
False Positives and NP-Hard Sets

Christian Glaßer∗, A. Pavan†, and Stephen Travers‡

Abstract

We study the effects of faulty data on NP-hard sets. We consider hard sets for several poly-
nomial time reductions, add corrupt data and then analyze whether the resulting sets are still
hard for NP. We explain that our results are related to a deterministic variant of the notion of
program self-correction by Blum, Luby, and Rubinfeld. Among other results, we prove that
m-complete sets for NP are nonadaptively weakly deterministically self-correctable while
btt-complete sets for NP are weakly deterministically self-correctable. Our results can also
be applied to the study of Yesha’s p-closeness. In particular, we strengthen a result by
Ogiwara and Fu.

In the second part, we investigate a different setting where we add large amounts of false data
to NP-hard sets. In this setting however, we do not allow the false data to have an arbitrary
structure. Instead, the set of false positives that we add must also be NP-hard. This part
is motivated by the longstanding open question whether the union of disjoint NP-complete
sets always is NP-complete. We present improved necessary and sufficient conditions for an
affirmative answer to this question.

1 Introduction

Even small amounts of faulty data can obscure reasonable information. For instance, by filling
more and more whitespaces of a printed text with arbitrary letters, it can become quite difficult
to understand the original meaning of the text.

The same holds true for NP-complete sets. Take for instance SAT, the set of all satisfiable
formulas. By adding false positives to SAT, i.e., some unsatisfiable formulas, we can actually
lose information: If we overdo it, we end up with SAT ∪ SAT = Σ∗, and by this definitely lose
NP-completeness. But how much false positive data can NP-hard sets handle, i.e., how many
false positives can we add such that the resulting set stays NP-hard? Alternatively, how much
effort is needed to extract the original information?

In this paper, we investigate how polynomial time reductions can cope with false positives.
More precisely, we consider NP-hard sets for several polynomial time reductions and add false
positives to the sets.

Moreover, we study the effects of more general kinds of faulty data. We investigate how polyno-
mial time reductions can handle combinations of both, false positives and false negatives. This

∗Theoretische Informatik, Universität Würzburg, Germany, glasser@informatik.uni-wuerzburg.de.
†Department of Computer Science, Iowa State University, USA, pavan@cs.iastate.edu. Research supported in

part by NSF grant CCF-0430807.
‡Theoretische Informatik, Universität Würzburg, Germany, travers@informatik.uni-wuerzburg.de.

1

relates our research to the notion of program self-correction which was introduced by Blum,
Luby, and Rubinfeld [BLR93]. That notion addresses a fundamental question regarding soft-
ware reliability: Can one increase the reliability of existing software without understanding
the way it works? More precisely, let P be a program that is designed to solve a problem L.
However, we do not know whether P is correct. Is it possible to write an auxiliary program M
that uses P such that if P errs only on a small fraction of the inputs, then with high probability
M corrects the errors made by P? So M has to find the right answer with high probability by
calling P on several inputs.

Our investigations of the consequences of faulty data are related to a deterministic variant of
self-correction. In this case, the error probability of the wrapping machine M must be 0, i.e., M
must achieve certainty about the question of whether the input belongs to L. As in the original
definition, we also demand that M runs in polynomial time.

In the first part of this paper, we investigate the setting where sparse parts of NP-hard sets can
be corrupt. We prove that

• the symmetric difference of m-hard sets and arbitrary sparse sets always is tt-hard.
This implies that m-complete sets for NP are nonadaptively weakly deterministically self-
correctable.

• the symmetric difference of btt-hard sets and arbitrary sparse sets always is T-hard. This
implies that btt-complete sets are weakly deterministically self-correctable.

• the union of dtt-hard sets and arbitrary sparse sets always is T-hard

These results show that ≤p
m-hard, ≤p

btt-hard, and ≤p
dtt-hard sets do not become too easy when

false positives are added (as they stay NP-hard with respect to more general reducibilities). On
the other hand, we show that unless P = NP, there exist sparse sets S1, S2 such that SAT∪ S1

is not ≤p
btt-hard for NP, and SAT ∪ S2 is not ≤p

dtt-hard for NP.

Furthermore, we explain that one of our results about btt-reducibility is related to the notion
of p-closeness which was introduced by Yesha [Yes83]. We show that no ≤p

btt-hard set for NP
is p-close to P, unless P = NP. This strengthens a result by Ogiwara [Ogi91] and Fu [Fu93]
who proved that no ≤p

m-hard set for NP is p-close to P, unless P = NP.

In the second part, we investigate a different setting where we add large amounts of false
positives to NP-hard sets. In this setting however, we do not allow the false data to have an
arbitrary structure. Instead, the set of false positives that we add must also be NP-hard. This
part of the paper is motivated by the longstanding open question [Sel88] whether the union of
two disjoint m-complete sets for NP always is NP-complete. Observe that this question has
a negative answer if P � NP = coNP, while it is not clear what to believe in the case that
NP �= coNP. We provide improved necessary and sufficient conditions for an affirmative answer
to this question.

2 Preliminaries

We recall basic notions. Σ denotes a finite alphabet with at least two letters, Σ∗ denotes the
set of all words, and |w| denotes the length of a word w. For n ≥ 0, Σn denotes the set of all

2

words of length n. A set A ⊆ Σ∗ is nontrivial if A �= ∅ and A �= Σ∗. A tally set is a subset of
0∗. The census function of a set S is defined as censusS(n) df= |S ∩Σn|. A set S is sparse if there
exists a polynomial p such that for all n ≥ 0, censusS(n) ≤ p(n). The symmetric difference of
sets A and B is defined as A	B = (A − B) ∪ (B − A).

The language accepted by a machine M is denoted by L(M). The characteristic function of a
set A is denoted by cA. L denotes the complement of a language L and coC denotes the class of
complements of languages in C. FP denotes the class of functions computable in deterministic
polynomial time.

We recall standard polynomial-time reducibilities [LLS75]. A set B many-one-reduces to a set
C (m-reduces for short; in notation B≤p

mC) if there exists a total, polynomial-time-computable
function f such that for all strings x,

x ∈ B ⇔ f(x) ∈ C.

A set B Turing-reduces to a set C (T-reduces for short; in notation B≤p
TC) if there exists a

deterministic polynomial-time-bounded oracle Turing machine M such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

A set B truth-table-reduces to a set C (tt-reduces for short; in notation B≤p
ttC) if there exists

a deterministic polynomial-time-bounded oracle Turing machine M that queries nonadaptively
such that for all strings x,

x ∈ B ⇔ M with C as oracle accepts the input x.

A set B disjunctively truth-table-reduces to a set C (dtt-reduces for short; in notation B≤p
dttC)

if there exists a total, polynomial-time-computable function f : Σ∗ → P(Σ∗) such that for all
strings x,

x ∈ B ⇔ f(x) ∩ C �= ∅.
A set B conjunctively truth-table-reduces to a set C (ctt-reduces for short; in notation B≤p

cttC)
if there exists a total, polynomial-time-computable function f : Σ∗ → P(Σ∗) such that for all
strings x,

x ∈ B ⇔ f(x) ⊆ C.

A set B bounded truth-table-reduces to a set C (btt-reduces for short; in notation B≤p
bttC) if

there exists a k ≥ 1, a k-ary Boolean function α, and g1, . . . , gk ∈ FP such that for all x

x ∈ B ⇔ α(cC(g1(x)), cC (g2(x)), . . . , cC(gk(x))) = 1.

A set B is many-one-hard (m-hard for short) for a complexity class C if every B ∈ C m-reduces
to B. If additionally B ∈ C, then we say that B is many-one-complete (m-complete for short)
for C. Similarly, we define hardness and completeness for other reducibilities. We use the term
C-complete as an abbreviation for m-complete for C.

A set L is paddable [BH77] if there exists f(·, ·), a polynomial-time computable, injective
polynomial-time invertible function such that for all x and y,

x ∈ L ⇐⇒ f(x, y) ∈ L.

3

2.1 Weak Deterministic Self-Correction

We introduce the notion of weak deterministic self-correction which is a deterministic variant
of self-correction [BLR93] (weak because the set of errors is sparse).

Definition 2.1 L is weakly deterministically self-correctable if for every polynomial q there
exists a polynomial-time machine M such that L≤p

TP via M whenever the census of L	P is
bounded by q. If M queries nonadaptively, then L is nonadaptively weakly deterministically
self-correctable.

The set P in the definition formalizes a program for L that errs on at most q(n) inputs of
length n. So L is weakly deterministically self-correctable if there exists an auxiliary machine
M that corrects all programs that err on at most q(n) inputs of length n. The next theorem
shows that such a universal M surprisingly exists already if the single programs can be corrected
with possibly different machines. This establishes the connection between weak deterministic
self-correction and the robustness against false positives.

Theorem 2.2 L is weakly deterministically self-correctable ⇔ L≤p
TL	S for all sparse S.

Proof ⇒: This is a direct consequence of Definition 2.1.

⇐: Assume that L is not weakly deterministically self-correctable. So there exists a polynomial
q such that

∀polynomial-time machine M, ∃T ⊆ Σ∗ [censusT ≤ q and L �= L(ML�T)]. (1)

We construct a sparse S such that L �≤p
TL	S. The construction is stagewise where in step i

we construct a finite set Si such that S1 ⊆ S2 ⊆ · · · and S df=
⋃

i≥1 Si. Let M1,M2, . . . be an
enumeration of all deterministic, polynomial-time Turing machines such that Mi runs in time
ni + i. Let S0 = ∅. For i ≥ 1, the set Si is constructed as follows:

Choose n large enough such that Si−1 ⊆ Σ<n and changing the oracle with respect to words
of length ≥ n will not affect the computations that were simulated in earlier steps. Choose a
finite Ti ⊆ Σ≥n and an xi ∈ Σ∗ such that censusTi ≤ q and

xi ∈ L ⇔ xi /∈ L(ML�(Si−1∪Ti)
i). (2)

Let Si
df= Si−1 ∪ Ti.

We argue that the choice of Ti is possible. If not, then for all finite Ti ⊆ Σ≥n where censusTi ≤ q
and all xi ∈ Σ∗ it holds that

xi ∈ L ⇔ xi ∈ L(ML�(Si−1∪Ti)
i).

Let M be the polynomial-time machine obtained from Mi when queries of length < n are
answered according to (L	Si−1) ∩ Σ<n (which is a finite set). So for all T where censusT ≤ q
and all xi ∈ Σ∗ it holds that

xi ∈ L(ML�T) ⇔ xi ∈ L(ML�(Si−1∪(T∩Σ≥n))
i) ⇔ xi ∈ L(ML�(Si−1∪T ′)

i) ⇔ xi ∈ L,

4

where T ′ = T ∩ Σ≥n ∩ Σ≤|xi|i+i. Hence L = L(ML�T) for all T where censusT ≤ q. So M
contradicts (1). It follows that the choice of Ti is possible and hence also the construction of S.

The equivalence (2) makes sure that

∀i ≥ 1 [xi ∈ L ⇔ xi /∈ L(ML�S
i)]

and hence L �≤p
TL	S. �

Corollary 2.3 L is nonadaptively weakly deterministically self-correctable ⇔ L≤p
ttL	S for

all sparse S.

Proof This is shown with the same proof as Theorem 2.2, except that all machines query
nonadaptively. �

3 Partly corrupt NP-hard Sets

We investigate how polynomial reductions can cope with sparse amounts of false data in sets that
are hard for NP with respect to various reducibilities. In section 3.1 we show that altering sparse
information in m-hard sets results in sets that are at least tt-hard. In particular, all m-complete
sets are nonadaptively weakly deterministically self-correctable. Similarly, in section 3.2 we
obtain that btt-hardness softens at most to T-hardness, if sparse information is altered. In
particular, all btt-complete sets are weakly deterministically self-correctable. Moreover, we
improve results by Ogiwara [Ogi91] and Fu [Fu93], and show that no btt-hard set is p-close
to P, unless P = NP. In section 3.3 we prove that adding a sparse amount of false positives
to dtt-hard sets results in sets that are at least T-hard. However, it remains open whether
dtt-complete sets are weakly deterministically self-correctable. At the end of section 3.3, we
give evidence that this open problem is rather difficult to solve.

Finally, in subsection 3.4 we show that many-one reductions, bounded truth-table reductions,
and disjunctive truth-table reductions are provably too weak to handle false positives in SAT.

3.1 Many-One Reductions

Here we alter sparse information in m-hard sets for NP. Under the assumption P �= NP, the
resulting sets are still ctt-hard. Without the assumption, we can show that the resulting sets
are at least tt-hard. On the technical side we extend an idea from [GPSZ06] which shows how
many-one queries to NP-hard sets can be reformulated. In this way, for a given query we can
generate a polynomial number of different, but equivalent queries (Lemma 3.1). From this we
easily obtain the conditional ctt-hardness and the unconditional tt-hardness of the altered NP-
hard set. As a corollary, all m-complete sets for NP are nonadaptively weakly deterministically
self-correctable.

Lemma 3.1 Let L be ≤p
m-hard for NP and let B ∈ NP. Then there exists a polynomial r such

that for every polynomial q there is a polynomial-time algorithm A such that A on input x,

5

• either correctly decides the membership of x in B

• or outputs k = q(r(|x|)) pairwise disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for all i ∈ [1, k],

x ∈ B ⇔ yi ∈ L.

Proof Choose R ∈ P and a polynomial p such that x ∈ B if and only if there exists a w ∈ Σp(|x|)

such that (x,w) ∈ R. For x ∈ B, let wx be the lexicographically greatest such witness. The
following set is in NP.

Left(B) = {(x, y)
∣∣ x ∈ B, |y| = p(|x|), y ≤ wx}.

So there is a many-one reduction f from Left(B) to L. In particular, there exists a polynomial
r such that for all x ∈ Σ∗ and all y ∈ Σp(|x|), |f(x, y)| ≤ r(|x|). Choose a polynomial q. We now
describe the algorithm A.

1 // input x, |x| = n
2 m := p(n)
3 if (x, 1m) ∈ R then accept
4 l := 0m

5 if f(x, l) = f(x, 1m) then reject
6 Q = {f(x, l)}
7 while |Q| ≤ q(r(n)) do
8 choose a ∈ Σm such that l ≤ a ≤ 1m, f(x, a) ∈ Q, and f(x, a + 1) /∈ Q
9 l := a + 1
10 if (x, a) ∈ R then accept
11 if f(x, l) = f(x, 1m) then reject
12 Q = Q ∪ {f(x, l)}
13 end while
14 output Q

Observe that the algorithm places a string f(x, l) in Q only if f(x, l) �= f(x, 1m). Thus f(x, 1m)
is never placed in Q. So in step 8, f(x, l) ∈ Q and f(x, 1m) /∈ Q. Therefore, with binary search
we find the desired a in polynomial time. Every iteration of the while loop adds a new string
to Q or decides the membership of x in B. Thus the algorithm works in polynomial time and
when it outputs some Q, then |Q| = q(r(|x|)) and words in Q have lengths ≤ r(n).

Claim 3.2 If the algorithm outputs some Q, then for all y ∈ Q, x ∈ B ⇔ y ∈ L.

Proof If x /∈ B, then for all c ∈ [0m, 1m], (x, c) /∈ Left(B). Observe that the algorithm places
a string y in Q only if y = f(x, a) where a ∈ [0m, 1m]. Since f is a many-one reduction from
Left(B) to L, no string from Q belongs to L.

From now on we assume x ∈ B. We prove the claim by induction. Initially, Q = {f(x, 0m)}.
Clearly, x ∈ B ⇔ (x, 0m) ∈ Left(B). Since f is a many-one reduction from Left(B) to L, the
claim holds initially. Assume that the claim holds before an iteration of the while loop. The
while loop finds a node a such that f(x, a) ∈ Q, but f(x, a + 1) /∈ Q. From f(x, a) ∈ Q and
x ∈ B it follows (by induction hypothesis) that f(x, a) ∈ L. Thus (x, a) ∈ Left(B) which implies

6

a ≤ wx. At this point the algorithm checks whether a is a witness of x. If so, then it accepts
and halts. Otherwise, we have a + 1 ≤ wx. Thus (x, a + 1) ∈ Left(B) and f(x, a + 1) ∈ L. So
the claim also holds after the iteration of the while loop. �

Claim 3.3 If the algorithm accepts x (resp., rejects x), then x ∈ B (resp., x /∈ B).

Proof The algorithm accepts x only if it finds a witness of x. Thus if the algorithm accepts, then
x ∈ B. The algorithm rejects only if f(x, l) = f(x, 1m). Note that f(x, l) ∈ Q, so by the previous
claim, x ∈ B ⇔ f(x, l) ∈ L. Observe that (x, 1m) /∈ Left(B). Thus f(x, l) = f(x, 1m) /∈ L and
hence x /∈ B. �

This finishes the proof of the lemma. �

Theorem 3.4 The following statements are equivalent.

1. P �= NP

2. If L is ≤p
m-hard for NP and S is sparse, then L ∪ S is ≤p

ctt-hard for NP.

Proof 2 ⇒ 1: If P = NP, then L = Σ∗ − {0} and S = {0} are counter examples for 2.

1 ⇒ 2: Assume P �= NP and let L and S be as in statement 2. If L is sparse, then there
exist sparse coNP-hard sets and hence P = NP [For79]. So it follows that L is not sparse and
L ∪ S �= Σ∗. Hence there exist elements x0 /∈ L ∪ S and x1 ∈ L ∪ S.

Let B ∈ NP; we show B≤p
cttL ∪ S. First, choose the polynomial r according to Lemma 3.1.

Let q be a polynomial such that |S ∩ Σ≤n| < q(n). Lemma 3.1 provides an algorithm A that
on input x either correctly decides the membership of x in B, or outputs k = q(r(|x|)) pairwise
disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for all i ∈ [1, k], (x ∈ B ⇔ yi ∈ L). Define the following
polynomial-time-computable function.

g(x) df=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 : if A(x) rejects

x1 : if A(x) accepts

(y1, . . . , yk) : if A(x) returns Q = {y1, . . . , yk}

Note that in the last case, k = q(r(|x|)) and the yi have lengths ≤ r(|x|). So at least one of the
yi does not belong to S. From A’s properties stated in Lemma 3.1 it follows that B≤p

cttL ∪ S
via g. �

Theorem 3.5 If L is ≤p
m-hard for NP and S is sparse, then L	S is ≤p

tt-hard for NP.

Proof For B ∈ NP we show B≤p
ttL	S. First, choose the polynomial r according to Lemma 3.1.

Let q be a polynomial such that 2 · |S ∩Σ≤n| < q(n). Lemma 3.1 provides an algorithm A that

7

on input x either correctly decides the membership of x in B, or outputs k = q(r(|x|)) pairwise
disjoint y1, . . . , yk ∈ Σ≤r(|x|) such that for all i ∈ [1, k], (x ∈ B ⇔ yi ∈ L). We describe a
polynomial-time oracle machine M on input x: If A(x) accepts, then M accepts. If A(x)
rejects, then M rejects. Otherwise, A(x) returns elements y1, . . . , yk ∈ Σ≤r(|x|). M queries all
these elements and accepts if and only if at least k/2 of the answers were positive.

Clearly, if A(x) accepts or rejects, then (x ∈ B ⇔ M(x) accepts). So assume that A(x) returns
elements yi. S contains less than q(r(|x|))/2 = k/2 words of length ≤ r(|x|). So more than k/2
of the yi do not belong to S. Hence, for more than k/2 of the yi it holds that

x ∈ B ⇔ yi ∈ L ⇔ yi ∈ L	S.

Therefore, x belongs to B if and only if at least k/2 of the yi belong to L	S. This shows that
B≤p

ttL	S via M . �

Corollary 3.6 If L is ≤p
m-hard for NP and S is sparse, then L ∪ S is ≤p

tt-hard for NP.

Proof Note that S′ df= S − L is sparse. By Theorem 3.5, L	S′ = L ∪ S is ≤p
tt-hard for NP. �

Corollary 3.7 All ≤p
m-complete sets for NP are nonadaptively weakly deterministically self-

correctable.

Proof Let L be ≤p
m-complete for NP. By Corollary 3.5, for all sparse S, L≤p

ttL	S. By
Corollary 2.3, L is nonadaptively weakly deterministically self-correctable. �

3.2 Bounded Truth-Table Reductions

We show that altering sparse information in btt-hard sets for NP results in sets that are still
T-hard for NP. Our proof builds on the left-set technique by Ogihara and Watanabe [OW91].
First, in Lemma 3.8 we isolate the combinatorial argument for the case that a Turing machine
has oracle access to the symmetric difference of a btt-hard set B and a sparse set S. Then, with
this argument at hand, we perform an Ogihara-Watanabe-tree-pruning in the computation tree
of a given NP-machine. Finally this shows that the acceptance of the latter machine can be
determined in polynomial time with access to the oracle B	S. As a corollary we obtain that
all btt-complete sets in NP are weakly deterministically self-correctable. Moreover, we obtain
the following improvement of results by Ogiwara [Ogi91] and Fu [Fu93]: No btt-hard set for NP
is p-close to P, unless P = NP.

For our combinatorial argument we need to define the following polynomials rk for k ≥ 0.

r0(n) df= 2
rk(n) df= 2k(2kn + 2)(rk−1(n))k for k ≥ 1

8

Lemma 3.8 For every k ≥ 0 there exists a polynomial-time oracle transducer Mk with the
following properties: For every input (0n, V) where V = (vi,j) ∈ (Σ≤n)k×rk(n) and for all sets
B,S ⊆ Σ≤n where |S| ≤ n the computation MB�S

k (0n, V) outputs some b ∈ (1, rk(n)] such that

∃a, c ∈ [1, rk(n)] such that a < b ≤ c and ∀i ∈ [1, k], (vi,a ∈ B ⇔ vi,c ∈ B). (3)

Proof If k = 0, then we are done by defining M0 as the transducer that always outputs 2. So
assume k ≥ 1. We describe the oracle transducer MO

k on input (0n, V).

• Case 1: V contains a row m in which some word w appears at least s
df= rk−1(n) times.

So there exist columns j1 ≤ j2 ≤ · · · ≤ js such that vm,ji = w for i ∈ [1, s]. Let V ′ be the
matrix that consists of the columns j1, j2, . . . , js of V where the m-th row is deleted, i.e.,

V ′ df=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1,j1 v1,j2 · · · v1,js

v2,j1 v2,j2 · · · v2,js

...
...

...
vm−1,j1 vm−1,j2 · · · vm−1,js

vm+1,j1 vm+1,j2 · · · vm+1,js

...
...

...
vk,j1 vk,j2 · · · vk,js

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

V ′ is a matrix of dimension (k − 1) × rk−1(n). Let b′ df= MO
k−1(0

n, V ′) and return b df= jb′ .

• Case 2: V does not contain rows in which a word appears at least rk−1(n) times.
We will hide several columns in V and will finally define b as the number of some unhidden
column. First, we hide columns in V such that the remaining matrix has no rows in which
a word appears more than once. More precisely, we hide column j ≥ 2 in V if and only if

∃i ∈ [1, k]∃j′ ∈ [1, j − 1], (vi,j = vi,j′).

We will see that at least 2k(2kn + 2) columns remain unhidden. In a second step, for
each unhidden column j, we query the words v1,j, v2,j , . . . , vk,j and obtain the vector
of answers aj = (a1,j , a2,j, . . . , ak,j). There are at most 2k different such vectors. Let
a = (a1, a2, . . . , ak) be the vector that appears most often and note that at least 2kn + 2
unhidden columns j1 < j2 < · · · < j2kn+2 share this vector. Return b

df= jkn+2.

This finishes the description of the oracle transducer Mk.

An induction on k ≥ 0 shows that Mk works in polynomial time. So it remains to show that
Mk has the properties stated in the lemma. This is done by induction on k ≥ 0. For k = 0, M0

always outputs b = 2 and hence (3) is satisfied trivially by choosing a = 1 and c = 2.

For the induction step, let k ≥ 1. Let (0n, V), B, and S be as in the lemma and let b denote
the output of the computation MB�S

k (0n, V). We show that b satisfies condition (3).

1. Assume that MB�S
k (0n, V) computes the output according to Case 1. Let v′i,j be the element

in row i and column j of V ′, i.e., V ′ = (v′i,j). So vi,j and v′i,j translate to each other as follows.

v′d,e = vd,je for d ∈ [1,m − 1]
v′d,e = vd+1,je for d ∈ [m,k − 1]

9

Mk defines b′ df= MB�S
k−1 (0n, V ′). By induction hypothesis,

∃a′, c′ ∈ [1, rk−1(n)] such that a′ < b′ ≤ c′ and ∀i ∈ [1, k − 1], (v′i,a′ ∈ B ⇔ v′i,c′ ∈ B).

The translation of the v′i,j to the corresponding vi,j yields:

∃a′, c′ ∈ [1, rk−1(n)] such that a′ < b′ ≤ c′,∀i ∈ [1,m − 1], (vi,ja′ ∈ B ⇔ vi,jc′ ∈ B) and
∀i ∈ [m,k − 1], (vi+1,ja′ ∈ B ⇔ vi+1,jc′ ∈ B)

By the definition of Mk, b = jb′ . So with a df= ja′ and c df= jc′ it holds that a < b ≤ c and

∀i ∈ [1, k] − {m}, (vi,a ∈ B ⇔ vi,c ∈ B).

Together with vm,ja′ = vm,jc′ = w we obtain

∀i ∈ [1, k], (vi,a ∈ B ⇔ vi,c ∈ B).

This proves (3) if the output is made according to Case 1.

2. Assume now that MB�S
k (0n, v) computes the output according to Case 2. So V does not

contain rows in which a word appears at least rk−1(n) times. If we hide repeated words in row 1,
then at least rk(n)/rk−1(n) columns remain unhidden. If we additionally hide repeated words in
row 2, then at least rk(n)/(rk−1(n))2 columns remain unhidden. If we treat the remaining rows
in the same way, then at least rk(n)/(rk−1(n))k = 2k(2kn+2) columns remain unhidden. After
querying the oracle, the algorithm finds unhidden columns j1 < j2 < · · · < j2kn+2 that share
the same vector of answers. Let Va be the matrix that consists of the columns j1, . . . , jkn+1 and
let Vc be the matrix that consists of the columns jkn+2, . . . , j2kn+2. Since these columns are
unhidden, both matrices, Va and Vc, have no rows with multiple occurrences of words. From
|S| ≤ n it follows that at most n elements of a row (of Va or Vc) belong to S. So if we delete in Va

(resp., Vc) all columns that contain words from S, then we delete at most kn columns and so at
least one column survives. This means that there exist a′ ∈ [1, kn+1] and c′ ∈ [kn+2, 2kn+2]
such that the columns ja′ and jc′ in V do not contain words from S. We already know that
both columns share the same vector of answers, i.e.,

∀i ∈ [1, k], (vi,ja′ ∈ B	S ⇔ vi,jc′ ∈ B	S).

Since none of these words belongs to S,

∀i ∈ [1, k], (vi,ja′ ∈ B ⇔ vi,jc′ ∈ B).

By the definition of Mk, b = jkn+2. So with a
df= ja′ and c

df= jc′ it holds that a < b ≤ c and

∀i ∈ [1, k], (vi,a ∈ B ⇔ vi,c ∈ B).

This proves (3) if the output is made according to Case 2. �

Theorem 3.9 If B is ≤p
btt-hard for NP and S is sparse, then B	S is ≤p

T-hard for NP.

Proof The proof uses the left-set technique by Ogihara and Watanabe [OW91] where
Lemma 3.8 provides the argument for deleting a single node in the left tree.

10

Let q be a polynomial such that |S ∩ Σ≤n| ≤ q(n). Let L be a ≤p
m-complete set for NP that is

accepted by the nondeterministic Turing machine N in time p. Define the left set of L as

Left(L) df={(x, y)
∣∣ |y| ≤ p(|x|) and ∃z ∈ Σp(|x|), z ≤ y1p(|x|)−|y|, N(x) accepts along path z}.

Left(L) belongs to NP and so Left(L)≤p
bttB. Hence there exists a k ≥ 1, a k-ary Boolean

function α, and g1, . . . , gk ∈ FP such that for all x, y

(x, y) ∈ Left(L) ⇔ α(cB(g1(x, y)), cB(g2(x, y)), . . . , cB(gk(x, y))) = 1.

Let p′ be a polynomial such that for all i ∈ [1, k], |gi(x, y)| ≤ p′(|xy|). The following algorithm
uses the oracle B	S and decides L on input x.

1 m := p′(|x| + p(|x|)) // maximal length of queries of the btt-reduction
2 n := q(m) // maximal number of words in S ∩ Σ≤m

3 T0 := (ε) // list containing the empty word
4 for l = 0 to p(|x|) // for all stages of the left-tree
5 Tl := list obtained from Tl−1 by replacing every y ∈ Tl−1 by y0, y1
6 while(Tl contains at least rk(n) elements)
7 let y1, . . . , yrk(n) be the first elements on Tl
8 V := (vi,j) ∈ (Σ≤m)k×rk(n) where vi,j := gi(x, yj) for i ∈ [1, k], j ∈ [1, rk(n)]
9 determine some b ∈ (1, rk(n)] such that

∃a, c ∈ [1, rk(n)], a < b ≤ c,∀i ∈ [1, k], (vi,a ∈ B ⇔ vi,c ∈ B)
10 delete yb from Tl
11 end while
12 next l
13 if Tp(|x|) contains an accepting path of N(x) then accept else reject

Step 9 needs further explanation, since here we need the polynomial-time oracle transducer Mk

constructed in Lemma 3.8. Let B′ df= B ∩ Σ≤m and S′ df= S ∩ Σ≤m. Note that B′, S′ ⊆ Σ≤n,
|S′| ≤ n, and V ∈ (Σ≤n)k×rk(n). By Lemma 3.8, MB′�S′

k (0n, V) outputs some b ∈ (1, rk(n)]
such that

∃a, c ∈ [1, rk(n)], a < b ≤ c,∀i ∈ [1, k], (vi,a ∈ B′ ⇔ vi,c ∈ B′).

It is easy to simulate access to the oracle B′	S′ = (B	S)∩Σ≤m, since the algorithm presented
above has access to the oracle B	S. So we can simulate the computation MB′�S′

k (0n, V) in
polynomial time. From B′ = B∩Σ≤m and |vi,j | ≤ m it follows that vi,j ∈ B′ ⇔ vi,j ∈ B. Hence

∃a, c ∈ [1, rk(n)], a < b ≤ c,∀i ∈ [1, k], (vi,a ∈ B ⇔ vi,c ∈ B),

which shows that in polynomial time we find the b claimed in step 9.

Observe that for all i ∈ [1, p(|x|)], Ti is always a sorted list of at most 2rk(n) pairwise disjoint
words of length i. (The loop 6–11 deletes elements from Ti until there are no more than rk(n); so
the next iteration of the loop 4–12 starts with a list Ti+1 that contains at most 2rk(n) elements.)
This shows that the presented algorithm works in polynomial time.

Claim 3.10 If x ∈ L and l ∈ [0, p(|x|)], then after the l-th pass of the loop 4–12, the list Tl

contains an element y that is a prefix of the left-most accepting path of N(x).

11

Proof We show this by induction on l ≥ 0. The induction base, the case l = 0, is trivial. For
the induction step let l ≥ 1 and let z ∈ Σp(|x|) denote the left-most accepting path of N(x). By
induction hypothesis, Tl−1 contains a prefix of z. So after step 5, Tl contains a prefix of z. Let
y1, y2, . . . be the elements of Tl (remember that they are lexicographically ordered and pairwise
disjoint). By line 9, we only delete an element yb from Tl, if there exist a, c ∈ [1, rk(n)] such
that a < b ≤ c and

∀i ∈ [1, k], (vi,a ∈ B ⇔ vi,c ∈ B). (4)

Assume such a yb is a prefix of z. So (x, ya) /∈ Left(L) and (x, yb) ∈ Left(L). By (4),

(cB(v1,a), cB(v2,a), . . . , cB(vk,a)) = (cB(v1,c), cB(v2,c), . . . , cB(vk,c))

and hence

α(cB(v1,a), cB(v2,a), . . . , cB(vk,a)) = α(cB(v1,c), cB(v2,c), . . . , cB(vk,c)).

The left-hand side is 1 if and only if (x, ya) ∈ Left(L); the right-hand side is 1 if and only
if (x, yc) ∈ Left(L). So (x, ya) ∈ Left(L) ⇔ (x, yc) ∈ Left(L) and hence (x, yc) /∈ Left(L).
However, (x, yb) ∈ Left(L) although yb ≤ yc. This is a contradiction and hence, from the list
Tl, we do not delete prefixes of z. This proves Claim 3.10. �

Now consider line 13. If x ∈ L, then by Claim 3.10, Tp(|x|) contains the left-most accepting path
of N(x) and so the algorithms accepts. If x /∈ L, then the algorithm rejects. So the algorithm
demonstrates that L≤p

TB	S. �

Corollary 3.11 If L is ≤p
btt-hard for NP and S is sparse, then L ∪ S is ≤p

T-hard for NP.

Proof Note that S′ df= S − L is sparse. By Theorem 3.9, L	S′ = L ∪ S is ≤p
T-hard for NP. �

Corollary 3.12 All ≤p
btt-complete sets for NP are weakly deterministically self-correctable.

Proof Let L be ≤p
btt-complete for NP. By Theorem 3.9, for all sparse S, L≤p

TL	S. By
Theorem 2.2, L is weakly deterministically self-correctable. �

Yesha [Yes83] defined two sets A and B to be close if the census of their symmetric difference,
A	B, is a slowly increasing function. Accordingly, A and B are p-close, if the census of A	B
is polynomially bounded. A is p-close to a complexity class C, if there exists some B ∈ C such
that A and B are p-close. Yesha [Yes83] poses the question of whether ≤p

m- or ≤p
T-hard sets for

NP can be p-close to P (assuming P �= NP). Schöning [Sch86] showed that no ≤p
T-hard set for

NP is p-close to P, unless PH = ΔP
2 . Ogiwara [Ogi91] and Fu [Fu93] proved that no ≤p

m-hard
set for NP is p-close to P, unless P = NP. We can strengthen the latter result as follows.

Corollary 3.13 No ≤p
btt-hard set for NP is p-close to P, unless P = NP.

Proof Assume that B is ≤p
btt-hard for NP and B is p-close to some A ∈ P. So S df= A	B is

sparse and it holds that A = B	S. By Theorem 3.9, A is ≤p
T-hard for NP and hence P = NP.

�

12

3.3 Disjunctive Truth-Table Reductions

In this section we analyze how disjunctive truth-table reductions can handle false positives. We
show that the union of dtt-hard sets with arbitrary sparse sets is always T-hard.

Theorem 3.14 Let L be ≤p
dtt-hard for NP, and let S be a sparse set. Then L ∪ S is ≤p

T-hard
for NP.

Proof Let L ⊆ Σ∗ and S ⊂ Σ∗ be as above, and let M be a nondeterministic Turing-machine
whose running time on input x is bounded by polynomial p. Without loss of generality, we
assume that on input x, M develops precisely 2p(|x|) nondeterministic computation paths. Each
path can hence be identified by a word z ∈ {0, 1}p(|x|). For a path z ∈ {0, 1}p(|x|), z �= 0p(|x|), we
denote the path on the left of z with z′ − 1.

Let A be the language accepted by M . We will show that A≤p
TL ∪ S. The left-set of A is

defined as

Left(A) df={(x, y)
∣∣ there exists a z ≥lex y such that M accepts x along z}.

From A ∈ NP it follows that Left(A) ∈ NP. Since L is ≤p
dtt-hard for NP, there exists a function

f such that Left(A)≤p
dttL via f : Σ∗ → P(Σ∗), f ∈ FP. By the definition of ≤p

dtt it holds that
(x, y) ∈ Left(A) ⇔ f(x, y) ∩ L �= ∅.
Without loss of generality, we assume that M does neither accept on its first computation path
nor on its last path. Furthermore, we define

f+(x, y) df= f(x, y) ∩ (L ∪ S)

Let q be a polynomial such that for all x ∈ Σ∗ and for all y ∈ {0, 1}p(|x|) it holds that

q(|x|) > censusS(|f(x, y)|)

We will construct a deterministic polynomial time oracle machine N such that the following
holds for all x:

x ∈ A ⇔ ∃y ∈ {0, 1}p(|x|)((x, y) ∈ Left(A)
)

⇔ ∃y ∈ {0, 1}p(|x|)(f(x, y) ∩ L �= ∅)
⇔ NL∪S accepts x.

We describe how N works on input x ∈ Σ∗.

1. i := 0

2. zi := 1p(|x|) //current position in the tree, start with rightmost path

3. Fi := f+(x, zi) //positively answered oracle queries

4. while i < q(|x|)
5. if f+(x, 0p(|x|)) − Fi = ∅ then reject

13

6. determine zi+1 ∈ {0, 1}p(|x|), zi+1 <lex zi such that
(
f+(x, zi+1) − Fi

) �= ∅ and(
f+(x, zi+1 + 1) − Fi

)
= ∅

7. if M accepts along zi+1 then accept

8. Fi+1 := Fi ∪ f+(x, zi+1) //cull new element from S− L

9. i := i + 1

10. end while

11. reject //this statement is never reached

We show that N is a polynomial time machine: As the number of passes of the while loop is
bound by a polynomial, it suffices to argue that step 6 can be performed in polynomial time.
Note that N can compute the set f+(x, z) by querying the oracle L ∪ S for all elements in
f(x, z). Step 6 is an easy binary search: Start with z1 := 0p(|x|) and z2 := 1p(|x|). Let z′ be the
middle element between z1 and z2. If

(
f+(x, z′) − Fi

)
= ∅ then z2 := z′ (i.e., the binary search

continues on the left) else z1 := z′ (i.e., the binary search continues on the right). Choose the
middle element between z1 and z2 and repeat the above steps until a suitable path is found.
Consequently, we obtain that N runs in polynomial time.

We now argue that the algorithm is correct, i.e., N accepts x if and only if x ∈ A.

For the only-if part, let us assume that N accepts x. If N accepts in line 7 then it has found
an accepting path of M on input x. Hence, x ∈ A. This proves the only-if part.

We now prove the if-part. Let x ∈ A, so there exists a rightmost accepting path of M on input
x, say zright. As M does neither accept on the leftmost nor on the rightmost path, it holds that
0p(|x|) <lex zright <lex 1p(|x|).

We explain that during the execution of the while loop, the accepting path zright is found.

Claim 3.15 For 0 ≤ i ≤ q(|x|), if zright was not found during the first i iterations of the while
loop, then the following holds after i iterations:

1. #Fi ≥ i

2. zi >lex zright

3. Fi ⊆ S − L

4. f+(x, 0p(|x|)) − Fi �= ∅

Proof We prove the claim by induction over i. Let i = 0. Since M does not accept on its
rightmost path, it follows that F0∩L = ∅ and hence F0 = f+(x, 1p(|x|)) ⊆ S−L. Moreover, z0 =
1p(|x|) >lex zright. As x ∈ L, it follows that f+(x, 0p(|x|)) ∩ L �= ∅. Hence f+(x, 0p(|x|)) − F0 �= ∅.
Assume the claim does hold for an i ∈ {0, . . . , q(|x|) − 1}. So zright was not found during the
first i iterations of the while loop.

Observe that since M accepts on path zright, it holds for all z′ ∈ {0, 1}p(|x|) that

• z′ ≤lex zright ⇒ f(x, z′) ∩ L �= ∅ ⇒ f+(x, z′) ∩ L �= ∅ and

14

• z′ >lex zright ⇒ f(x, z′) ∩ L = ∅ ⇒ f+(x, z′) ∩ L = ∅.

Since i < q(|x|), the algorithm proceeds with the i+1-th iteration. By the induction hypothesis,
it holds that f+(x, 0p(|x|))−Fi �= ∅, so the condition in line 5 is not satisfied, hence the while-loop
is not left prematurely.

N then determines zi+1 such that zi+1 <lex zi, f+(x, zi+1)−Fi �= ∅, and f+(x, zi+1 +1)−Fi = ∅.
Clearly, such a zi+1 must exist since f+(x, zright) (which is on the left of zi) contains at least
one element from L which cannot have been culled before because Fi ⊆ S −L by the induction
hypothesis. The same holds true for all f+(x, z′) where z′ <lex zright. If zi+1 = zright, this means
that the algorithm has found zright in the i + 1-th iteration of the while loop. In this case, we
are done.

So let us assume for the sake of contradiction that zi+1 <lex zright. Then f+(x, zi+1 +1)∩L �= ∅.
This is a contradiction because f+(x, zi+1 + 1) ⊆ Fi ⊆ S − L. For this reason, zi+1 cannot
be the path chosen in the i+1-th iteration. It follows that zi+1 >lex zright. This implies
f+(x, zi+1) ⊆ S − L.

Recall that f+(x, zi+1) − Fi �= ∅. This means that f+(x, zi+1) contains an element from S − L
that has not been culled before, i.e., an element which is not in Fi. It follows that #Fi+1 ≥
#Fi + 1 ≥ i + 1. Finally, f+(x, zi+1) ∩ L = ∅ implies that f+(x, 0p(|x|))− Fi+1 �= ∅. This proves
the claim. �

By Claim 3.15 either zright is found during the first q(|x|) iterations of the while loop or Fq(|x|)
contains at least q(|x|) elements from S − L. Together with q(|x|) > censusS(|f(x, y)|), we
obtain that S − L cannot contain this many elements. We conclude that zrightis found during
the first q(|x|) iterations of the while loop. This proves the theorem. �

Contrary to sections 3.1 and 3.2, we do not know how dtt-reductions react towards false neg-
atives. For that reason, we cannot deduce that dtt-complete sets are weakly deterministically
self-correctable. We can provide evidence that the question is indeed difficult. We explain that
it is related to the longstanding open question [HOW92] of whether the existence of sparse
dtt-complete sets implies P = NP.

Corollary 3.16 If dtt-complete sets for NP are weakly deterministically self-correctable, then
the existence of sparse dtt-complete sets for NP implies P = NP.

Proof We assume that dtt-complete sets for NP are weakly deterministically self-correctable
and that there exists a sparse set L such that L is dtt-complete for NP. Since L is weakly deter-
ministically self-correctable, it follows from Theorem 2.2 that for all sparse sets S, L≤p

TL	S.
It follows that L≤p

TL	L and hence L≤p
T∅. This implies P = NP. �

3.4 Non-Robustness against sparse sets of False Positives

So far we concentrated on reductions strong enough to manage partly corrupt NP-hard sets.
Now we ask for reductions that are provably too weak to handle such corrupt information. Under

15

the assumption P �= NP we show that many-one reductions, bounded truth-table reductions,
and disjunctive truth-table reductions are weak in this sense. More precisely, altering sparse
information in SAT can result in sets that are not ≤p

m-hard, not ≤p
btt-hard, and not ≤p

dtt-hard
for NP. On the other hand, Corollary 3.19 shows that similar results for ≤p

ctt, ≤p
tt, and ≤p

T

would imply the existence of NP-complete sets that are not paddable. This explains that such
results are hard to obtain.

Theorem 3.17 The following statements are equivalent.

1. P �= NP

2. There exists a sparse S such that SAT ∪ S is not ≤p
btt-hard for NP.

3. There exists a sparse S such that SAT ∪ S is not ≤p
dtt-hard for NP.

Proof 1 ⇒ 2: Assume P �= NP and let M1,M2, . . . be an enumeration of polynomial-time
oracle Turing machines such that Mi runs in time ni + i and queries at most i strings (so
the machines represent all ≤p

btt-reduction functions). We construct an increasing chain of sets
S1 ⊆ S2 ⊆ · · · and finally let S df=

⋃
i≥1 Si. Let S0

df={ε} and define Sk for k ≥ 1 as follows:

1. let n be greater than k and greater than the length of the longest word in Sk−1

2. let T
df=(SAT ∩ Σ≤n) ∪ Sk−1 ∪ Σ>n

3. choose a word x such that MT
k (x) accepts if and only if x /∈ SAT

4. let Q be the set of words that are queried by MT
k (x) and that are longer than n

5. let Sk
df= Sk−1 ∪ Q

We first observe that the x in step 3 exists: If not, then L(MT
k) = SAT and T is cofinite. Hence

SAT ∈ P which is not true by assumption. So the described construction is possible.

If a word w of length j is added to S in step k (i.e., w ∈ Sk − Sk−1), then in all further steps,
no words of length j are added to S (i.e., for all i > k, Si ∩ Σj = Sk ∩ Σj). In the definition of
Sk it holds that |Q| ≤ k ≤ n. So in step 5, at most n words are added to S and these words are
of length greater than n. Therefore, for all i ≥ 0, |S ∩ Σi| ≤ i and hence S is sparse.

Assume SAT∪S is ≤p
btt-hard for NP. So there exists a k ≥ 1 such that SAT≤p

bttSAT∪S via Mk.
Consider the construction of Sk and let n, T , x, and Q be the corresponding variables. In all
steps i ≥ k, S will be only changed with respect to words of lengths greater than n. Therefore,
S ∩ Σ≤n = Sk−1 and hence

∀w ∈ Σ≤n, (w ∈ SAT ∪ S ⇔ w ∈ T). (5)

If q is an oracle query of MT
k (x) that is longer than n, then q ∈ Q and hence q ∈ Sk ⊆ S.

So q ∈ SAT ∪ S and q ∈ T . Together with (5) this shows that the computations MT
k (x)

and MSAT∪S
k (x) are equivalent. From step 3 it follows that MSAT∪S

k (x) accepts if and only if
x /∈ SAT. This contradicts the assumption that Mk reduces SAT to SAT ∪ S. Hence SAT ∪ S
is not ≤p

btt-hard for NP.

16

2 ⇒ 1: If P = NP, then for all sparse S, SAT ∪ S is trivially ≤p
m-complete for NP.

1 ⇔ 3: Analogous to the equivalence of 1 and 2; we only sketch the differences. We use an
enumeration of ≤p

dtt-reduction machines (i.e., machines that nonadaptively query an arbitrary
number of strings and that accept if at least one query is answered positively). Moreover, we
change the definition of Sk in step 5 such that

Sk
df=

⎧⎨
⎩

Sk−1 : if Q = ∅
Sk−1 ∪ {q} : if Q �= ∅, where q = max(Q).

This makes sure that S is sparse.

Assume SAT≤p
dttSAT ∪ S via Mk. If no query of MT

k (x) is longer than n, then MT
k (x) and

MSAT∪S
k (x) are equivalent computations and hence L(MSAT∪S

k) �= SAT by step 3. Otherwise,
there exists a query that is longer than n. Let q be the greatest such query and note that
q ∈ Sk ⊆ S. This query gets a positive answer in the computation MT

k (x). So the computation
accepts and by step 3, x /∈ SAT. In the computation MSAT∪S

k (x), the query q also obtains a
positive answer and hence the computation accepts. So also in this case, L(MSAT∪S

k) �= SAT.
This shows that SAT ∪ S is not ≤p

dtt-hard for NP. �

This tells us that while ≤p
m-hard, ≤p

btt-hard, and ≤p
dtt-hard sets do not become too easy when

false positives are added (as they stay NP-hard with respect to more general reducibilities, confer
sections 3.1, 3.2, and section 3.3), they are not robust against sparse sets of false positives. The
next result says that this is different for hard sets which are paddable.

Proposition 3.18 Let L be paddable and let S be sparse.

1. If L is ≤p
tt-hard for NP, then L ∪ S is ≤p

tt-hard for NP.

2. If L is ≤p
T-hard for NP, then L ∪ S is ≤p

T-hard for NP.

3. If L is ≤p
ctt-hard for NP, then L ∪ S is ≤p

ctt-hard for NP.

Proof We start with the first statement. Let M be a polynomial-time oracle Turing machine
that witnesses SAT≤p

ttL and let p be a polynomial bounding the running time of M . Without
loss of generality we may assume that the words queried by M(x) are pairwise different. Let f
be a padding function for L and let q be a polynomial bounding both, the computation time
for f and the census of S.

We describe a machine M ′ with oracle L ∪ S on input x: First, M ′ simulates M(x) until
the list of all queries Q = (q1, . . . , qm) is computed. Let k = q(q(2p(|x|))) and let Qj =
(f(q1, j), . . . , f(qm, j)) for j ∈ [0, 2k]. M ′ queries all words in Qj for j ∈ [0, 2k]. Let Aj be the
corresponding vectors of answers. For every j ∈ [0, 2k], M ′ continues the simulation of M by
answering the queries according to Aj. M ′ accepts if and only if the majority of the simulations
accepts.

We argue that SAT≤p
ttL ∪ S via M ′. Note that all f(qi, j) are pairwise different, since f

is injective. For sufficiently large x it holds that |qi| ≤ p(|x|) and |j| ≤ p(|x|). So |f(qi, j)| ≤
q(2p(|x|)) and hence at most k of the words f(qi, j) belong to S. Therefore, for the majority of all

17

j ∈ [0, 2k], Qj does not contain a word from S. From the padding property f(qi, j) ∈ L ⇔ qi ∈ L
it follows that for the majority of all j ∈ [0, 2k], Aj equals the vector of answers occurring in the
computation ML(x). Hence the majority of all simulations shows the same acceptance behavior
as ML(x). This shows SAT≤p

ttL ∪ S via M ′ and hence L ∪ S is ≤p
tt-hard for NP. This shows

the first statement.

The remaining statements are shown analogously, where in the ≤p
ctt-case M ′ accepts if and only

if all simulations accept. �

In Theorem 3.17 we have seen that ≤p
m-complete, ≤p

btt-complete, and ≤p
dtt-complete sets are not

robust against sparse sets of false positives. The following corollary of Proposition 3.18 explains
the difficulty of showing the same for ≤p

ctt-complete, ≤p
tt-complete, and ≤p

T-complete sets.

Corollary 3.19 1. If there exists a ≤p
tt-complete set L in NP and a sparse S such that L∪S

is not ≤p
tt-hard for NP, then there exist ≤p

tt-complete sets in NP that are not paddable.

2. If there exists a ≤p
T-complete set L in NP and a sparse S such that L∪ S is not ≤p

T-hard
for NP, then there exist ≤p

T-complete sets in NP that are not paddable.

3. If there exists a ≤p
ctt-complete set L in NP and a sparse S such that L∪S is not ≤p

ctt-hard
for NP, then there exist ≤p

ctt-complete sets in NP that are not paddable.

4 Unions of Disjoint NP-complete Sets

In this section we consider what happens when the set of false positives that is added to an
NP-complete set, itself is NP-complete. This is equivalent to the question of whether unions of
disjoint NP-complete sets remain NP-complete. We give sufficient and necessary conditions for
this statement to be true. We start with a few definitions.

A set S is dense if there is a constant k such that for every n, S contains a string whose length
lies between n and nk.

A set A is t(n)-printable, if there is a machine M such that for all n, M(1n) outputs the set
A∩Σ≤n after at most t(n) steps. A set A is weakly t(n)-printable, if there exists a dense S ⊆ A
that is t(n)-printable.

A set L is t(n)-immune, if L is infinite and no infinite subset of L is decidable in time t(n). L
is t(n)-printable-immune, if L is infinite and no infinite subset of L is t(n)-printable.

Hypothesis A: There is a language L ⊆ SAT such that L ∪ SAT is not 22n-printable-immune.

Hypothesis B: For all L ⊆ SAT where L ∈ NP, there is a polynomial p such that L ∪ SAT is
weakly p(n)-printable.

Informally, Hypothesis A states that no 22n-time bounded algorithm can output strings from
L ∪ SAT infinitely often, for some L in NP that is disjoint from SAT. Whereas Hypothesis B
states that for every L in NP, that is disjoint from SAT, there is a polynomial-time algorithm
that outputs strings from SAT ∪ L. Though Hypothesis A is not the converse of Hypothesis B,
it is somewhat close to being converse.

18

We will show that if Hypothesis A is true, then there exist two disjoint NP-complete sets whose
union is not NP-complete. On the other hand, we show that if the Hypothesis B is true, then
unions of disjoint NP-complete sets remain NP-complete.

The following proposition is easy to prove.

Proposition 4.1 If a set L is not t(n)-immune, then L has a 2nt(n)-printable subset.

Theorem 4.2 If Hypothesis A is true, then there exist two disjoint NP-complete sets whose
union is not NP-complete.

Proof Let L be a set disjoint from SAT such that L ∪ SAT is 22n-printable-immune. By
[GPSS06, Theorem 5.9], it suffices to exhibit an NP-complete set A and disjoint set B in NP
such that A ∪ B is not NP-complete.

Since L ∈ NP, there is a constant k ≥ 1 such that L can be decided in time 2nk
. Let t1 = 2,

and ti+1 = tk
2

i . Consider the following sets.

E = {x | t
1/k
i ≤ |x| < tki and i is even}

O = {x | t
1/k
i ≤ |x| < tki and i is odd}

J = {x ||x| = ti and i is even}

Since SAT ∪ L is 22n-printable-immune, SAT ∪ L is infinite. Since E ∪ O = Σ∗, it must be the
case that at least one of E ∩ (SAT ∪ L) or O ∩ (SAT ∪ L) must be infinite. From now we will
assume that O ∩ (SAT ∪ L) is infinite. If that were not the case we can interchange the roles of
E and O and the proof structure remains similar.

Let LJ = L ∩ J , Lo = L ∩ O, and SATJ = SAT ∩ J . Since SAT is paddable, SATJ is NP-
complete. Clearly, LJ is disjoint from SATJ . We claim that SATJ ∪ LJ is not NP-complete.
Suppose not, then there is a polynomial-time many-one reduction f from Lo to SATJ ∪ LJ .

We now show that SAT ∪ L is not 2n-immune. By Proposition 4.1, this contradicts Hypothe-
sis A.

Let
T = O ∩ (SAT ∪ L).

Recall that T is infinite.

Consider the following sets.

T1 = {x ∈ T | f(x) /∈ J}
T2 = {x ∈ T | f(x) ∈ J and |f(x)| < |x|}
T3 = {x ∈ T | f(x) ∈ J and |f(x)| ≥ |x|}

Clearly T = T1 ∪T2 ∪ T3. We now show that each of T1, T2, and T3 is finite. Since T is infinite,
we obtain a contradiction.

19

Claim 4.3 T1 is finite.

Proof Suppose not. Since T ⊆ SAT ∪ L, T1 is an infinite subset of SAT ∪ L. Consider the
following algorithm for T1. On input x, if x /∈ O ∩ SAT, then reject. Else, compute f(x). If
f(x) /∈ J , then accept, else reject. Clearly this algorithm runs in time 2n.

We now show that this algorithm correctly decides T1. Consider a string x that is accepted by the
algorithm. This happens when x ∈ O∩SAT and f(x) /∈ J . If f(x) /∈ J , then f(x) /∈ SATJ ∪LJ .
Thus x /∈ Lo. Since L coincides with Lo on strings from O and x ∈ O, it follows that x /∈ L.
Thus x ∈ O ∩ SAT ∩ L = T . Since f(x) /∈ J , x ∈ T1.

Consider a string x that is not accepted by the algorithm. This happens when x /∈ O ∩ SAT or
when x ∈ O ∩ SAT and f(x) ∈ J . In the first case x /∈ T and so x can not belong to T1. In the
second case, since f(x) ∈ J , by definition x /∈ T1.

Thus T1 is an infinite subset of SAT ∪ L that can be decided in time 2n. Thus SAT ∪ L is not
2n-immune. This is a contradiction. �

Claim 4.4 T2 is finite.

Proof If T2 were infinite, then T2 is an infinite subset of SAT ∪ L. Consider the following
algorithm for T2. If a string x does not belong to O ∩ SAT, then reject. Else, compute f(x). If
f(x) /∈ J or |f(x)| ≥ |x|, then reject x. If f(x) ∈ J and |f(x)| < |x|, then accept x if and only
if If f(x) /∈ SATJ ∪ LJ .

Checking whether x ∈ O∩SAT takes 2n time. Computing f(x) and checking whether f(x) ∈ E

and |f(x)| < |x| takes polynomial-time. If x ∈ O, then t
1/k
i ≤ |x| < tki for an odd integer i. If

f(x) ∈ J , it must be the case that |f(x)| = tl for an even l. Since |f(x)| < |x|, it follows that
l < i. Observe that tkl = t

1/k
l+1, thus it follows that |f(x)| ≤ |x|1/k. Since SATJ ∪ LJ can be

decided in time 2nk
, membership of f(x) in SATJ ∪ LJ can be decided in time 2|x|. Thus the

above algorithm runs time 2n.

We now claim that the algorithm correctly decides T2. The algorithm rejects a string x if
x /∈ O ∩ SAT or f(x) /∈ J , or |f(x)| ≥ |x|. In all these cases that algorithm is correct. Consider
the case x ∈ O ∩ SAT, f(x) ∈ J , and |f(x)| < |x|. Now the algorithm accepts if and only if
f(x) /∈ SATJ ∪ LJ .

If f(x) /∈ SATJ ∪ LJ , then it must be the case that x /∈ Lo. Since L coincides with Lo on
strings from O, and x ∈ O, it follows that x /∈ L. Thus x ∈ O ∩ SAT ∩ L. Since f(x) ∈ J and
|f(x)| < |x|, x ∈ T2. On the other hand if f(x) ∈ SATJ ∪ Lj, the x ∈ Lo. It then follows that
x ∈ L. Thus x /∈ T and so x /∈ T2.

Thus T2 is an infinite subset of SAT ∪ L that be decided in time 2n. Thus SAT ∪ L is not
2n-immune. This is a contradiction. �

We now claim that T3 must also be finite.

Claim 4.5 T3 is finite.

20

Proof Suppose not. Then T3 is an infinite subset of SAT ∪ L. Consider f(T3). Since |f(x)| ≥
|x|, f(T3) is infinite. Since T3 is a subset of O ∩L, T3 ∩ Lo = ∅. Since f is a reduction from Lo

to SATJ ∪ LJ , f(T3) ∩ (SATJ ∪ LJ) = ∅.
By definition, f(T3) ⊆ J . Since f(T3) ∩ SATJ = ∅, it follows that f(T3) ∩ SAT = ∅. Since LJ

coincides with L on J , f(T3) ⊆ J , and f(T3) ∩ LJ = ∅, it follows that f(T3) ∩ L = ∅. Thus
f(T3) is an infinite subset of SAT ∪ L.

It remains to show that f(T3) can be decided in time 2n. Consider the following algorithm.
If the input y does not belong to J , then reject. Else check if there is a string x such that
|x| ≤ |y|1/k such that f(x) = y. If no such string is found, then reject y. Else accept y if and
only if x ∈ T .

Searching for x takes time less than 2|y|. Once such x is found, |x| ≤ |y|1/k. Since T can be
decided in time 2nk

, the time taken by the algorithm is bounded by 2|y|.

Observe that if a string y ∈ f(T3), then by definition y ∈ J and there is a string x that is in O
such that f(x) = y and |x| ≤ |y|. If y ∈ J , then |y| = ti for some even i. If x ∈ O, the |x| lies
between t

1/k
l and tkl for some odd l. Since |x| ≤ |y|, and tl+1 = tk

2

l , it follows that |x| ≤ |y|1/k.

The above algorithm accepts y if and only if y ∈ J , there is a string x such that x ∈ T , f(x) = y
and |x| ≤ |y|1/k. By previous argument, the condition |x| ≤ |y|1/k is equivalent to |x| ≤ |y|.
Thus the algorithm correctly accepts f(T3).

Thus f(T3) is an infinite subset of SAT ∪ L that can be decided in time 2n. This is a contra-
diction. �

Thus it follows that T must be a finite set which is a contradiction. Thus f can not be a
many-one reduction from Lo to SATJ ∪ LJ . Thus SATJ ∪ LJ is not many-one complete. �

We will now show that if Hypothesis B is true, then NP-complete sets are closed under disjoint
unions.

Glaßer et al. [GPSS06, Theorem 5.9] showed that if there exist two disjoint NP-complete sets
A and B such that A ∪ B if not NP-complete, then there exist two disjoint NP-complete sets
C and D that are isomorphic to SAT such that C ∪ D is not NP-complete.

Since C is isomorphic to SAT, there is a polynomial-time invertible bijection from Σ∗ to Σ∗ that
is a reduction from C to SAT. Now consider the sets SAT and f(D). Since f is polynomial-
time invertible, f(D) belongs to NP. Moreover f(D) is disjoint from SAT. Suppose there is a
reduction g from SAT to SAT∪ f(D), then f−1g becomes reduction from SAT to C ∪D. Thus
if SAT ∪ f(D) is NP-complete, so is C ∪ D. Thus we have the following proposition.

Proposition 4.6 If there exist two disjoint NP-complete sets whose union is not NP-complete,
then there is a set B in NP that is disjoint from SAT such that SAT ∪ B is not NP-complete.

Theorem 4.7 If Hypothesis B is true, then unions of disjoint NP-complete sets are NP-
complete.

21

Proof By the previous proposition, it suffices to show that if L is any set in NP that is disjoint
from SAT, then L ∪ SAT is NP-complete.

Let pad be a padding function for SAT. Consider the following set

B = {x | ∃ y, |y| = |x|, and pad(x, y) ∈ L}.
Clearly B ∈ NP , and is disjoint from SAT. Thus by our hypothesis, SAT ∪ B is weakly p-
printable. Let M be an algorithm that on input n outputs a string whose length is between n
and nk.

Consider the following reduction from SAT to SAT∪L. On input x, let y be a string of length
m output by M(1|x|). Use the padding function of SAT to obtain a string z of length m such
that x ∈ SAT if and only if z ∈ SAT. Output pad(z, y).

A string x is in SAT if and only if z is in SAT. Given the property of the padding function, it
follows that x ∈ SAT, if and only if pad(z, y) ∈ SAT. It remains to show that if x is not in SAT,
then pad(z, y) is not in L. Since x /∈ SAT, z also does not belong to SAT. Suppose pad(z, y)
belongs to L. Then by the definition of B, y must belong to B. However y belongs to SAT ∪ B.
This is a contradiction. Thus pad(z, y) does not belong to L. Thus SAT∪L is NP-complete. �

References

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete
sets. SIAM Journal on Computing, 6:305–322, 1977.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[For79] S. Fortune. A note on sparse complete sets. SIAM Journal on Computing,
8(3):431–433, 1979.

[Fu93] B. Fu. On lower bounds of the closeness between complexity classes. Mathematical
Systems Theory, 26(2):187–202, 1993.

[GPSS06] C. Glaßer, A. Pavan, A. L. Selman, and S. Sengupta. Properties of NP-complete
sets. SIAM Journal on Computing, 36(2):516–542, 2006.

[GPSZ06] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Redundancy in complete sets. In
Proceedings 23nd Symposium on Theoretical Aspects of Computer Science, volume
3884 of Lecture Notes in Computer Science, pages 444–454. Springer, 2006.

[HOW92] L. A. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets? In
Structure in Complexity Theory Conference, pages 222–238, 1992.

[LLS75] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial time
reducibilities. Theoretical Computer Science, 1:103–123, 1975.

[Ogi91] M. Ogiwara. On P-closeness of polynomial-time hard sets. manuscript, 1991.

[OW91] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility
of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.

22

[Sch86] U. Schöning. Complete sets and closeness to complexity classes. Mathematical Sys-
tems Theory, 19(1):29–41, 1986.

[Sel88] A. L. Selman. Natural self-reducible sets. SIAM Journal on Computing, 17(5):989–
996, 1988.

[Yes83] Y. Yesha. On certain polynomial-time truth-table reducibilities of complete sets to
sparse sets. SIAM Journal on Computing, 12(3):411–425, 1983.

23

