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An instance of the (r, p)-centroid problem is given by an edge and node
weighted graph. Two competitors, the leader and the follower, are allowed to
place p or r facilities, respectively, into the graph. Users at the nodes connect
to the closest facility. A solution of the (r, p)-centroid problem is a leader
placement such that the maximum total weight of the users connecting to
any follower placement is as small as possible.
We show that the absolute (r, p)-centroid problem is NP-hard even on a

path which answers a long standing open question of the complexity of the
problem on trees (Hakimi, 1990). Moreover, we provide polynomial time
algorithms for the discrete (r, p)-centroid on paths and the (1, p)-centroid on
trees, and complementary hardness results for more complex graph classes.

1 Problem De�nition

Consider an undirected graph G = (V,E) with positive edge lengths d : E → Q+. An
edge of the graph can be considered as an in�nite set of points. A point x on edge
e = (u, v) is speci�ed by the distance from one of the endpoints of e, and the remaining
distance is derived from the invariant d(u, x) + d(x, v) = d(e). Notice that the set of
points of a graph includes the set of nodes. All points which are not nodes are called
inner points. In the sequel we will use G (and e) both for denoting the graph (the edge)
and for denoting all of its points, as the meaning will become clear from the context.
In the sense of these considerations the edge length function d is extended to a distance
function d : G × G → Q+

0 de�ned on all pairs of points. Nonnegative node weights
w : V → Q+

0 specify the demand of users who are always placed at nodes of the graph.
Where appropriate we can assume w.l.o.g. that edge lengths and node weights are integer
numbers.
Let X, Y ⊂ G be �nite sets of nodes or points, specifying a server placement of the

leader or follower player, respectively. The distance of a user u to a point set M is given
by d(u, M) := minm∈M d(u, m). A user u prefers the follower if d(u, Y ) < d(u, X). By
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w(Y ≺ X) :=
∑
{w(u) | d(u, Y ) < d(u, X) } the total weight of the follower party is

denoted.
Let r, p ∈ N and Xp ⊂ G be a set of |Xp| = p points. Let

w∗
r(Xp) := max

Yr⊂G
|Yr|=r

w(Yr ≺ Xp)

be the maximum in�ucence any r-element follower placement can gain over the �xed
leader placement Xp. An absolute (r, Xp)-medianoid of the graph is any set Yr ⊂ G of
|Yr| = r points where w(Yr ≺ Xp) = w∗

r(Xp) is attained. Let

w∗
r,p := min

Xp⊂G
|Xp|=p

w∗
r(Xp) .

An absolute (r, p)-centroid of the graph is any set Xp ⊂ G of |Xp| = p points where
w∗

r(Xp) = w∗
r,p is attained. The notions discrete (r, Xp)-medianoid and discrete (r, p)-

centroid are de�ned similarly, with the server sets restricted to nodes Xp, Yr ⊆ V rather
than points.

Previous Results and Contribution of this Paper

The (r, p)-centroid problem has been introduced in [Hak83]. On general graphs the
problem is Σp

2-complete [NSW07]; even the (1, p)-centroid is NP-hard [Hak83]. The
(1, 1)-centroid on a tree is equivalent to the 1-median [Hak90] which can be determined
in linear time [Gol71]; on a general graph the (1, 1)-centroid can be found in polynomial
time [HL88, CM03].
For many years the complexity status of the absolute (r, p)-centroid problem on trees

was an open question [Hak90, EL96, Ben00], see also [SSD07] for a recent overview. In
this paper we prove that this problem is NP-hard even on paths. In contrast to that
we show that the discrete (r, p)-centroid on a path can be solved in polynomial time,
but becomes NP-hard on a spider. Finally we give a polynomial time algorithm for
discrete and absolute (1, p)-centroid on a tree and show NP-hardness for the problem on
pathwidth bounded graphs. To the best of our knowledge these are the �rst nontrivial
results on certain graph classes where the (r, p)-centroid problem is polynomial time
solvable.
In the model we are investigating each customer attaches to exactly one server, and

the weight of the user is constant and does in particular not depend on the distance to
the selected server. This is known as an inelastic binary demand rule; see [SSD07] for a
review of other user demand rules.
In our hardness proofs we make use of a reduction from the well known Partition

problem (problem SP12 in [GJ79]):

Theorem 1.1 (Hardness of Partition) The decision problem �Given a multiset

S = {s1, . . . , sn} of integers with total sum S∗ :=
∑

S, is there a sub-multiset S′ ⊂ S
such that

∑
S′ = 1

2S∗?� is NP-complete. 2
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2 The (r, p)-Centroid

In this section we investigate the complexity of the (r, p)-centroid problem where r, p are
arbitrary integers speci�ed as part of the input instance. The positive result is that the
discrete (r, p)-centroid on a path can be computed e�ciently. On the negative side the
same problem becomes NP-hard on slightly more complicated graphs, namely spiders.
Moreover, the absolute (r, p)-centroid is already NP-hard on a path.

2.1 Absolute (r, p)-Centroid on a Path

In this section we show that the absolute (r, p)-centroid problem is already NP-hard
when the underlying graph forms a path. To this end, let the path graph G = (V,E)
be given by its node set V = {v1, . . . , vn} and edge set E = {(v1, v2), . . . , (vn−1, vn)}.
Consider a leader placement Xp = {x1, . . . , xp} ⊂ G of |Xp| = p points sorted such that
d(v1, x1) < . . . < d(v1, xp). This de�nes a segmentation of the path into at most p + 1
disjoint intervals t0 = [v1, x1], ti = [xi, xi+1] for i = 1, . . . , p− 1, and tp = [xp, vn].
Let the leader placement be such that there is an interval [xi, xi+1] of size t :=

d(xi, xi+1). By placing one server into that interval the follower can gain all nodes
of any open interval ]a, b[ ⊂ [xi, xi+1] of size d(a, b) = t

2 . An optimal placement of the
follower can be found with a simple linear time sweep algorithm.

Theorem 2.1 (Absolute (r, p)-centroid on path) The absolute (r, p)-centroid
problem is NP-hard on a path.

Proof. Let an instance of problem Partition be given as in Theorem 1.1. Construct a
path P = (a, u1, v1, z1, . . . , un, vn, zn, b) with 3n + 2 nodes (confer Figure 1). To de�ne
the weights let smax := maxi si and D := 2nsmax + 1 and Ω := 2nD + 1. Let w(a) :=
w(b) := Ω, and for all i = 1, . . . , n set w(ui) := D, w(vi) := si and w(zi) := s̄i := D− si.
The nodes ui, zi are referred to as heavy, while vi are called light nodes.
We de�ne edge lengths as follows: d(a, u1) := 1

2D, d(ui, vi) := D, d(vi, zi) := 1
2si,

d(zi, ui+1) := D, and d(zn, b) := 1
2D. The total length of the path is 2nD + 1

2S∗.
Set the number of leader positions to p := n + 1 and the number of follower positions

to r := n. We will show in the sequel: There is an (r, p)-centroid of gain w∗
r ≤ n ·D+ 1

2S∗

if and only if the instance of Partition admits a subset S′ of sum 1
2S∗.

. . .

. . .
u1 v1 z1 u2 v2 z2 un vn zna b

2D + 1
2s1 2D + 1

2s2 2D + 1
2sn

Ω s1 D s2 D sn ΩD s̄1 s̄2 s̄nnode weight

D D D D D D D
2

s1
2

s2
2

sn

2edge length D
2

Figure 1: Illustration of the path construction.
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�If�: Assume that the instance of Partition is solvable with solution S′, i.e.,
∑

S′ =
1
2S∗. Place two servers of the leader at the border nodes a, b. The remaining n − 1
leader servers divide the path into n intervals of length ti (i = 1, . . . , n). The interval
division is called valid if for each i = 1, . . . , n the interval ti contains the three nodes
ui, vi, zi as inner nodes. Choose the server positions such that ti := 2D + si if si ∈ S′

(�long interval�) and ti := 2D otherwise (�short interval�). Observe that this yields a
valid interval division. The gain of the follower in interval ti when placing one server is
D if it is a short interval and D + si if it is a long interval. There is no advantage in
placing two servers into the same interval as the gain would be 2D in that case. Hence
we can assume w.l.o.g. that the follower places exactly one server per interval and thus
achieves the total gain nD + 1

2S∗.
�Only if�: Consider the case of a leader placement with follower gain w∗

r ≤ n ·D+ 1
2S∗.

We claim: The leader choses a valid interval division.
It is clear that the leader places at the two nodes a, b of weight Ω. Let (ti)i (i = 1, . . . , n)

be the sequence of interval lengths of the leader's placement.
Assume for contradiction that the right endpoint of some interval ti is at the node zi

or to the left of it. The remaining n− i intervals to the right of interval ti cover a path
length of at least d(zi, b) > 2(n− i)D + 1

2D, so by averaging there must be one interval
of length larger than(

2 +
1

2(n− i)

)
D >

(
2 +

1
2n

)
D > 2D + smax .

By construction of the path, any interval of length larger than 2D + smax contains at
least two heavy nodes which are inner nodes and within maximum distance of D+ 1

2smax.
Hence in that particular interval the follower can gain both heavy nodes with placing a
single server. Let H := mini w(zi) = D − smax be the minimum weight of heavy nodes.
Placing the remaining n−1 servers at free heavy nodes this yields a total gain of at least

2H + (n− 1)H = nD + D − (n + 1)smax > nD +
1
2
S∗

for the follower, contradicting the premise. By an analogous argument we can show that
the left endpoint of interval ti does not lie at ui or to the right of it. This shows the
claim.
From this property we deduce that each interval left by the leader has inner nodes of

total weight 2D. Since the follower can always gain weight D by placing at ui, we can
assume w.l.o.g. that the follower places exactly one server into each interval. Moreover
the length of each interval ti is bounded from above by 2D + si: Otherwise the follower
could cover all inner nodes of ti with a single server which would lead to a total gain of
at least 2D + (n− 1)H > (n + 1)H contradicting the premise.
We distinguish two kinds of intervals, namely those of length ti ≤ 2D, which we call

short intervals, and those of length 2D < ti ≤ 2D + si, called long intervals. We de�ne
the set S′ ⊆ S to be the set of those si where ti is a long interval. As argued above
the follower places exactly one server into each interval ti. This de�nes for each interval
a number wi denoting the follower's gain in that interval. Obviously wi = D for short
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intervals and wi = D + si for long intervals. This yields ti −D ≤ wi. Hence

S∗

2
=

n∑
i=1

(ti − 2D) ≤
n∑

i=1

(wi −D) ≤ S∗

2

where the �rst equality follows from the path length 2nD + 1
2S∗ and the last inequality

from the premise w∗
r ≤ nD + 1

2S∗. Thus we can conclude
∑

S′ =
∑n

i=1(wi −D) = 1
2S∗

which completes the proof. 2

2.2 Discrete (r, p)-Centroid on a Path

Many optimization problems exhibit an optimal substructure property [CLR90] (or prin-
ciple of optimality [AC+99]): essentially this means that a problem instance can be
separated into independent subproblems such that optimal solutions of these subprob-
lems can be combined to solve the original problem optimally. This property is exploited
by widespread algorithmic techniques like divide and conquer, greedy, or dynamic pro-
gramming.
In the case of the discrete (r, p)-centroid problem on a path this suggests the following

approach. Consider a path P with a (r, p)-centroid Xp and a node x ∈ Xp. Let P1, P2

be the subpaths resulting from splitting P at x. One could suspect that for suitable
p1, p2, r1, r2 there are (ri, pi)-centroids on Pi such that their union forms an (r, p)-centroid
on P , with the reasoning that no user in one subpath ever patronizes any server on the
other subpath.

. . . . . . . . . . . .
a c bΩ

1 1
+

ε

1
+

(2
i
−

1)
ε

1
+

(2
k
−

1)
ε

(k
+

1)
ε

1
+

2ε

1
+

2i
ε

1
+

2k
ε

Ω

v2i−1 v2k−1v2iv2k v2 v0 v1

w

Figure 2: (2, 2)-centroid does not satisfy the optimal substructure property.

However, the following example shows that the (r, p)-centroid problem does not exhibit
the optimal substructure property even when r = p = 2 and the underlying graph is a
path. Confer Figure 2. The path consists of 2k + 1 nodes v0, . . . , v2k ordered such that
v0 is the central node and all nodes with even index are ascending to the left and those
with odd index ascending to the right. For all i, node vi has weight 1 + i · ε for some
small ε > 0. The left end is augmented by two nodes a, c of weight w and some large
constant Ω, respectively, and the right end by a node b of weight (k+1)ε. The edge (c, v2k)
has length Ω while all other edges are of length 1. Let W :=

∑2k
i=0 w(vi) + w(b). We are

going to show that changing the weight w = w(a) within the interval [1, 1
2(W − 1 − ε)]

can enforce any node vi to become part of the (2, 2)-centroid.
Since w ≤ 1

2(W − 1− ε) one can see that the leader always places one server at node c
and the other server at one of the nodes vi. For r = 1, 2 let wr(i) be the maximum weight
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that the follower can claim when the leader places at vi and the follower places r servers
on the node set V − {a}. By elementary calculus it follows that

w1(2i− 1) = W − k + i− k(k + 1)ε + (i2 − 1)ε
w1(2i) = W − k + i− k(k + 1)ε + i(i + 1)ε
w2(i) = W − 1− iε

which shows that w1 is strictly increasing with i while w2 is strictly decreasing. On the
subpath V − {a} the (1, 2)-centroid is {c, v0} and the (2, 2)-centroid is {c, v2k}.
We now turn our view back to the whole path. The optimal substructure property

would imply that regardless of the weight w = w(a) there is a (2, 2)-centroid which
contains either v0 or v2k. However this is not true: If for any i this weight is set to
w := w2(i) − w1(i) then {a, vi} is the unique (2, 2)-centroid on the whole path. This is
easy to verify: First it is clear that w∗

2({c, vi}) = w2(i). Consider w∗
2({c, vj}) for j 6= i. If

j > i then the follower places at a and gains w + w1(j) = w2(i)−w1(i) + w1(j) > w2(i).
If j < i then the follower places both servers near vj and gains at least w2(j) > w2(i).
This is a surprising paradoxon: When the path is split at the node c which is always

part of a (2, 2)-centroid, changes in the weight of node a a�ect the solution in the other
subpath. Moreover from the view of the node a a user on this node never connects to any
server placed on the right subpath V − {a} and thus would expect to have no in�uence
on the decisions local to that subpath.

The Algorithm

Let G be the input path with ordered vertex set V = {v1, . . . , vn}. In order to compute
a discrete (r, p)-centroid, we reduce this problem to the k-sum shortest path problem
which was solved in [PA96] within a framework for general k-sum optimization problems
where the underlying minisum problem is e�ciently computable.

De�nition 2.2 (k-sum shortest path) A k-sum shortest (s, t)-path is a path from s
to t where the sum of the k largest arcs is as small as possible.

We de�ne a new digraph G′ as depicted in Figure 3. Start with a node set V ′ := { vij |
i = 1, . . . , n and j = 1, . . . , p }. For any i, j ∈ {1, . . . , n}, i < j, and any k ∈ {1, . . . , p−1}
add a path of two consecutive arcs (introducing a new vertex in the middle) from vi,k to
vj,k+1. This shall model the case that the candidate places the kth server at vi and the
next server at vj . Moreover, add new super nodes s, t to the graph and connect them by
arcs from s to all vi1 and from all vip to t.
The lengths of the arcs are determined by the gain of the follower on partial intervals.

Let w1(i, j) denote the maximum weight which a single follower server can claim on the
partial interval between two leader servers placed at vi and vj . Similarly, let w2(i, j) =∑j−1

ν=i+1 w(vν) be the maximum weight which can be claimed with two follower servers.
For any path of two arcs connecting vik to vj,k+1, set the length of the �rst arc to w1(i, j)
and the length of the second arc to w2(i, j) − w1(i, j). Finally set the length of arcs
(s, vi1) to

∑i−1
ν=1 w(vν) and that of arcs (vip, t) to

∑n
ν=i+1 w(vν). This completes the

construction of the acyclic graph G′.
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v11 v21 vi1

Figure 3: Auxiliary graph to solve the discrete (r, p)-centroid on a path.

Lemma 2.3 The r-sum length of an s-t-path through nodes vi1,1, . . . , vip,p equals the

weight of an (r, Xp)-medianoid where Xp = {vi1 , . . . , vip}.

Proof. By construction, any (s, t)-path in G′ meets exactly p nodes of the initial node
set V ′. This establishes a one to one relationship between placements of the p servers of
the leader and (s, t)-paths in the auxiliary graph.
Observe that for any i < j, w1(i, j) ≤ w2(i, j) ≤ 2w1(i, j). Therefore the follower

can achieve the maximum gain by a simple greedy strategy: given the p + 1 intervals
left by the leader, determine for each interval the gain w1 of placing one server and the
additional gain w2 − w1 of placing two servers. The weight of the (r, Xp)-medianoid is
the sum of the r largest numbers out of this multiset. 2

The (r, p)-centroid minimizes the weight of (r, Xp)-medianoid over all server place-
ments Xp, which corresponds to a r-sum minimization of paths in the graph G′: An
r-sum shortest (s, t)-path in graph G′ is equivalent to a solution of the (r, p)-centroid
problem on path G.

Theorem 2.4 (Discrete (r, p)-centroid on path) A discrete (r, p)-centroid of a

path can be found in O(pn4).

Proof. In [PA96] it has been shown that the k-sum optimziation problem can be solved
in O(M · t) where M is the number of di�erent weights of items in the ground set and
t is the time needed for solving one instance of the underlying minisum problem. In our
setting the set of ground elements is the set of arcs of size O(pn2) but with only O(n2)
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Figure 4: Discrete (r, p)-centroid is NP-hard on a spider.

di�erent weights. The minisum problem (shortest s-t-path in an acyclic graph of O(pn2)
arcs) can be solved in time O(pn2). 2

2.3 Discrete (r, p)-Centroid on a Tree

In this section we are going to show that determining a discrete (r, p)-centroid is NP-hard
on a spider, i.e., a tree where only one node has degree larger than 2.

Theorem 2.5 (Hardness of (r, p)-centroid on a spider) The problem of deter-

mining an (r, p)-centroid on a spider is NP-hard.

Proof. Let an instance of problem Partition be given as in Theorem 1.1. Construct a
spider as depicted in Figure 4. The node set consists of a central node c and for each
integer si of a leg with nodes c�ti�ui�ūi�vi. The weight of the nodes is set to w(c) := Ω3,
w(ti) := Ωsi, w(ui) := Ω3, w(ūi) := si, and w(vi) := Ω3 + Ω2. Finally we add a special
leg c�o�h�c′ of weight w(h) := Ω4, w(o) := 0, and w(c′) := Ω3 + 1

2ΩS∗. Here we choose
Ω := 1 + nS∗.
We set r := p := n + 1 and claim: There is a (n + 1, n + 1)-centroid of weight

W := (n + 1)Ω3 + nΩ2 +
1
2
S∗(Ω + 1)

if and only if the instance of Partition is solvable.
�If�: Let S′ ⊆ S with

∑
S′ = 1

2S∗. Place the leader at h, furthermore for each i at
ūi if si ∈ S′ and at ui otherwise. We look at the gain of the follower: Observe that
it is not possible that the follower claims c and one of the ui with a single server only.
Since w(c) +

∑
j w(tj) < w(vi) it is optimal to claim all peripheral nodes vi. This is

accomplished by placing at vi if si ∈ S′ and at ūi otherwise. This way the follower claims
all nodes vi, i = 1, . . . , n, and the nodes ūi where si /∈ S′, with a weight of

n(Ω3 + Ω2) + S∗ −
∑

S′ = n(Ω3 + Ω2) +
1
2
S∗ .
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The remaining server can be placed either at c′ or at the central node c where it claims
c and the nodes ti with si ∈ S′. This contributes a weight of

Ω3 + Ω
∑

S′ = Ω3 +
1
2
ΩS∗

which is the same for both cases. Adding both terms shows that the total weight of the
(r, p)-centroid is exactly equal to W .
�Only if�: In an optimal solution it is obvious that the leader places one server at the

node h of weight Ω4. Further observe that there are enough nodes of weight Ω3 or greater
(namely the 2n+2 nodes ui, vi, c, c

′) such that the follower can always place only at those
nodes and thus gain at least Ω3 per server.
We claim that the leader chooses on each leg either the node ui or ūi: If the leader

places at central node c or at one of the ti, then there are n− 1 additional servers left to
place. This would leave at least one leg j free to the follower so that he could place at
node uj and gain both uj and vj of weight more than 2Ω3 with a single server, resulting
in a total of more than (n + 2)Ω3. As a consequence, the leader must place one server
per leg. If the leader would place at the peripheral node vi, then the follower could place
at ti which would claim both ui and the central node c with this server, which yields a
similar contradiction. This shows the claim.
Let S′ := { si | leader places at ūi } ⊆ S the set of items where the leader places at

the outer node in the corresponding leg. Suppose
∑

S′ > 1
2S∗. Then the follower places

on leg i next to the leader, claiming the nodes vi, i = 1, . . . , n, and the nodes ūi where
si /∈ S′. The remaining server is placed at the central node c and claims the nodes ui

where si ∈ S′. This yields a gain of

n(Ω3 + Ω2) + (S∗ −
∑

S′) + Ω3 + Ω
∑

S′ > n(Ω3 + Ω2) + Ω3 + (Ω + 1)
1
2
S∗ = W

where we make use of
∑

S′ ≥ 1
2S∗ + 1 and Ω > S∗. Suppose

∑
S′ < 1

2S∗. Like above
the follower places n servers on the periphery; the remaining server is placed at c′. This
yields a gain of

n(Ω3 + Ω2) + (S∗ −
∑

S′) + Ω3 +
1
2
ΩS∗ > W .

This completes the proof. 2

3 The (1, p)-Centroid

We have pointed out in Section 2.2 that the (r, p)-centroid problem does not exhibit the
optimal substructure property for r ≥ 2. In this section we investigate the case r = 1
where this property holds.

3.1 Discrete (1, p)-Centroid on a Tree

At �rst we consider the discrete (1, p)-centroid problem. Choose an arbitrary node s ∈ V ,
and connect s to a new node s0 of weight 0 by an edge of length ∞. Then choose s0
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as the root of the tree. For any node v ∈ V we denote by Tv the subtree hanging down
from v. We can assume w.l.o.g. that the leader does not place at s0 of zero weight.
Let X ⊆ V − s0 be a node subset and W ∈ N. Set X is called W -bounding if

1. w∗
1(X) ≤W and

2. for all x ∈ X with father x′ we have w∗
1(X − x + x′) > W .

Lemma 3.1 If w∗
1,p ≤W then |X| ≤ p for all W -bounding sets X ⊆ V .

Proof. Assume that w∗
1,p ≤W and let X∗ with |X∗| ≤ p be an optimal leader placement.

Consider an arbitrary W -bounding set X. Map each node from X∗ to its closest ancestor
in X (this allows in particular to map a node to itself). We claim that this mapping is
surjective which completes the proof.
Assume for contradiction that there is a node v ∈ X which is not in the image of

the mapping, and let u be the father of v. By property 2 there is an y ∈ Tu such that
w(y ≺ X − v + u) > W . Consider the maximal subtrees T ′ or T ∗ which contain the
node y but no node from X−v +u or X∗, respectively, as inner nodes. Obviously T ′ is a
subtree of T ∗. Hence w(y ≺ X∗) ≥ w(y ≺ X − v + u) > W which is a contradiction. 2

We propose the following algorithm: Initialize the node set X which shall be W -
bounding at the end to X ← ∅. Start at the newly introduced root node s0 and perform a
depth �rst search traversal of the tree. Whenever the traversal returns from a node v back
to its father u perform the test whether there is an y ∈ Tv such that w(y ≺ X +u) > W .
If this is the case, then add the node X ← X + v.

Lemma 3.2 Given W ∈ N, the algorithm constructs a W -bounding set.

Proof. To show property 1 assume for contradiction that w(y ≺ X) > W for some y at
the end of the algorithm. Consider the maximal subtree of T which contains y and does
not contain nodes from X as inner nodes. Let u ∈ X ∪ {s0} be the root of this subtree,
and v /∈ X be its son in the subtree. At the time where the above test was executed
for the edge (u, v) the result was w(y ≺ X ′ + u) ≤ W . Since X ′ + u ⊆ X we have also
w(y ≺ X) ≤W which contradicts the premise.
Property 2 is immediate from the construction of the test, since it can be observed

that after the test for a node v has been performed, no more nodes from the subtree Tv

are later added to X. 2

Theorem 3.3 (Discrete (1, p)-centroid on a tree) A discrete (1, p)-centroid on

a tree can be found in time O(n2 (log n)2 log w(T )).

Proof. We perform a binary search to �nd the smallest weight W ∈ [0, w(T )] such that
there is a W -bounding set X with at most p elements. By Lemma 3.1 and Lemma 3.2
the set found by this approach has follower gain w∗

1,r and is therefore an (1, p)-centroid.
A straightforward implementation would compute a (1, X)-medianoid in the current

subtree below each single edge. Using the algorithm from [SW07] this yields the proposed
running time. 2
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3.2 Absolute (1, p)-Centroid on a Tree

In order to solve the problem in the absolute case, we attempt to discretisize the instance,
i.e., we show that one can assume that the leader chooses his position always on a �nite
grid projected onto the edge set. This allows to reduce the absolute case to the discrete
case discussed above.

Theorem 3.4 (Discretization) Let I be an instance of the absolute (r, p)-centroid
problem on an arbitrary graph with edge lengths in N. Then there is an (r, p)-centroid X
of I such that d(x, v) ∈ 1

2N for each x ∈ X and each vertex v.

Proof. We assume w.l.o.g. that all edges have unit length, which can be achieved by
creating zero weighted nodes at an integer grid.
Now let Xp be an (r, p)-centroid. A point z is called (v,Xp)-isodistant [SSD07] if

there is a node v such that d(v, z) = d(v,Xp). (v,Xp)-isodistant points are of particular
importance: they are exactly the boundary points of the connected point set of all
positions where the follower claims the node v. Hence the gain of the follower is constant
within each interval limited by isodistant points.
We transform Xp into a new set X ′

p by moving each point to the nearest node, unless

the point is the mid point of an edge. Notice that each point moves by less than 1
2 by

this transformation. Moreover, also all isodistant points move by less than 1
2 .

We show that w∗
r(X

′
p) ≤ w∗

r(Xp). Assume the contrary. Then there must be an
interval between two isodistant points induced by X ′

p where the follower gains a set of
nodes which was not present in the original instance. This means that there must be
a pair (i1, i2) of two isodistant points on an edge which has interchanged its relative
position during the transformation. More exactly, let i1, i2 be the distances of the points
to one �xed endpoint of the edge before the transformation, and i′1, i

′
2 the positions after

the transformation, then we must have i1 ≥ i2 and i′1 < i′2. Obviously i′1, i
′
2 are either

endpoints or midpoints, i.e., i′1, i
′
2 ∈ {0, 1

2 , 1}.
If one of those points, say i′1, is a midpoint then the point has not moved at all, i.e.,

i1 = i′1. This implies that point i2 has moved by at least 1
2 which is impossible. On the

other hand, if both i′1, i
′
2 are endpoints, the total sum of the movement is at least 1 which

is again a contradiction. This shows the claim. 2

We point out that from this result one can only derive that the positions of the leader
are discretized to positions in 1

2N, while the positions of the follower are still unrestricted.
A direct application of the above result to the algorithm stated in the previous section

would yield a new instance where the node number and thus the running time of the
algorithm would no longer necessarily be polynomially bounded. Hence we propose a
modi�cation of the previous algorithm.
We start the algorithm on the unaltered input tree. Whenever in the original algorithm

there is a test on an edge (u, v) to be performed, we now essentially have to determine a
point on that edge which is W -bounding. By the above discretization result it turns out
that it is su�cient to restrict the tests to (exponentially many) discrete points on that
edge. Since all those sub-edges are threaded on the original edge, the interesting point
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which is W -bounding can be found by a binary search without actually creating all those
points as real nodes. This shows the following result:

Corollary 3.5 (Absolute (1, p)-centroid on a tree) An absolute (1, p)-centroid
on a tree can be found in time O(n3 log w(T ) log D) where D := maxe d(e).

Proof. The running time follows from similar arguments as above. Notice that the ab-
solute (1, X)-medianoid can be computed in O(n2) [MZH83]. 2

3.3 Discrete (1, p)-Centroid on a Pathwidth Bounded Graph

In this section we oppose the positive results for the (1, p)-centroid on trees with a
hardness result for a slightly more complex graph class, namely the class of pathwidth
bounded graphs.

Theorem 3.6 (Hardness on pathwidth bounded graphs) Determining a dis-

crete or an absolute (1, p)-centroid on a pathwidth bounded graph is NP-hard.

Proof. Let an instance of problem Partition be given as in Theorem 1.1. Construct a
graph as follows (confer Figure 5): Start with two paths a1�a2�. . . �an�A and b1�b2�. . . �
bn�B. For each i = 1, . . . , n, add a connecting path ai�ui�vi�ūi�bi and complement it
by ui�v

′
i�ūi and ui�v

′′
i �ūi to form a diamond. All edges have unit length except for the

edges on the initial a-path and b-path which have length < 1
n . The node weights are set

to w(ui) := w(ūi) := si and w(vi) := w(v′i) := w(v′′i ) = Ω for an Ω > S∗. The weigths of
the ai, bi nodes is set to 1 and �nally w(A) := w(B) := Ω + 1.
We claim: For p := n there is a discrete (1, p)-centroid of weight W := 1

2S∗+n+Ω+1
if and only if the Partition instance is solvable. (The proof for the absolute case is
identical.)
�If�: Let S′ ⊂ S be a subset with

∑
S′ = 1

2S∗. For each i = 1, . . . , n place the leader
at ui if si ∈ S′ and at ūi otherwise. The follower places at B and claims all b-nodes, plus
those nodes ūi where si ∈ S′ which results in a total gain of W .

a1

v′
1

A

Bbnb1

an

u1

v′′
1v1

ū1

a2

b2

. . .

. . .

Figure 5: Discrete (1, p)-centroid is NP-hard on a pathwidth bounded graph.
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�Only if�: Consider diamond i. If the leader places no server, the follower could claim
more than 3Ω. Hence there must be one server per diamond. If the leader places at a
v-node, the follower could still claim more than 2Ω. As a consequence, the leader places
either at ui or at ūi. Let S′ := { si | the leader places at ui }.
The follower can not claim two or more v-nodes with a single server. Hence it is optimal

to place on A or B which claims a �xed weight of Ω + 1 + n, plus the weight
∑

S′ (if
the follower places at B) or S∗ −

∑
S′ (if the follower places at A). If

∑
S′ 6= 1

2S∗ this
is larger than W .
The proof is completed by the observation that the constructed graph has path-

width 7. 2

4 Conclusions

Figure 6 provides an overview on the complexity status of the (r, p)-centroid problem.

discrete absolute

(r, p)-centroid O(pn4) on path
[Theorem 2.4]

NP-hard on path
[Theorem 2.1]

NP-hard on spider
[Theorem 2.5]

Σp

2-complete on graph
[NSW07]

(1, p)-centroid O(n2 (log n)2 log W ) on tree
[Theorem 3.3]

O(n3 log W log D) on tree
[Corollary 3.5]

NP-hard on pathwidth
bounded graph

[Theorem 3.6]

(1, 1)-centroid O(n3) on graph [CM03] O(n4m2 log mn log W ) on
graph [HL88]

Figure 6: Complexity of the (r, p)-centroid problem. W :=
∑

w(v) and D := max d(e). The

hardness results from the discrete case also apply to the absolute case.

In [SSD07] the authors approach the absolute (r, Xp)-medianoid problems by dis-

cretization, i.e., in the in�nite set of points one can identify polynomially many points
and solve the discrete problem on this �nite set. Since we have shown that on a path
the absolute (r, p)-centroid is NP-hard while the discrete is not, we conjecture that such
a discretization is unlikely to work for the absolute (r, p)-centroid problem in general.
There are a few further problems left open at this point. First, the purpose of the

current paper is to distinguish NP-hard from polynomial time solvable problem instances
and it can be assumed that the algorithms we propose here can be improved in running
time. In [NSW07] it has been shown that the (r, p)-centroid can not be approximated
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within a factor of n1−ε on general graphs. In connection with the hardness results in this
paper, approximability on paths and trees is worth investigating.
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