
Multiobjective Disk Cover Admits a PTAS

Christian Glaßer∗ Christian Reitwießner† Heinz Schmitz‡

Abstract

We introduce multiobjective disk cover problems and study their approximability. We con-
struct a polynomial-time approximation scheme (PTAS) for the multiobjective problem where
k types of points (customers) in the plane have to be covered by disks (base stations) such that
the number of disks is minimized and for each type of points, the number of covered points is
maximized. Our approximation scheme can be extended so that it works with the following
additional features: interferences, different services for different types of customers, different
shapes of supply areas, weighted customers, individual costs for base stations, and payoff for
the quality of the obtained service.

Furthermore, we show that it is crucial to solve this problem in a multiobjective way, where
all objectives are optimized at the same time. The constrained approach (i.e., the restriction of
a multiobjective problem to a single objective) often used for such problems can significantly
degrade their approximability. We can show non-approximability results for several single-
objective restrictions of multiobjective disk cover problems. For example, if there are 2 types of
customers, then maximizing the supplied customers of one type is not even approximable within
a constant factor, unless P = NP.

1 Introduction

Geometric cover problems have received much attention in recent years, mostly due to their appli-
cability to wireless networks. Typically, a service provider aims to deliver various kinds of services
to customers and therefore has to choose base station locations such that customer locations can
be covered. Various optimization problems arise in this context in a natural way. For example, for
a given set P of customer locations and a set D of possible base station locations in the Euclidean
plane, the Unit Disk Cover Problem tries to find a minimal subset of D such that all customers in
P are covered by unit disks whose centers belong to D (hence assuming equivalent base stations
and ignoring obstacles to the signal propagation) [CCJ90, CMWZ04, NV06]. In another version of
the problem one tries to maximize the number of supplied customers with a given budget of base
∗Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Am Hubland, 97074 Würzburg, Germany.

EMail: glasser@informatik.uni-wuerzburg.de
†Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Am Hubland, 97074 Würzburg, Germany.

EMail: reitwiessner@informatik.uni-wuerzburg.de
‡Fachhochschule Trier, Fachbereich Informatik, Schneidershof, 54293 Trier, Germany. EMail:

schmitz@informatik.fh-trier.de

1

stations, e.g. [GRV05]. So far these problems have been studied only in terms of single-objective
optimization where either disk locations or customer supply have been optimized.

In contrast, here we are interested in the complete trade-offs when both objectives are considered
at once. These trade-offs give not only a better insight in the nature of the problem, but also allow
a human decision-maker to choose an appropriate solution according to aspects that are perhaps
not quantifiable or that differ from instance to instance.

This paper introduces multiobjective disk cover problems and presents the first study of their
approximability. We want to minimize the number of base stations and simultaneously maximize
the number of supplied customer locations. More than that, we allow different types of customers
such that for each type, the number of supplied customers has to be maximized. For example, for
k = 2 types of customers this captures the scenario where a service provider wants to optimize a
wireless network with customers having subscribed to two different services. More generally, an
instance of the Disc Cover Problem with k types of customers (k-DC) has k sets P1, . . . , Pk of
customer locations, a set of potential base station locations D and a disk radius r describing the
range of action of a base station. We seek a valid subset of base station locations (i.e., respecting
a minimum-distance constraint) such that the number of base stations is minimized, and for each
type of customers, the numbers of covered customers is maximized. In practice, several additional
aspects can be taken into account to obtain more realistic models. For instance, if a customer
receives signals from two base stations, then interferences may have a negative effect on the quality
of service. So actually, here one wants to maximize the number of points that are covered by exactly
one disk. To capture the aspect of interference, we also investigate exact versions of k-DC, i.e.,
where the numbers of uniquely covered customers of the different types are considered (k-EDC).

Trade-offs in multiobjective optimization are captured by the notion of the so-called Pareto curve
which is the set of all solutions whose vector of objective values is not dominated by any other
solution (for an introduction see, e.g., [Ehr05]). In most interesting cases however, Pareto curves
are computationally hard in the sense that we do not know polynomial-time algorithms comput-
ing them. The reason for this is that the Pareto curve may have exponential size (which is not
the case in our setting), or because it comprises optimal solutions of NP-hard single-objective
optimization problems (which is the case here). A reasonable approach to avoid these difficul-
ties is to approximate the set of non-dominated solutions using the concept of the ε-approximate
Pareto curve. Informally, for every solution S of the Pareto curve there is a solution S′ in the
ε-approximate Pareto curve that is within a factor (1 + ε) of S, or better, in all objectives. The
question whether there exist fast approximation schemes for Pareto curves has been addressed for
several multiobjective optimization problems [SO95a, SO95b, PY00]. The systematic study of the
theory of multiobjective approximation was initiated by Papadimitriou and Yannakakis [PY00], see
also [VY05, DY07].

Our contribution. We introduce multiobjective disk cover problems and study their approxima-
bility. We construct polynomial-time approximation schemes for the multiobjective problems k-DC
and k-EDC where k ≥ 1. So for each of the problems there exists an algorithm, which, given a
problem instance I and some ε > 0, outputs an ε-approximate Pareto curve in time polynomial in
|I| (Theorems 3.4 and 3.5). On the methodological side we extend the shifting strategy introduced
by Hochbaum and Maass [HM85] to the multiobjective case.

We also discuss the possibility to extend our algorithms so that they work with the following

2

features: different services for different types of customers, different shapes of supply areas, weighted
customers, individual costs for base stations, and payoff for the quality of the obtained service.
Although we mention only problems where the number of covered points of different types have
to be maximized, one can also think of an application where some types of points have to be
maximized, while others are to be minimized. Only minor modifications of our algorithms are
needed to take this into account as well.

Our paper also shows that we should be careful when looking for an appropriate model for a given
practical problem. The choice of the right model can be crucial for a successful algorithmic solution.
In our paper we see this at two places:

1. Our models contain a minimum-distance constraint for disk locations. On one hand, this
constraint plays an important role in the construction of the PTAS. Without this assumption,
the problem becomes more difficult such that the shifting strategy does not yield a PTAS.
On the other hand, this minimum-distance constraint is actually present in practical settings:
It usually makes no sense to build base stations, fire departments, drugstores, etc. arbitrarily
close to each other, and a small constant specifying their minimum distance can always be
identified. So we may add the constraint to our model and exploit it to achieve better
approximation algorithms. This shows that a too general choice of the model can complicate
the solution of the underlying practical problem.

2. The approximability of a multiobjective problem does not necessarily imply that the restric-
tion to a single objective is approximable. The reason for this apparent contradiction is that
an optimization algorithm can exploit trade-offs between the single objectives if it optimizes
all objectives at the same time. We show non-approximability results for several restrictions of
k-DC and k-EDC (Theorems 4.2 and 4.5). For example, for k ≥ 2, no restriction of k-EDC to
a single criterion is approximable within a constant factor (unless P = NP), while the general
(multiobjective) version of k-EDC admits even a PTAS. This shows that the frequently used
constrained approach (i.e., the restriction of a multiobjective problem to a single objective)
can considerably degrade the approximability. In other words, also a too restricted choice of
the model can complicate the solution of the underlying problem.

Related work. The single-objective disk cover problem was initially examined in the continuous
version (i.e., no given disk centers) by Hochbaum and Maass [HM85] who construct a PTAS for this
problem. The version with given disk centers has been studied by several authors [CMWZ04, NV06,
CKLT07, BMCK08], but in general only constant-factor approximation results are known (which
shows again the influence of the minimum-distance constraint). Calinescu, Mandoiu, Wan and
Zelikovsky [CMWZ04] investigated a variant of the disk cover problem where the number of disks
needed to cover all points is to be minimized. Some of their results were improved by Narayanappa
and Vojtechovsky [NV06]. Very recently, the Unique Cover Problem on unit disks (the number of
points covered by exactly one disk have to be maximized) and its approximability has been studied
by Erlebach and van Leeuwen [EvL08]. Several other variations of the disk cover problem where a
solution includes specifying radii for the individual disks were analyzed in [Cha03, EJS05, AAB+06].
Cannon and Cowen [CC04] studied the single-objective problem of minimizing the number of disks
where one type of customers must be covered while the other one has to be avoided. Various
partial covering problems were investigated by Gandhi, Kuller and Srinivasan [GKS04]. These

3

problems are concerned with covering a given amount of elements while minimizing the cost of
such a covering. In contrast to most of the afore mentioned papers, in [GKS04] the multiobjective
version of some special covering problem on graphs is also examined.

2 Definitions

We recall some standard notations, see e.g., [PY00, VY05]. A multiobjective optimization problem
Π has a set of valid instances I, and for every instance I ∈ I there is a set S(I) of feasible and
polynomially length-bounded solutions for I. As usual, we assume that I is decidable in polynomial
time, and that there is a polynomial-time algorithm that decides on input (I, S) whether S ∈ S(I).
Moreover, we have K ≥ 1 polynomial-time computable objective functions fi that map every I ∈ I
and S ∈ S(I) to some value fi(I, S) ∈ N. Note that every optimization problem with objective
functions that have values in Q can be transformed into an equivalent problem satisfying the
previous definition. A vector goal ∈ {min,max}K specifies whether the i-th objective has to be
minimized or maximized, respectively. So for an instance I we can evaluate every S ∈ S(I) to the
K-vector f(I, S) = (f1(I, S), . . . , fK(I, S)) of values with respect to the given objective functions.

We say a solution S ∈ S(I) dominates a solution S′ ∈ S(I) if for all 1 ≤ i ≤ K it holds that
fi(I, S) ≤ fi(I, S′) if fi is to be minimized (and fi(I, S) ≥ fi(I, S′) if fi is to be maximized), with
at least one strict inequality. Denote by P sol(I) ⊆ S(I) the Pareto-solution set for I, i.e., the set of
all non-dominated solutions for I. The Pareto-value set for I is P val(I) = {f(I, S) | S ∈ P sol(I)}.

Let ε = (ε1, . . . , εK) be a K-vector of numbers εi ≥ 0. A solution S ∈ S(I) ε-covers a solution
S′ ∈ S(I) if for all 1 ≤ i ≤ K it holds that fi(I, S) ≤ (1 + εi)fi(I, S′) if fi is to be minimized (and
(1 + εi)fi(I, S) ≥ fi(I, S′) if fi is to be maximized).

A set P solε (I) ⊆ S(I) is an ε-approximate Pareto-solution set for I if for all S′ ∈ P sol(I) there is
some S ∈ P solε (I) that ε-covers S′. (Note that an ε-approximate Pareto-solution set can contain
dominated points.) We call P valε (I) ⊆ NK an ε-approximate Pareto-value set for I if P valε (I) =
{f(I, S) | S ∈ P solε (I)} for some set P solε (I). Note that for fixed ε there may be more than one
ε-approximate Pareto-solution set for I. Moreover, if S(I) 6= ∅ then P sol(I) 6= ∅ and P solε (I) 6= ∅.
If ε = (δ, . . . , δ) for some δ > 0 we simply write P solδ (I) and the like.

A multiobjective optimization problem Π is ε-approximable in polynomial time if there is a
polynomial-time algorithm, which on input I ∈ I outputs an ε-approximate Pareto-solution set
P solε (I). Problem Π has a polynomial-time approximation scheme (PTAS) if there is an algorithm,
which, given I ∈ I and δ > 0, outputs an δ-approximate Pareto-solution set P solδ (I) in time polyno-
mial in |I|. APX is the class of all single-objective optimization problems that are δ-approximable
for some δ > 0. For some vector x denote by |x| its Euclidean norm. If S is a finite set, then |S|
gives the cardinality of S. Both cases will be distinguishable from the context without confusion.
Moreover, we use [a, b] as an abbreviation for {a, a+ 1, . . . , b}.

Next we define (k+ 1)-objective disk-cover problems. As is standard for such problems, we always
want to minimize the number of disks which is the first objective in all of the following problems.
The parameter k ≥ 1 denotes the number of different types of points we want to cover. Moreover,
% ∈ (0, 2] is a fixed rational constant that determines the minimal distance % · r between different

4

disks of radius r. This minimum-distance constraint plays an important role in our model, since it
is crucial for the polynomial running time of the approximation algorithm we construct in section 3.
With our method we cannot well approximate instances that essentially depend on coverings where
the disks are very close to each other. This insight has an important consequences for the choice
of an appropriate model: If such degenerated instances can be excluded by practical reasons (e.g.,
because it makes no sense to build base stations, fire departments, drugstores, etc. arbitrarily close
to each other), then we should add the minimum-distance constraint to our model and exploit it
to achieve a better approximability.

k-Objective Disk Cover (k-DC%)

Instance: k finite sets of points P1, . . . , Pk ⊆ Z×Z, disk radius r ∈ N, finite set of disk positions
D ⊆ Z× Z

Solution: a selection S ⊆ D such that for all different x, y ∈ S, |x− y| ≥ % · r
Goals: (min |S|,max |C1|, . . . ,max |Ck|) where Ci = {x ∈ Pi

∣∣ ∃y ∈ S, |x− y| ≤ r}
k-Objective Exact Disk Cover (k-EDC%)

Instance: k finite sets of points P1, . . . , Pk ⊆ Z×Z, disk radius r ∈ N, finite set of disk positions
D ⊆ Z× Z

Solution: a selection S ⊆ D such that for all different x, y ∈ S, |x− y| ≥ % · r
Goals: (min |S|,max |C1|, . . . ,max |Ck|) where Ci = {x ∈ Pi

∣∣ ∃!y ∈ S, |x− y| ≤ r}
The value of % will be always clear from the context. So for simplicity we write k-DC and k-EDC
instead of k-DC% and k-EDC%.

We also discuss single-objective versions of these problems. Following Diakonikolas and Yannakakis
[DY07] we define the restricted versions of multiobjective problems (also known as the ε-constraint
problem [Ehr05]). Let Π be a K-objective optimization problem with objectives (f1, . . . , fK) and
goals (g1, . . . , gK). The restriction to the i-th objective is the following single-objective problem.

Restriction of Π to the i-th objective (Restrictedi-Π)

Instance: an instance I of Π and numbers B1, . . . , Bi−1, Bi+1, . . . , BK ∈ N
Solution: a solution S for I such that for j ∈ [1,K]− {i} it holds that

(gj = max ⇒ fj(I, S) ≥ Bj) and (gj = min ⇒ fj(I, S) ≤ Bj)
Goal: max fi(I, S) if gi = max, min fi(I, S) otherwise

3 PTAS for Multiobjective Disk Cover

In this section we construct polynomial-time approximation schemes for the multiobjective prob-
lems k-DC where k ≥ 1. To keep the exposition simple, we concentrate on the 3-objective problem
2-DC and explain a polynomial-time algorithm that computes ε-approximate Pareto-solution sets
for this problem. Our algorithm extends the shifting strategy introduced by Hochbaum and Maass

5

[HM85] to the multiobjective case. For this we need a combinatorial argument (Claim 3.3) showing
that this strategy works for multiple objectives. Moreover, we use dynamic programming for effi-
ciently combining the solutions of sub-problems. At the end of the section we discuss the possibility
to extend our algorithms so that they work with the following additional features: interferences,
different services for different types of customers, different shapes of supply areas, weighted cus-
tomers, individual costs for base stations, and payoff for the quality of the obtained service. In
particular, an appropriate modification provides a PTAS for k-EDC where k ≥ 1.

We start with the description of the algorithm. Fix some shifting parameter l ∈ N \ {0}. The
larger l is, the better the approximation will be. The input to the algorithm are two finite sets of
points B,G ⊆ Z× Z (blue and green points), a disk radius r ∈ N and a finite set of disk positions
D ⊆ Z× Z. For finite P, S ⊆ Z× Z, where S is a valid solution (it respects the minimum distance
constraint), define c(P, S) df= |{p ∈ P | ∃x ∈ S, |p− x| ≤ r}| as the number of points from P covered
by solution S.

In the algorithm, some functions p : N×N→ P (D)×N with different indices will be defined. For a
given number of disks and blue points to cover, such a function provides a partial solution for this
sub-problem together with the number of green points covered in this solution. For any of these
functions we address their components as (psol(k, b), pval(k, b)) df= p(k, b) for k, b ∈ N.

2-DC-APPROX(B,G,r,D):

1. let {a1, a2, . . . , am} df={a ∈ rl · (Z× Z) | (B ∪ G ∪ D) ∩ (a + [0, 2rl]2) 6= ∅}
2. for every s ∈ r · [0, l)2 do
3. for every i ∈ [1, m] do
4. Di

df= D ∩ (s + ai + [r, rl− r)2)
5. Bi

df= B ∩ (s + ai + [2r, rl− 2r)2)
6. Gi

df= G ∩ (s + ai + [2r, rl− 2r)2)
7. for every k ∈ [0, |Di|] and every b ∈ [0, |Bi|] do
8. Vk,b

df={S ⊆ Di | S is a valid solution, |S| ≤ k, c(Bi, S) ≥ b}
9. if Vk,b = ∅ then ps,i(k, b) df=(⊥,⊥)
10. else ps,i(k, b) df=(S, g) for S ∈ Vk,b such that

g = c(Gi, S) = max{c(Gi, S′) | S′ ∈ Vk,b}
11. done
12. done
13. for every k ∈ [0, |D|] and every b ∈ [0, |B|] do
14. by dynamic programming choose k1, k2, . . . , km, b1, b2, . . . , bm ∈ N such that

m∑
i=1

pvals,i (ki, bi) is maximal, ∀i∈[1,m] pvals,i (ki, bi) 6= ⊥,
m∑

i=1

ki ≤ k, and
m∑

i=1

bi ≥ b

15. if this succeeded, let ps(k, b) df=(
⋃m

i=1 p
sol
s,i (ki, bi),

m∑
i=1

pvals,i (ki, bi))

16. done
17. done
18. P df={psols (k, b) | s ∈ r · [0, l)2, k, b ∈ N}
19. remove all dominated solutions from P
20. return P

6

Explanation of the algorithm. First, we want to give an overview of the algorithm. The plane
is divided into a grid of squares of side length rl. In each of these squares, the problem is solved
independently (i.e., a small Pareto curve is calculated). By not considering the points at the border
of width r of the squares, we obtain that an optimal solution needs at least as much disks as our
calculated solution to cover the points in the square. Then, these solutions are combined. This is
repeated for l2 different positions (shifts) of the grid and the best solution is chosen.

The algorithm starts by partitioning the plane into squares of side length rl. Of course, there are
infinitely many such squares, but many of them are empty and only some are of interest. The
points a1, a2, . . . , am are the lower-left corner points of squares we need to consider. Because we
will shift these squares later, we also have to include squares that contain a point for some, but
possibly not all shifts, and thus we look for points in a square of side length 2rl. These points ai
are all points such that there is at least one blue point, green point or one disk position in the
square of side length 2rl which has ai as its lower-left corner point.

Next, the algorithm loops over all l2 (l in each dimension) shifts s of hop size r (the radius of a
disk). In line 3, we loop over every index of the rl-grid points ai which were found worth considering
at the beginning.

In lines 4 to 6, we prepare a spatially restricted sub-problem of the general problem. The expression
[0, rl)2 denotes the set of points in a square of side length rl. Modified to [r, rl− r)2 it denotes the
set of points in such a square where a border of width r is removed from every edge. We only retain
those points Di from the set of disk positions D which lie in the restriced square that is positioned
at the grid point ai and shifted by s. In this way, disk positions from different sub-problems are
guaranteed to have a minimal distance of %r (recall that % ∈ (0, 2]). We also restrict the blue
and green points, but here we use a larger border of width 2r. The points on the 2r-border are
completely ignored in every sub-problem. By this method, as we will argue later, we get an optimal
solution for each square restrictred in this way. We can combine the solutions of these sub-problems
to obtain a global solution.

We now calculate the whole Pareto curve of this sub-problem starting in line 7. To this end, we
loop over every possible number of disks k and covered blue points b and calculate the solution
S ⊆ Di that maximizes the number of covered green points g using at most k disks in positions
from Di such that at least b blue points are also covered. This can be done by exhaustive search
in polynomial time, as we will explain next. We first argue that there are only polynomially many
valid solutions |Vk,b|. Because all disk positions in a valid solution S ∈ Vk,b must have a mutual
distance of at least %r, virtual circles of diameter %r around these positions can touch each other but
must not overlap. The area covered by these virtual circles is |S|

(%r
2

)2
π. Since %r

2 ≤ r and S ⊆ Di,
these virtual circles are all located in a square of side length rl, and we get |S|

(%r
2

)2
π ≤ (rl)2.

Solved for the number of disks we obtain |S| ≤ 4l2

π%2
df= c, which is a constant. Since there are only

polynomially many ways to choose at most c elements from the polynomially sized set Di, we see
that |Vk,b| is polynomial in the input size. Since c can be calculated effectively, Vk,b can be searched
exhaustively for a solution that maximizes the number of covered green points in polynomial time.
If such a solution does not exist (because Vk,b = ∅) then both components of ps,i(k, b) are set to a
special undefined value ⊥, which we will need later.

After the i-loop, we have small Pareto curves ps,i for each sub-problem given by shift s and point

7

ai. In the loop starting in line 13, we combine them into a larger Pareto curve ps for the current
shift s. To this end, we try to find a solution that maximizes the number of covered green points
for a given number of disks k and blue points b using the solutions ps,i in line 14. We distribute
the k disks and b blue points over all squares in any possible way. The number of disks available
to square i is called ki and the number of blue points that must be covered in square i is called
bi. The distribution that maximizes the total number of covered green points is chosen and the
combination of the individual solutions ps,i(ki, bi) for this distribution is stored in ps(k, b).

In general, there are exponentially many ways to distribute the numbers k and b, but the search
for an optimal distribution can be done efficiently by dynamic programming, as can be seen from
the following algorithm. We need to consider the iterations of the k, b-loop starting in line 15 of
the 2-DC-APPROX-algorithm all at once, so the following code can be used as a replacement of
the lines 13–16 of the 2-DC-APPROX-algorithm. The return value of CombinePartialSolutions is
the function ps.

CombinePartialSolutions(ps,1, ps,2, . . . , ps,m):

1. p′1
df= ps,1

2. for t := 2 to m do
3. for every k ∈ [0, |D|] and every b ∈ [0, |B|] do
4. find maximal p′valt (k, b) df= p′valt−1(k̄1, b̄1) + pvals,t (k̄2, b̄2) for

k̄1, b̄1, k̄2, b̄2 ∈ N such that k̄1 + k̄2 ≤ k, b̄1 + b̄2 ≥ b,
p′valt−1(k̄1, b̄1) 6= ⊥ and pvals,t (k̄2, b̄2)) 6= ⊥

5. if this is not possible then let p′t(k, b) df=⊥
6. else let p′solt (k, b) df= p′solt−1(k̄1, b̄1) ∪ psols,t (k̄2, b̄2)
7. done
8. done
9. return p′m

In every iteration of the t-loop of CombinePartialSolutions, another square is incorporated into the
Pareto curve, each time solving some kind of knapsack problem. Since there are only polynomially
many combinations of k̄1, b̄1, k̄2, b̄2 such that the constraints in line 4 are met, p′t can be computed
in polynomial time. The correctness of this dynamic programming method follows by induction.
Since m is polynomial in the input length, the computation of CombinePartialSolutions and thus
also the computation of lines 13–16 in 2-DC-APPROX can be done in polynomial time.

Back at the 2-DC-APPROX-algorithm, we have an approximate Pareto curve ps for every of the
shift values after the end of the second loop over s. In Line 18, we simply put all the previously
obtained solutions psols (k, b) for all s, k, b in one set P , remove the dominated solutions in line 19
and return that set in line 20.

Correctness of the algorithm. We now argue for the correctness of the algorithm by showing
that for fixed l it runs in polynomial time and that the relative error becomes arbitrarily small if l
is increased.

Lemma 3.1 For every fixed l ≥ 5, the algorithm 2-DC-APPROX works in polynomial time.

8

Proof As we have already argued in the explanation of the algorithm, every loop has polynomially
many iterations. Furthermore, the more complicated subroutines in line 10 and line 14 can be
computed in polynomial time by exhaustive search and dynamic programming as mentioned in the
explanations. 2

We argue that by choosing l large enough, the algorithm 2-DC-APPROX has an arbitrarily small
relative error.

Lemma 3.2 Fix an l ≥ 5 and let ε df=(0, 16
l ,

16
l). On input of a 2-DC instance I = (B,G, r,D) the

algorithm 2-DC-APPROX computes an ε-approximate Pareto-solution set P for I.

Proof Choose some Pareto solution S′ ∈ P sol(I) and let P be the set that is returned by 2-DC-
APPROX(I). We show that P ⊆ S(I) and there exists an S ∈ P that ε-covers S′.

Let Cb (resp., Cg) denote the blue (resp., green) points covered by the solution S′. Moreover, for
a shift s ∈ r · [0, l)2 let β(s) denote the set of points on the border-strips of s, i.e.,

β(s) = s+ [−2r, 2r)2 +
(
(rlZ× Z) ∪ (Z× rlZ)

)
.

We now use a combinatorial argument to show that there exists a shift s such that only a small
fraction of the points in Cb and Cg are located on the border-strips of s.

Claim 3.3 There is an s ∈ r · [0, l)2 such that |Cb ∩ β(s)| ≤ 16
l |Cb| and |Cg ∩ β(s)| ≤ 16

l |Cg|.

Proof Assume that for every s ∈ r · [0, l)2 it holds that |Cb∩β(s)| > 16
l |Cb| or |Cg∩β(s)| > 16

l |Cg|.
Without loss of generality,

|Cb ∩ β(s)| > 16
l |Cb| holds for at least one half of all shifts s (i.e., for l2

2 shifts). (∗)

We consider the number of events where a blue point is located on the border of some shift. This
number can be expressed either as a sum over all points or as a sum over all shifts. This yields the
following equation. ∑

x∈Cb

|{s ∈ r · [0, l)2 | x ∈ β(s)}| =
∑

s∈r·[0,l)2
|Cb ∩ β(s)|

For each point there exist exactly 8l − 16 shifts s ∈ r · [0, l)2 such that the point is on the border
β(s) (since the squares are of size rl × rl and have a border of width 2r which consists of exactly
8l − 16 small squares of size r × r). So the left-hand side of the equation equals |Cb| · (8l − 16).
However, by (∗), the right-hand side is greater than

l2

2
· 16
l
|Cb| ≥ |Cb| · (8l − 16)

which is a contradiction. This proves the claim. 2

9

We consider a run of 2-DC-APPROX on input I. In the loop 2–17, let us choose s according to
Claim 3.3. Moreover, choose an arbitrary i ∈ [1,m] in the loop 3–16 and define Di, Bi, and Gi
according to the lines 4–6. Let Si be the set of disks in S′ whose centers are in the shifted square
ai + [r, rl − r)2, but not on the border-strip of width r, i.e., Si

df=S′ ∩ (s + ai + [r, rl − r)2). If the
center of a disk is on the border-strip of width r of some square, then this disk cannot cover points
that are in the square, but not on the border-strip of width 2r. This shows

c(Gi, Si) = c(Gi, S′) and c(Bi, Si) = c(Bi, S′). (1)

Let ki
df= |Si| and bi

df= c(Bi, Si). Choose k = ki and b = bi in line 7. Observe that Si belongs to the
set Vk,b that is defined in line 8. Hence, after line 10, psol

s,i (ki, bi) ⊆ Di,

|psol
s,i (ki, bi)| ≤ ki, (2)

c(Bi, psol
s,i (ki, bi)) ≥ bi, and (3)

pval
s,i (ki, bi) ≥ c(Gi, Si). (4)

Estimation (4) holds, since the solution Si ∈ Vki,bi already covers c(Gi, Si) green points. So with
the chosen ki and bi we obtain

m∑
i=1

pval
s,i (ki, bi)

(4)

≥
m∑
i=1

c(Gi, Si)
(1)
= c(G− β(s), S′) = |Cg| − |Cg ∩ β(s)|

3.3
>(1− 16

l
)|Cg|. (5)

Moreover,

m∑
i=1

bi =
m∑
i=1

c(Bi, Si)
(1)
= c(B − β(s), S′) = |Cb| − |Cb ∩ β(s)|

3.3
>(1− 16

l
)|Cb|. (6)

In the loop 13–16 choose b df=
∑m

i=1 bi and k
df=
∑m

i=1 ki. By (2) and (3), after line 15 it holds that
ps(k, b) 6= (⊥,⊥) (i.e., the conditions in line 14 can be satisfied) and hence ps(k, b) = (S, g) for a
suitable S ⊆ D. Observe that

|S| ≤ k ≤ |S′| (because of the conditions in line 14), (7)

(1− 16
l

)|Cg|
(5)
<

m∑
i=1

pval
s,i (ki, bi) ≤ g

(!)
= c(G− β(s), S) ≤ c(G,S), and (8)

(1− 16
l

)|Cb|
(6)
<

m∑
i=1

bi = b
(!)

≤ c(B − β(s), S) ≤ c(B,S). (9)

In (8) and (9), the equalities marked with (!) hold, since the points in Bi and Gi are sufficiently far
away from other squares so that they are only influenced by disks in ai, but not by disks in other
squares. From (7), (8), and (9) it follows that the solution S ε-covers our given Pareto solution S′.
By the definition of P we have S ∈ P after line 18. So after line 19 there still exists some S̃ ∈ P
that ε-covers S′.

It remains to show that P ⊆ S(I), i.e., all returned solutions are valid. For this, note that after
line 8 it holds that Vk,b ⊆ S(I). So after line 10, either psol

s,i (k, b) = ⊥ or psol
s,i (k, b) ∈ S(I) ∩ Di.

10

After line 15, psol
s (k, b) =

⋃m
i=1 p

sol
s,i (ki, bi) where the psols,i (ki, bi) ∈ S(I) ∩Di. Disks in Di are not on

the border-strips of width r of the corresponding square. So for i 6= j we have a minimum distance
of 2r ≥ % · r between disks in Di and disks in Dj . Therefore, after line 15, psol

s (k, b) ∈ S(I) (this
is the point where we need the border-strips of width r for disks). So after line 18 it holds that
P ⊆ S(I). 2

Theorem 3.4 Fix k ≥ 1 and % ∈ (0, 2]. For all δ > 0, k-DC is (0, δ, . . . , δ)-approximable in
polynomial time (and hence has a PTAS).

Proof By the Lemmas 3.1 and 3.2, 2-DC is (0, δ, δ)-approximable in polynomial time for ev-
ery δ > 0. These lemmas and the underlying algorithm 2-DC-APPROX can be extended in a
straightforward way to k types of points where k ≥ 1. 2

The multiobjective shifting strategy used in 2-DC-APPROX is a very general method that can
be applied to several other multiobjective covering problems. It is easy to see that the algorithm
2-DC-APPROX can be adapted such that it takes interferences into account.

Theorem 3.5 Fix k ≥ 1 and % ∈ (0, 2]. For all δ > 0, k-EDC is (0, δ, . . . , δ)-approximable in
polynomial time (and hence has a PTAS).

Proof The proof is very similar to the proof of Theorem 3.4. One only has to observe that because
of the borders, disks in one square cannot interfere with points in other squares. So also for k-
EDC it holds that if disks on the borders are neglected, then the single squares can be optimized
independently. 2

Besides interferences, also other parameters can be added to the problem. For instance it might be
the case that the single services have different operating distances. This brings us to the version of
2-DC where we have to place simultaneously two disks of different radii on the selected locations
(one disk for each type of customers). 2-DC-APPROX can be easily adapted such that it gives a
PTAS also for this variant of the problem. In general, we can allow even more complicated rules
that determine whether or not a customer is supplied by a base station. Here the different services
can have supply areas of very general shape as long as

• we can efficiently test whether a point belongs to such an area and

• the minimum distance constraint is satisfied (i.e., the distance of two base stations is at least
% · r where 2r is the maximal diameter of the area and % is a fixed constant).

Further generalization could handle weights for the customers, individual costs for the base stations,
and payoffs that depend on the quality of the service obtained by the single customers. For these
scenarios and their combinations, appropriate versions of 2-DC-APPROX provide polynomial-time
approximation schemes.

11

4 Non-Approximability of the Restricted Version

The approximability of a multiobjective problem does not necessarily imply that the single-objective
restrictions of this problem are approximable. The reason for this apparent contradiction is that
all solutions for a restricted version of the problem must strictly satisfy the additional constraints
on the values of the objectives that are not optimized any more (i.e., the constraints fj(I, S) ≥ Bj
or fj(I, S) ≤ Bj in the definition of the restricted problem). An approximation algorithm has more
freedom if it can optimize all objectives at the same time, since here the algorithm can exploit
trade-offs between the single objectives. In fact, the problems k-DC and k-EDC are examples
where such trade-offs yield a significantly better approximability. In this section we will show
that several restrictions of k-DC and k-EDC are not approximable within a constant factor, unless
P = NP. For instance, for k ≥ 2, no restriction of k-EDC is in APX (unless P = NP), while
the general (multiobjective) version of k-EDC even admits a PTAS. Angel, Bampis, and Kononov
[ABK01, ABK03], Cheng, Janiak, and Kovalyov [CJK98], and Dongarra et al. [DJSS07] discovered
similar phenomena for multiobjective scheduling problems.

For our results in this section we need the NP-completeness of the following versions of geometric
disk cover problems.

Disk Cover

DC = {(P,D, k)
∣∣P,D ⊆ Z × Z are finite sets, k ∈ N, and there exists an
S ⊆ D such that |S| ≤ k and ∀x ∈ P ∃y ∈ S, |x− y| ≤ 2}

Exact Disk Cover

EDC = {(P,D)
∣∣P,D ⊆ Z× Z are finite sets and there exists an
S ⊆ D such that ∀x ∈ P ∃!y ∈ S, |x− y| ≤ 2}

Note that there is a minimum-distance constraint for disk locations implicitly given in these defi-
nitions since we consider points from Z× Z and a fixed radius r = 2.

Theorem 4.1 DC and EDC are NP-complete.

Proof It is easy to see that DC and EDC belong to NP. So it suffices to show NP-hardness. For
this we follow Fowler, Paterson, and Tanimoto [FPT81] who described a reduction of 3-SAT to the
following disk cover problem.

DC′ = {(P, k)
∣∣P ⊆ Z×Z is a finite set, k ∈ N, and there exists an S ⊆ Z×Z
such that |S| ≤ k and ∀x ∈ P ∃y ∈ S, |x− y| ≤ 2}

We have to adapt the technique by Fowler, Paterson, and Tanimoto so that it takes the following
three differences between DC′ and DC/EDC into account.

1. DC/EDC-instances contain a set D of possible disk positions, while in the case of DC′, the
set S can contain arbitrary positions.

12

2. In solutions of DC′-instances, a point can be covered by more than one disk. In the case of
EDC, each point must be covered by exactly one disk.

3. In DC′-instances the cardinality of S is bounded by the parameter k, while in EDC-instances
S can be of arbitrary size.

We describe a polynomial-time many-one reduction from 3-SAT to DC. Let the input be a 3-
CNF formula with m variables x1, . . . , xm and n clauses C1, . . . , Cn. The reduction will output
a DC-instance (P,D, k). Figure 1 shows the high-level structure of the sets P and D, i.e., the
approximate places in the plane where the points from P and D are located. The structure consists
of m closed lines (wires) and of n bold points (clause points). Wires represent points and possible
disk positions that are arranged such that two successive points can be covered by one disk and
each disk can cover no more than two points. Each wire corresponds to one variable and each clause
point corresponds to one clause in the 3-CNF formula. In addition we have to make sure that any
pair of clause points has a distance that is divisible by 4 (by the structure of the regions R1 −R5,
only even distances are possible at all, but a distance ≡ 2(mod 4) would introduce an unwanted
negation in a clause). This finishes the description of the reduction.

First let us analyze the parity of the number of points at certain sections of the wires. Each of
the three open loops in region R5 contains an odd number of points (more precisely, 21, 9, or 19
points). Points in the region R4 belong to the same wire and their number is even. The points at
the two vertical (resp., horizontal) lines in region R3 belong to the same wire and their number
is even. It follows that in region R2, the loop that goes to the right contains an odd number of
points. Since we are only interested in the parity, we can think of replacing this loop by the single
point that is missing in the vertical line at the right-hand side. Hence, loops that lead to clause
points do not change the parity of points at a wire. Together with the structure of the regions R1

this shows that wires contain an even number of points.

There are always one or more disk locations close to neighbouring points at a wire. We say that a
disk location “belongs to the gap between two points” if it has a distance ≤ 2 to each of the points.
So in order to cover all points at a wire we have to place a disk at every second gap (note that this
holds in particular for the crossovers R3). There are two ways to do this: Either we place disks at
every even gap or at every odd gap. These two possibilities correspond to the assignment of the
variable with either 0 or 1. If some variable xi appears negatively in some clause Cj , then in the
corresponding region R4 we drop one gap at each of the lines which negates the assignment of xi
in the region R5. Each of the open loops in region R5 has one gap close to the clause point. The
clause point can be covered without using an extra disk if and only if we have placed a disk in at
least one of these gaps. This is equivalent to saying that the clause Cj is satisfied by the assignment
represented by the current choice of disks. Hence, the given formula is satisfiable if and only if we
can cover all points without using extra disks.

We are left with computing the minimal number k of disks that is needed to cover all points. Note
that |P | be the total number of points in Figure 1. By placing one disk at every second gap, we
cover exactly two points per wire with one disk. We have seen that if the formula is satisfiable,
then we do not need extra disks for the clause points. Moreover, at crossovers 4 disks are used
simultaneously for two wires. Therefore, if l is the number if crossovers (i.e., the number of regions

13

Figure 1: The high-level structure of the sets P and D that are computed by the reduction. The
detailed structure of the gray regions R1−R5 is shown in the Figures 2–6 respectively. Each closed
line represents a variable and each region R5 represents a clause of three literals. The elliptic regions
R4 determine whether a variable itself or its negation contributes to the clause.

14

Figure 2: The detailed structure at the upper and lower ends (gray region R1 in Figure 1). Circles
represent points from P and crosses represent disk locations from D.

Figure 3: The detailed structure at T-junctions (gray region R2 in Figure 1). Circles represent
points from P and crosses represent disk locations from D.

15

Figure 4: The detailed structure at crossovers (gray region R3 in Figure 1). Circles represent points
from P and crosses represent disk locations from D.

If xi appears in Cj . If xi appears in Cj .

Figure 5: The detailed structure of the elliptic regions R4 in Figure 1. This structure depends on
whether the corresponding variable xi appears positively or negatively in the corresponding clause
Cj . Circles represent points from P and crosses represent disk locations from D.

16

Figure 6: The detailed structure of the gray regions R5 in Figure 1. Circles represent points from
P and crosses represent disk locations from D. These regions simulate the clauses Cj . If a given
assignment of the variables satisfies Cj , then the clause point (the bold point in the picture) can
be covered without using an extra disk. Hence if all clauses are satisfied, then this saves exactly n
disks.

17

R3), then we obtain

k =
|P | − n− 4l

2
.

So the given formula is satisfiable if and only if (P,D, k) ∈ DC.

The whole construction (Figure 1) is bounded to a region of size O(n)×O(m) and can be carried
out in polynomial time. This shows 3-SAT≤p

mDC.

Finally we argue that the same reduction shows 3-SAT≤p
mEDC. For this, let (P,D, k) be the DC-

instance computed by the reduction above. If (P,D) ∈ EDC, then this must be witnessed by a
collection of at most k disks, since otherwise at least one point is covered by two disks. Hence
(P,D, k) ∈ DC. If (P,D, k) ∈ DC, then this is witnessed by placing a disk at every second gap.
This ensures that each point is covered by exactly one disk. For clause points, the exact cover can
be obtained, because the gaps close to the clause point have two disk locations, one that covers the
clause point and one that does not. This shows 3-SAT≤p

mEDC. 2

As we have seen in Section 3, the minimum-distance constraint helps us to find a PTAS for k-DC.
Nevertheless, the problem remains difficult. Although the Pareto curve is only polynomial in size,
we cannot hope to discover an algorithm that computes it exactly: For % ≤ 1

2 , an algorithm that
exactly determines the Pareto curve for k-DC% in polynomial time would also solve the problem
DC in polynomial time. Since DC is NP-complete, this would imply P = NP.

By Theorem 3.5, the multiobjective problem k-EDC has good approximation properties (a PTAS).
Now we will see (Theorem 4.2) that in contrast, the restricted versions of k-EDC vary with respect to
their approximation behavior. While 1-EDC restricted to the first component is not approximable
(i.e., not in APX unless P = NP), the restriction to the second component has good approximation
properties (a PTAS). Even more surprisingly, for k ≥ 2 the Pareto curve of k-EDC is approximable,
but no restriction of k-EDC is approximable (i.e., not in APX unless P = NP). Theorem 4.5 states
similar results for k-DC. For instance, while the Pareto curve of 2-EDC is approximable, the
restriction of 2-EDC to the second component is not (i.e., not in APX unless P = NP).

Theorem 4.2 Fix some % ∈ (0, 1
2].

1. If P 6= NP, then for all k ≥ 2 and all i ∈ [1, k + 1], Restrictedi-k-EDC is not in APX.

2. If P 6= NP, then Restricted1-1-EDC is not in APX.

3. Restricted2-1-EDC admits a PTAS.

Proof The theorem is proved by two claims.

Claim 4.3 If P 6= NP, then for all k ≥ 1, Restricted1-k-EDC is not in APX.

Proof Assume there exist a δ > 0 and a polynomial-time algorithm A that δ-approximates
Restricted1-k-EDC. We describe a polynomial-time decision algorithm for EDC on input (P ′, D′).

18

1. Simulate A on (I,B1, . . . , Bk) where Bj
df= |P ′| for j ∈ [1, k] and I is the following k-EDC

instance: Pj
df=P ′ for j ∈ [1, k], r df= 2, D df=D′.

2. If the simulation outputs some S ⊆ D such that ∀x ∈ P ′ ∃!y ∈ S, |x − y| ≤ 2, then accept,
otherwise reject.

If (P ′, D′) ∈ EDC, then there exists an S′ ⊆ D′ such that ∀x ∈ P ′ ∃!y ∈ S′, |x − y| ≤ 2. For
different x, y ∈ S′ we have |x − y| ≥ 1 ≥ % · r, since S′ ⊆ Z × Z. So S′ is a valid solution for
I. Hence A on I must output some S ⊆ D such that |S| ≤ (1 + δ) · |S′| and |Cj | ≥ Bj for
j ∈ [1, k] where Cj = {x ∈ Pj

∣∣∃!y ∈ S, |x − y| ≤ r}. In particular, B1 = |P ′| and C1 = P ′. So
∀x ∈ P ′ ∃!y ∈ S, |x− y| ≤ 2 and hence the algorithm accepts.

If (P ′, D′) /∈ EDC, then there is no S ⊆ D′ such that ∀x ∈ P ′ ∃!y ∈ S, |x − y| ≤ 2. Hence
our algorithm rejects. This shows EDC ∈ P and hence, by Theorem 4.1, P = NP. This proves
Claim 4.3. 2

Claim 4.4 If P 6= NP, then for all k ≥ 2 and i ∈ [2, k + 1], Restrictedi-k-EDC is not in APX.

Proof The proof is similar to the one of Claim 4.3. We only have to use the following adapted
algorithm.

1. Simulate A on (I,B1, . . . , Bk) where B1 = |D′| and Bj
df= |P ′| for j ∈ [2, k] and I is the

following k-EDC instance: Pj
df=P ′ for j ∈ [1, k], r df= 2, D df=D′.

2. If the simulation outputs some S ⊆ D such that ∀x ∈ P ′ ∃!y ∈ S, |x − y| ≤ 2, then accept,
otherwise reject.

This proves Claim 4.4. 2

The statements 1 and 2 of the theorem follow from the Claims 4.3 and 4.4. The third statement
holds, since by Theorem 3.5, 1-EDC is (0, δ)-approximable in polynomial time for every δ > 0.
This finishes the proof of Theorem 4.2. 2

Theorem 4.5 Fix some % ∈ (0, 1
2].

1. Restricted2-1-DC has a PTAS.

2. If P 6= NP, then for all k ≥ 2 and all i ∈ [2, k + 1], Restrictedi-k-DC is not in APX.

Proof By Theorem 3.4, 1-DC is (0, δ)-approximable in polynomial time for every δ > 0. Hence,
Restricted2-1-DC has a PTAS which shows the first statement.

The proof of the second statement is similar to the one of Claim 4.3. Let k ≥ 2 and i ∈ [2, k + 1],
and assume there exist a δ > 0 and a polynomial-time algorithm A that δ-approximates
Restrictedi-k-DC. We describe a polynomial-time decision algorithm for DC on input (P ′, D′, k′).

19

1. Simulate A on (I,B1, . . . , Bk) where B1 = k′ and Bj
df= |P ′| for j ∈ [1, k] and I is the following

k-DC instance: Pj
df=P ′ for j ∈ [1, k], r df= 2, D df=D′.

2. If the simulation outputs some S ⊆ D such that |S| ≤ k′ and ∀x ∈ P ′ ∃y ∈ S, |x − y| ≤ 2,
then accept, otherwise reject.

If (P ′, D′, k′) ∈ DC, then there exists an S′ ⊆ D′ such that |S′| ≤ k′ and ∀x ∈ P ′ ∃y ∈ S′, |x−y| ≤ 2.
For different x, y ∈ S′ we have |x− y| ≥ 1 ≥ % · r, since S′ ⊆ Z× Z. So S′ is a valid solution for I.
Hence A on I must output some S ⊆ D such that (1 + δ) · |Ci| ≥ |P ′|, |S| ≤ B1 = k′, |Cj | ≥ Bj+1

for j ∈ [1, i − 1], and |Cj | ≥ Bj for j ∈ [i + 1, k] where Cj = {x ∈ Pj
∣∣∃y ∈ S, |x − y| ≤ r}. So

for j ∈ [1, k] − {i} it holds that Cj = P ′. So ∀x ∈ P ′ ∃y ∈ S, |x − y| ≤ 2 and hence the algorithm
accepts.

If (P ′, D′, k′) /∈ DC, then there is no S ⊆ D′ such that ∀x ∈ P ′ ∃y ∈ S, |x − y| ≤ 2. Hence our
algorithm rejects. This shows DC ∈ P and hence, by Theorem 4.1, P = NP. 2

References

[AAB+06] H. Alt, E. M. Arkin, H. Brönnimann, J. Erickson, S. P. Fekete, C. Knauer, J. Lenchner,
J. S. B. Mitchell, and K. Whittlesey. Minimum-cost coverage of point sets by disks. In
Symposium on Computational Geometry, pages 449–458, 2006.

[ABK01] E. Angel, E. Bampis, and A. Kononov. A FPTAS for approximating the unrelated
parallel machines scheduling problem with costs. In Proceedings 9th Annual European
Symposium on Algorithms, volume 2161 of Lecture Notes in Computer Science, pages
194–205. Springer, 2001.

[ABK03] E. Angel, E. Bampis, and A. Kononov. On the approximate tradeoff for bicriteria
batching and parallel machine scheduling problems. Theoretical Computer Science,
306(1-3):319–338, 2003.

[BMCK08] B. Ben-Moshe, P. Carmi, and M. J. Katz. Approximating the visible region of a point
on a terrain. GeoInformatica, 12(1):21–36, 2008.

[CC04] A. H. Cannon and L. J. Cowen. Approximation algorithms for the class cover problem.
Annals of Mathematics and Artificial Intelligence, 40(3-4):215–223, 2004.

[CCJ90] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathe-
matics, 86(1-3):165–177, 1990.

[Cha03] T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46(2):178–189, 2003.

[CJK98] T. C. E. Cheng, A. Janiak, and M. Y. Kovalyov. Bicriterion single machine schedul-
ing with resource dependent processing times. SIAM Journal on Optimization,
8(2):617–630, 1998.

20

[CKLT07] P. Carmi, M. J. Katz, and N. Lev-Tov. Covering points by unit disks of fixed location.
In 18th International Symposium on Algorithms and Computation (ISAAC), volume
4835 of Lecture Notes in Computer Science, pages 644–655. Springer Verlag, 2007.

[CMWZ04] Gruia Calinescu, Ion I. Mandoiu, Peng-Jun Wan, and Alexander Zelikovsky. Selecting
forwarding neighbors in wireless ad hoc networks. MONET, 9(2):101–111, 2004.

[DJSS07] J. Dongarra, E. Jeannot, E. Saule, and Z. Shi. Bi-objective scheduling algorithms for
optimizing makespan and reliability on heterogeneous systems. In Proceedings 19th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 280–288.
ACM, 2007.

[DY07] I. Diakonikolas and M. Yannakakis. Small approximate pareto sets for bi-objective
shortest paths and other problems. In Proceedings 10th International Workshop on
Approximation, Randomization, and Combinatorial Optimization, volume 4627 of Lec-
ture Notes in Computer Science, pages 74–88. Springer, 2007.

[Ehr05] M. Ehrgott. Multicriteria Optimization. Springer Verlag, 2005.

[EJS05] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.

[EvL08] T. Erlebach and E. J. van Leeuwen. Approximating geometric coverage problems.
In Proceedings of 19th Annual Aymposium on Discrete Algorithms, pages 1267–1276,
2008.

[FPT81] R. J. Fowler, M. Paterson, and S. L. Tanimoto. Optimal packing and covering in the
plane are NP-complete. Information Processing Letters, 12(3):133–137, 1981.

[GKS04] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial cov-
ering problems. J. Algorithms, 53(1):55–84, 2004.

[GRV05] C. Glaßer, S. Reith, and H. Vollmer. The complexity of base station positioning in
cellular networks. Discrete Applied Mathematics, 148(1):1–12, 2005.

[HM85] D. Hochbaum and W. Maass. Approximation schemes for covering and packing prob-
lems in image processing and VLSI. Journal of the ACM, 32:130–136, 1985.

[NV06] Sada Narayanappa and Petr Vojtechovsky. An improved approximation factor for the
unit disk covering problem. In CCCG, 2006.

[PY00] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In FOCS, pages 86–92, 2000.

[SO95a] H. M. Safer and J. B. Orlin. Fast approximation schemes for multi-criteria combina-
torial optimization. Working papers 3756-95, Massachusetts Institute of Technology,
Sloan School of Management, 1995.

[SO95b] H. M. Safer and J. B. Orlin. Fast approximation schemes for multi-criteria flow, knap-
sack, and scheduling problems. Working papers 3757-95, Massachusetts Institute of
Technology, Sloan School of Management, 1995.

21

[VY05] S. Vassilvitskii and M. Yannakakis. Efficiently computing succinct trade-off curves.
Theoretical Computer Science, 348(2-3):334–356, 2005.

22

