings (as no nonterminal in G’ generates the
empty string). So let ;A4, — waél) &... & waén) be this rule.

If x = y = ¢, there cannot be conjuncts of type or , since ¢ ¢
Lg(B®W), Lg(C®). So in this case, w can only be generated by a “short”
rule, and there is nothing left to prove.

If |z| = 1 and y = ¢, then there cannot be conjuncts of type (3d)), and there
is arule A —» BOCW& .. . &BM™C™ ¢ P such that for every i =1,...,n
it holds that = € Lg(B®) and zag) = sC?Si) =. éi) As w € ECL(,i) this
means that w € Lg(C(i)), as we already proved. Then, of course, zwy =
zw € Lg(BWC®) and thus zwy € La(A).

The case for = € and |y| = 1 is symmetric, so let |z] = |y| = 1. In this
case, similarly there is a rule A — BOCW& .. . &BMC™ e P in which,
for every i-th conjunct, € Lg(B®) and xag) = ECéi), ory € Lg(CW)

and xa?(f) = xBéi). Fix now ¢ and, without loss of generality, assume the

first of these two cases. We already proved that if w € Lgv (EC’@SZ)), then
wy € Lg(CW), so zwy € Lg(BWC®). As this holds for all i, we get
zwy € Lg(A) and the induction basis is complete.

Induction step. Let n > 1 and assume that the assertion holds for all w with
|lw| < n. Let w € Lgi(z4,) for some A, € N’ and |w| = n + 1. Since
|w| > 1, there must be a rule ; A4, — xoz;l) &... & xaén) and w € L (xozgf))
for alli=1,...,n. Now fix 7 and consider the form of $oz1(f).

Assume it is of the form , that is, xag) =B a. ECy) for some
a € X. Then there are strings u € L¢ (IBL(li)), v € Lo (EC?Si)) such that
w = uav. Since 1 < |ul, |v| < |w| —2 =n — 1, we have zua € Lg(B®) and
vy € Lg(CW) by induction and thus 2wy € Lg(B®C®). The second case,
mozg(,i) = wBéi) -a- aCZ(,i), works analogously.

Now there are the cases and (3dl) left and we assume without loss of
generality that z # ¢ and xag(f) = 8C'yi). This implies that w € Lg (aCéi)).
Since ECZSZ) always has shorter indices than ,A,, we get wy € Lg(CW) by
induction. Since z € Lg(B®), we finally have zwy € Lg(B®C®).

In all four cases, we got zwy € Lg(B®WC®). Since this holds for all i €
{1,...,n}, we get xwy € Lg(A), which was asserted.

© The other direction “<” is now proved by induction on |w| for zwy €
Lg(A) (and again the statement is first proved for smaller |zy| if the string
length |w| is the same).

Induction basis. |w| =1 The induction basis is clear by the rules (4).

Induction step. Assume that all four statements hold for |w| < n and n > 1.
Let now zwy € Lg(A), w € Odd and |w| = n + 2. Since |zwy| > |w| > 3,
there must be a rule A — BMCWE& ... &BMCM™ ¢ P such that w €
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Lo(BWCW) for all i = 1,...,n. By the construction, there can be multiple
rules in P’ that correspond to this rule. We now argue that for every i =
1,...,n, we can find a suitable conjunct ma.,(f) that generates w. For this,
fix ¢ again. Then there must be strings u,v € X* such that zu € Lg(B(i)),
vy € Lg(C(i)) and zwy = xuvy. Note that since w has odd length, either u
or v has odd length. Without loss of generality, assume that |v| is odd. Since
|v| is strictly smaller than |w| (no nonterminal generates the empty string)
we get |v| < |w| —2 = n and thus v € LG/(C?S”) by induction. For u there
are two cases.

— If & # &, then it can be that u = ¢ and thus 2 = zu € Lg(BW).
In this case, EC;S” is a possible ith conjunct waéi) (cf. rule (3d)). Since
ve Lgr(Céi)), we get w =uv =v € LGI(Céi)) = L¢ (mal(,i)).

— If u # ¢, then u = v/a for some a € ¥ and zu'a € Lg(B®W) and thus
u' € Lg (wB((li)) by induction (Ju'| < |w| —2 = n and it is odd). This
means that w = v'av € Lg (xB((f) a- C'?Si)), so this is a possible conjunct
sl

Now we showed that for every ¢ = 1,...,n, there is a legal conjunct mozéi)
in the respective rule for ;A, in P’ that generates w, which implies that
w € Legv (mAy)

The grammar G’ constructed above is not yet in the odd normal form,
because it may contain so-called unit conjuncts, that is, rules of the form
A — B&.... The known procedure for elimitating such conjuncts [§] is a se-
quence of substitutions of the bodies of all rules for B inside a rule A — B& .. ..
Accordingly, once these substitutions are done, the grammar G’ will contain
conjuncts of the form and , while all conjuncts of the form and
will be eliminated. Then G’ will be in the odd normal form. a

Theorem [1| For every conjunctive grammar there exists and can be effectively
constructed a conjunctive grammar in odd normal form generating the same
language.

Proof. Let L C X* be conjunctive. Since every conjunctive language can be gen-
erated by a conjunctive grammar in binary normal form (which can be obtained
effectively), there is, by Lemma [1} a conjunctive grammar G = (X, N, P,S) in
odd normal form wihout even rules such that for all a € X/,

Le(S)=LN0Odd and  Lg(,S:) =a *LNOdd.
The grammar G’ := (X, N U {5}, P’,S") with a new nonterminal S’ and

P :=PU{S - p|S—pePtU{S —a,S:|ae X}U{S" —c|ee L}
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is in odd normal form (with even rules) and generates L:

La(8") = La(S)U | aLa(aS:) U (LN {e})
acX
=(LNOdd)u | J a(a™'LNnOdd) U (LN {e})
acX
= (LNOdd) U | (aa™'LNaOdd) U (LN {e})
acX
=(LNOdd)U(LNXOdd)U (Ln{e})
=1L
If LN Even = @, ie. if L does not contain strings of even length, then
Lg/ (4S:) = @ for every a € X. Unfortunately, checking this property is unde-

cidable in the general case, but if this property holds, then the even rules can
be removed without changing the generated language. a

Theorem [2| Conjunctive languages are effectively closed under quotient with
letters, and hence under quotient with finite languages.

Proof. Let L C X* be conjunctive and fix a € Y. By Lemma [} there is a
conjunctive grammar G = (X, N, P, S), which contains nonterminal symbols S,
and 5, for all b € X' that generate the languages

Lg(S))=La 'n0Odd and  Lg(pS,) =b 'La™' NnOdd.

Construct the grammar G’ = (X, N U {5}, P U P’,S") with the following
additional rules:

S’ = S,
S" — b,S, (forallbeX)
S —e (ifa€L(@))

Then we have L(G’) = L(G)a!. The construction for a 'L is symmetric. O

B Proofs for restricted conjunctive grammars

Theorem [3| Every conjunctive language is generated by a restricted conjunctive
grammar.

Proof. Let L C X* be any conjunctive language. Then, by Lemmata [3] and [
there are restricted conjunctive grammars for the languages (L N Odd) U Even
and (L N aOdd) UaOdd for any a € Y. The intersection of these languages is

((LNOdd) UEven) N () ((LNaOdd) UaOdd) = L,
acy

which immediately gives a restricted conjunctive grammar for L. d
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C Proofs for restricted e-free grammars

Lemma [5| The family of languages generated by restricted conjunctive gram-
mars without e-rules is closed under union with finite sets, concatenation and
intersection.

Proof. The closure under concatenation and under intersection is obvious. For
the union with finite sets let ' C X7 be finite and G = (X, N, P,S) be a
restricted conjunctive grammar without e-rules. The grammar (X, NU{S’}, PU
{8 = S}uU{S - w|w e F},S") with the new nonterminal S’ is restricted,
does not contain e-rules and obviously generates L(G) U F'. O

Lemma [6} Any finite and co-finite language can be generated by a restricted
conjunctive grammar without e-rules.

Proof. Since the empty set can obviously be generated by such a grammar
and the respective class of languages is closed under union with finite sets by
Lemma 5] we get the first part of the assertion.

Let now L C X be co-finite. Then there is some k > 1 such that LNX* X+ =
Xk X+ and there exists a finite set F' such that L = X*X+UF. Obviously, X¥ X+
can be generated by a restricted conjunctive grammar without e-rules. Since L
is the union of X* X% with the finite set F, there is also a restricted conjunctive
grammar without e-rules for L after Lemma O

Theorem [ Let G = (X, N, P, S) be a conjunctive grammar without e-rules,
in which there is a disjoint partition of its nonterminals N = NgU N U Ny into
simple, left and right nonterminals, respectively, such that:

— for every A € Ny and for every a € X there is at most one rule A —
ao1 & ... &aay, with n > 1 and a; € N1, and all complex rules for A are of
this form;

— for every A € Ng and for every a € X there is at most one rule A —
ara& ... &ana with n > 1 and a; € NT, and all complex rules for A are of
this form;

— every A € Ng has at most one complex rule.

Then there exists (and can be effectively constructed) a restricted conjunctive
grammar without e-rules that generates the same language.

Proof. Let G = (X, N, P, S) be a conjunctive grammar of the stated form. Con-
struct a grammar G’ := (X, N', P’ S) such that

N :=NU{A,|AeN,ae X} U{X,|lae X} U{, X |ae X}U{T}UN,

(where N is a set of auxiliary nonterminals we will not explicitly describe) and
P’ is obtained from P in the following way:

— All rules of the form A — w for w € X1 are retained.
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— All rules for simple nonterminals are retained.

— Additionally, for every a € X, rules are added such that Lg (X,) = {a} U
(X\ {a})X*, Lo (oX) = {a} UX*(X\ {a}) and Lg/(T) = X\ X2 This
can be done by the Lemmas [5] and [f] using the additional nonterminals from
the set Ns.

— The rules A, — b are added for every A € N and every a,b € X.

— Rules of the form A — aa & ... &aw,, (for left nonterminals) are replaced

by the rules A, — o1& ... &a, and A — T & 852(Xa “AL).
ac

— Similarly, rules of the form A — aja&...&aya (for right nonterminals) are
replaced by the rules 4, — a1& ... &a,, and A - T & %ZE(AG o X).

Note that because of the restrictions on G, there is at most one complex rule
for every nonterminal A € N'.

G’ is obviously of the restricted form without e-rules. The correctness of the
construction is stated as follows:

For every A € N and a € X it holds that

n if P contains a rule A — ao&...&aa,, or a rule
1. Lai(A,) = LU Mizy Le(ei) A— aja&... &opaforn>1, 0, € NT
X otherwise.
2. Lg/(A) = Lg(A) for all A€ N.

This, in particular, will imply L/ (S) = Lg(S). The proof is omitted.

Note that no nonterminal in G’ generates the empty string and G’ does not
contain unit conjuncts. Then the system of language equations corresponding
to G’ is known to have a unique e-free solution. Since the languages above and
the already mentioned languages generated by T', X, and ,X are e-free, it only
remains to verify these solutions by substitution.

For 1., ¥ C Lg/(A,) holds obviously in both cases because we always have
the rules A, — b for all b € Y. In the second case, these are all rules so we
have equality. In the first case, there is the additional rule A, — a1 & ... & ay,
and thus Le(A4,) = Y U, Lo (o). Since o € N, we can substitute the
solutions for every B € N and get Lg/ (o) = Lg(oy) and so the solution is
correct.

For 2., if A € N is a simple nonterminal, the statement is obviously correct.
For a left nonterminal A € N, define L := (J,.5, aLa(Aq) € XX, Note that
(X\ {a}) Xt = aX+ (with respect to X X).

N Lo (Xa- 4 = () {a} U2\ {a})Z)Ler(Al)

acX acXy

= m (QLG’(Aa) U (2 \ {a})E*LG’ (All))
= () (ZNnaZt)UaZF)

acX
=1L
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When we define F := {w C Xt | A - w € P}, we get

Le(A)=FU (LG,(T) N () Ler(Xa ~Aa)>

acX

=FU(XT\x?nL)
=FU(L\X?).
Observe that L = [J,cx5 aLa(Aq) XXX gap

Lo/ (A) = La(A).

The proof for the case that P contains a rule A — aja&...&aya is sym-
metric. 0O

(Lg(A) \ F) U XX and thus
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