
A Linear Time Algorithm for Absolute

Optima under Monotonous Gain

Functions on Trees

J. Spoerhase and H.-C. Wirth

October 4, 2007

We examine problems of placing facilities in a tree graph to serve cus-
tomers. The decision of placement is driven by an election process amongst
the users, where the user preference is modeled by distances in the tree. Re-
laxed user preferences introduce a tolerance of users against small di�erences
in distances. Monotonous gain functions are a natural generalization of well
known competitive and voting location problems such as Simpson, security,
Stackelberg and Nash.
In this technical report we present an algorithm which computes an ab-

solute solution, i.e., a point with minimum score for any monotonous gain
function. The running time is linear in the size of the input tree and hence
optimal.

1 Introduction and Preliminaries

For an introduction into competitive and voting problems on graphs and a motivation of
the monotonous gain functions we refer the reader of this technical report to the outline
given in [SW07] and the references cited therein, in particular [CM03].
Consider a tree T = (V,E) with a positive edge weight function d : E → R+ denoting

the length of each edge. A point x on an edge e = (u, v) is determined by the distance
0 ≤ d(u, x) ≤ d(u, v) and satis�es the invariant d(u, x) + d(x, v) = d(u, v). For a tree T
(or an edge e) we use T (or e) to denote both the tree (or the edge) and the set of all
of its points, as the meaning will be clear from the context. This induces a distance
function d : T × T → R+

0 on the set of all points.
The input instance of the problem under investigation is given as a tree T0 = (V,E)

with edge lengths d : E → R+. Non-negative node weights w : V → R+
0 specify the

demand of individual user nodes. A non-negative number α ∈ R+
0 is used as a parameter

to describe the users' tolerance against small di�erences in distances as follows:

1

De�nition 1.1 (Relaxed user preference) A user u prefers node x over node y,
denoted by x ≺u y, if

d(u, x) < d(u, y)− α . (1)

The user u is undecided, x ∼u y, if |d(u, x)− d(u, y)| ≤ α.

We use the following notation: The set of users preferring x over y is denoted by
U(x ≺ y) := {u ∈ V | x ≺u y }, and its weight by w(x ≺ y) := w(U(x ≺ y)).
A gain function Φ: T × T → R maps a point pair (y, x) to the value Φ(y ≺ x) which

measures in some sense the in�uence of a follower point y after leader point x has already
been placed into the graph. Given a gain function, the notions absolute score and absolute

solution are de�ned as follows:

De�nition 1.2 (Absolute Φ-score and Φ-solution) For any gain function Φ, the
absolute Φ-score of a leader point x is de�ned as

Φ(x) := max
point y∈T

Φ(y ≺ x) .

Any point y with Φ(y ≺ x) = Φ(x) is called a witness of x. The absolute Φ-score of
a graph is de�ned as Φ∗ := minpoint x∈T Φ(x). An absolute Φ-solution of a graph is a
point x with Φ(x) = Φ∗.

Clearly this de�nition is too weak to derive a general algorithm for Φ-score and solution
beyond the limits of a trivial enumeration. A minimum requirement is that a gain
function re�ects the user preference induced by the graph. In particular, if we start with
two nodes x, y and move them in such a way that weight w(y ≺ x) of the in�uence area
of the follower y increases while the weight w(x ≺ y) of the in�uence area of the leader x
decreases, one would expect that this does not decrease the value Φ(y ≺ x). Moreover
we desire that Φ can be quickly evaluated once the weights of the in�uence areas are
given. We call gain functions with this property to be monotonous:

De�nition 1.3 (Monotonous gain function) A gain function Φ(y ≺ x) is called
monotonous, if there is a function ϕ : R× R→ R such that

1. Φ(y ≺ x) = ϕ(w(y ≺ x), w(x ≺ y)) for all points x, y ∈ T
2. ϕ is monotonously increasing in the �rst parameter and monotonously decreasing

in the second parameter
3. ϕ can be evaluated in constant time

Notice that the last requirement can be also achieved after a preprocessing step which
itself may need a super-constant time. Typical monotonous gain functions include the
Simpson score Φ(y ≺ x) := w(y ≺ x), the security score Φ(y ≺ x) := w(y ≺ x) −
w(x ≺ y), and the Stackelberg score Φ(y ≺ x) := w(y ≺ x) + 1

2w(y ∼ x). We will argue
later in Section 3 how to extend this de�nition and the results obtained to more general
models.
We make use of the following standard notation: By Tu(v) we denote the subtree below

node v when the tree is rooted at u, and by wu(v) its weight. This notation is easily

2

extended to the case where u or v are points, namely by temporarily adding a new node
at the position of the point. The α-ball around point x is denoted by Sα(x) := { y ∈ T |
d(x, y) ≤ α }.
We brie�y report some results on working with monotonous gain functions derived in

[SW07]:

De�nition 1.4 (α-neighborhood) Let x be a point. Any point y where d(x, y) is
in�nitesimally greater than α is called an α-neighbor of x. The set of all α-neighbors
of x is denoted by N(x, α).

As discussed formally in [SW07], this in�nitesimality notion is merely a technical detail
which re�ects the strict inequality in (1). In fact one can determine in advance discrete
representants as α-neighbors.

Theorem 1.5 (Witness) For each point x there is a witness y ∈ N(x, α)∪ {x}. 2

Theorem 1.6 (Characterization of leader and follower party) Let x be a leader

point and y be an α-neighbor of x. Then the leader party is U(y ≺ x) = Tx(y) and the

follower party is U(x ≺ y) = Ty(x). 2

As a consequence, the weight of the leader and follower party is always the weight of
a subtree hanging from a node. The weights of all those possible subtrees can be pre-
computed by two depth �rst search traversals in linear time. Hence we can afterwards
evaluate the monotonous gain function in constant time by the equation Φ(y ≺ x) =
ϕ(wx(y), wy(x)) if y is an α-neighbor of x. To simplify the notation we de�ne ϕ(y, x) :=
ϕ(wx(y)), wy(x)) for any point pair x, y.
We make further use of a technical guide rule outlined in [SW07] which essentially

states that given a point x and a witness y the search for a Φ-solution can be restricted
to the subtree below x in the direction of y.

Lemma 1.7 (Guide rule) Let T be a tree, x ∈ T be a point in the tree, and y ∈ T
be a witness of x where y /∈ Sα(x). Then Φ(x′) ≥ Φ(x) for all points x′ ∈ Ty(x). If on

the other hand x is a witness of itself, then Φ(x) = Φ∗.

Proof. Let x′ ∈ Ty(x) be an arbitrary point. Then Φ(x′) ≥ Φ(y ≺ x′) ≥ Φ(y ≺ x) = Φ(x)
by the monotonicity of Φ. On the second claim observe that if x is a witness of itself
then all nodes are undecided, thus Φ(x) = Φ(x ≺ x) = ϕ(0, 0). Moreover, ϕ(0, 0) =
Φ(x′ ≺ x′) ≤ Φ(x′) for all other points x′, hence Φ(x) is optimal. 2

Related Work and Contribution of This Report

In [SW07] we have provided an algorithm with running time O(n log n) which computes
an arbitrary absolute Φ-solution of a tree. That algorithm works for all monotonous gain
functions. (Notice that the de�nition of monotonous gain function introduced in [SW07]
has been slightly tightened in the current report to cover only interesting functions.)
In the current report we improve this result and solve the same problem optimally by

providing a linear time algorithm.

3

follower tree leader tree follower tree

u
v

Figure 1: Example of a terminal tree with terminals u, v.

2 Linear Time Algorithm

In this section we develop an algorithm which computes the absolute Φ-score of a tree
in linear time for any monotonous gain function Φ. The rough idea of the algorithm
is to maintain a leader tree which is always a subtree of the input tree and is guaran-
teed to contain a Φ-solution, i.e., an optimal placement for the leader. The leader tree
is initialized with the input tree and iteratively decreased during the execution of the
algorithm. When the number of remaining nodes has reached O(1), the iteration stops
and a solution can be found and output in constant time.
The algorithm ensures the invariant that for points in the current leader tree the Φ-

score with respect to the original tree is always a lower bound of the current Φ-score, and
that for optimal points the scores are identical. Therefore nodes which are identi�ed as
irrelevant for the leader cannot simply be discarded from the tree as they might still be
relevant for the follower: if such a node serves currently as a witness for some potential
leader point x its removal could decrease the Φ-score of x which is undesired. To account
for this problem those nodes are organized in two follower trees. Even the follower trees
are decreased in size during the execution of the algorithm. However, when the algorithm
discards nodes from one of the follower trees it takes care that essential witnesses are
only removed when there remains a suitable substitution such that the above mentioned
invariant is maintained.
The linear running time is achieved since �rst each iteration takes a time linear in the

size of the current tree and second that size decreases bounded from above by a falling
geometric sequence during all iterations.
The actual data structure employed by the algorithm is called a terminal tree and

de�ned as follows (see Figure 1 for an illustration):

De�nition 2.1 (Terminal tree) A terminal tree is a tree T = (V,E) with two dis-
tinguished nodes u, v ∈ V , called the terminals. The maximal subtree of T containing
both terminals as leaves is called the leader tree. The trees Fu := Tu(v) and Fv := Tv(u)
are called follower trees.

The algorithm maintains a terminal tree which is initialized to the input tree T0 where
two arbitrary leaves are chosen as initial terminals. Later modi�cations are designed
in a way that the current leader tree always contains at least one optimal point. This

4

invariant is formalized by the notion of Φ-equivalence. To this end we use subscript
notation ΦG to denote the Φ-score in a graph G.

De�nition 2.2 (Φ-equivalent terminal tree) Let T be a terminal tree with leader
tree L. The tree T is called Φ-equivalent to T0 if ΦT (x) ≥ ΦT0(x) for all points x ∈ L
and minx∈L ΦT (x) = Φ∗

T0
.

Let T be a terminal tree with leader tree L which is Φ-equivalent to input tree T0. The
leader tree is a subtree of the input tree, hence each point in L can be considered as a
point in T as well. A point x∗ ∈ L with ΦT (x∗) = minx∈L ΦT0(x) is called an L-optimum.
Each L-optimum in the current tree is also an optimal point in the original tree T0 with
respect to ΦT0 . (Notice that the converse does not hold in general.) To �nd an optimum
placement for the leader (with respect to the original tree) it thus su�ces to restrict the
view to the current leader tree L.
The main purpose of the follower tree is to collect nodes removed from the leader tree

which may be needed to furnish certain nodes of the leader tree with a suitable witness
in order to prevent that their Φ-score decreases. To this end it is not required that the
follower trees are actually subtrees of T0 and in fact their structure can be completely
di�erent from that of the corresponding part of the input tree.
Let x ∈ L be a point in the leader tree with a witness y contained in the follower

tree F . Then Φ(y ≺ x) = ϕ(y′, x) where y′ is a node where the tree weight wx(y′) is
maximum among all nodes in F with distance greater than α to x. Hence Φ-equivalence
is tantamount to the property that the weight of the heaviest subtree with distance at
least α to a given point x ∈ L is the same (or greater as long as L retains the optimum
property in the de�nition of Φ-equivalence) as in the original tree T . This fact allows us
to sparsen the follower trees iteratively without violating the Φ-equivalence.

2.1 Sparsen the Follower Tree

In the sequel we describe a linear time operation which halves the size of a follower tree
but does not a�ect the Φ-equivalence of the current terminal tree T . To this end let T
be the current terminal tree, L be its leader tree, u be one of its terminals, and δ > 0 be
a distance. As previously stated Fu denotes the follower tree incident with terminal u.
We de�ne subsets F+, F− ⊆ Fu by

F+ := { y ∈ Fu | d(u, y) ≥ δ } and F− := { y ∈ Fu | d(u, y) ≤ δ } .

We will later choose δ as the median of the distances of all nodes of the follower tree to
its terminal and this way divide the set of follower nodes in two almost equal sized parts.
(It is guaranteed in particular that both F+ and F− are nonempty.)
The main idea is to reduce the size of the follower tree by essentially discarding either

the nodes in F+ or in F− from it. As outlined before simply removing the nodes can
decrease the Φ-score of leader nodes thus invalidating the Φ-equivalence property which
is undesired. To this end we employ two subroutines DiscardNear (see Figure 4) and
DiscardFar (see Figure 5) which discard the nodes in F− or F+, respectively, while

5

taking further care that the Φ-scores of leader points do not decrease which is a main
ingredient to maintain the Φ-equivalence property.
We �rst determine a point h ∈ F+ with d(u, h) = δ such that wu(h) is maximal.

For later reference we denote the subset of leader points in the α-ball around h by
S := Sα(h) ∩ L. For any point set X ⊆ L denote by ∂X its boundary with respect to
the point space (L, d).
It is an easy observation that leader points in S do not have α-neighbors in F− and

hence in particular no witnesses in F−. Thus if S contains an L-optimum then Dis-

cardNear maintains the Φ-equivalence of T . Otherwise there is an L-optimum outside
of S such that the follower has no incentive to choose a location in F+. Hence Discard-
Far is a legal operation. A straightforward test to distinguish both cases would work
as follows. Consider each x ∈ ∂S as leader candidate and determine a witness y for x.
If y ∈ Th(x) for some x then the second case applies due to the guide rule. Otherwise
if no x ∈ ∂S has a witness below x the set S must contain an L-optimum and we may
execute DiscardNear. Unfortunately this approach is too expensive since ∂S might
contain Θ(n) nodes and thus the running time would be no longer linear.
In order to overcome these di�culties we introduce a set L+ ⊆ S with the property

that each element outside of L+ has no incentive to choose a witness in F+. Moreover
we are going to show that it is possible to identify a single candidate in the boundary
∂L+ such that computing its witness is already su�cient to reveal the test result: If
that witness is outside of L+ then an L-optimum is outside of L+ by the guide rule
and hence DiscardFar can be applied. On the other hand if there is no such witness
outside we are going to show that S must contain an L-optimum, allowing for executing
DiscardNear.
More formally we de�ne

L+ :=
{

x ∈ L
there is no point y ∈ T − F+ − Th(x)
with d(x, y) > α and wx(y) ≥ wx(h)

}
as a subset of the leader points.
Place at each point of the boundary ∂L+ which is not already a node a new temporary

node with zero weight. Then we can consider L+ as a subtree of L. Note that ∂L+ can
contain nodes which are not leaves in L+. See Figure 2 for an example.

Lemma 2.3 If L+ 6= ∅ then L+ forms a subtree of S containing the terminal u.

Proof. No point outside S has an α-neighbor in F+ and hence L+ ⊆ S. Consider the
tree T rooted at h. Let x be a point in L and x′ ∈ L be a descendant of x. If x /∈ L+

then there is an y ∈ T − F+ − Th(x) with d(x, y) > α and wx(y) ≥ wx(h). Clearly
d(x′, y) ≥ d(x, y), wx′(y) = wx(y), and y /∈ Th(x′) ⊆ Th(x). Therefore x′ /∈ L+ either.
This shows that if a point x is in L+ then each ancestor of x is in L+ as well.
Since u is an ancestor of any point in L, the premise L+ 6= ∅ implies that u ∈ L+. Any

two points of L+ are connected via their common ancestor u. 2

In the sequel we suppose that ∂L+ is not empty. The case ∂L+ = ∅ turns out to be
relatively simple and will be discussed in the proof of Lemma 2.6.

6

L+

L−

< wh

≥ wh

u

F+ F−

≤ α

> α

> α

wh

h u

2

3

2

4

α = 4

h

Figure 2: Left: Illustration of set L+, Right: Example where ∂L+ contains non-leaves.
Unmarked nodes and edges have weight 1. Set L+ is marked by thick edge
segments. Boundary points of L+ are circled.

Let x ∈ ∂L+ be a node on the boundary. By splitting at x the tree L decomposes into
edge disjoint trees Li. If Li ∩L+ = {x} then the tree Li is called an x-outer tree and all
of its points are called x-outer points.
The node x is called F+-independent if there is an x-outer point y such that Φ(y ≺ x) >

ϕ(h, x). This de�nition is motivated by the property that for F+-independent nodes there
is no reason to search for its witness in the set F+.

Lemma 2.4 If x ∈ ∂L+ is F+-independent then Th(x) contains a witness of x as well

as an L-optimum.

Proof. If x is its own witness then both claims are obviously true. Otherwise let y be an
α-neighbor of x in T − Th(x). If y ∈ F+ then Φ(y ≺ x) = ϕ(y, x) ≤ ϕ(h, x). Otherwise
y ∈ T − F+ − Th(x) and from x ∈ L+ it follows that Φ(y ≺ x) ≤ ϕ(h, x). Since x
is F+-independent we have Φ(x) > ϕ(h, x) and therefore y cannot be a witness, hence
Th(x) must contain a witness. The second claim follows directly from the guide rule. 2

Lemma 2.5 (Test criterion) Let the tree L be rooted at u and suppose that ∂L+ 6= ∅.
If S contains no L-optimal point then there is a unique x ∈ ∂L+ such that x is F+-

independent but none of its descendants is. Moreover, x has an x-outer α-neighbor as a

witness.

This criterion formalizes the initially described test: If there is an x ∈ ∂L+ with the
property described in the above lemma and where y is its x-outer witness, then either
x is already L-optimal or an L-optimum lies outside of L+. Otherwise S contains an
L-optimum. In the former case we call DiscardFar, in the latter DiscardNear is
executed.

Proof (of Lemma 2.5). If S has no L-optimal point then all L-optima are contained in
one single x-outer tree L′ for a suitable x ∈ ∂L+. By Lemma 2.4 it follows that only

7

1 input terminal tree T with follower set Fu

2 let δ be the median of the multiset { d(u, y) | node y ∈ Fu − u }

3 compute the follower sets
F− := { node y ∈ Fu − u | d(u, y) ≤ δ }
F+ := { node y ∈ Fu − u | d(u, y) ≥ δ }

4 determine point h in Fu with maximum weight wu(h) and distance δ to u
5 if h is not a node then turn it into a zero weight node
6 compute ∂L+

7 if ∂L+ is empty then
8 if δ > α then

9 DiscardFar

10 else

11 DiscardNear

12 else

13 for each x ∈ ∂L+ and each x-outer point y
14 if Φ(y ≺ x) > ϕ(h, x) then mark x
15 unmark all ancestors of marked nodes
16 if ∂L+ contains a unique marked node x and

17 x has an x-outer α-neighbor as a witness
18 then DiscardFar and stop
19 else DiscardNear

Figure 3: Algorithm HalveFollower(T, Fu)

ancestors of x can be F+-independent. Moreover x has a witness y in L′ by the guide
rule.
It remains to show that x is F+-independent. Let x∗ be an L-optimal point in L′.

We claim that Φ(h ≺ x∗) ≥ ϕ(h, x). This would complete the proof as Φ(y ≺ x) =
Φ(x) > Φ(h ≺ x∗) and y is x-outer. From x ∈ S it follows that d(x, h) ≤ α. Therefore
x can not prefer x∗ over h. This implies U(x∗ ≺ h) ⊆ Th(x) and so w(x∗ ≺ h) ≤ wh(x).
On the other hand each point in Tx(h) prefers h over x∗ since d(h, x∗) > α. Hence
w(h ≺ x∗) ≥ wx(h). We conclude Φ(h ≺ x∗) = ϕ(w(h ≺ x∗), w(x∗ ≺ x)) ≥ ϕ(h, x) as
desired. 2

Lemma 2.6 (Halve follower tree) Let T be a terminal tree Φ-equivalent to the in-

put tree T0, let Fu be its follower tree. Then the algorithm HalveFollower constructs

a follower tree F ′
u with size |F ′

u| ≤ 1
2 |Fu| + 1 such that replacing Fu by F ′

u does not

invalidate the Φ-equivalence of T .

Proof. We claim that algorithm HalveFollower (depicted in Figure 3) performs the
construction. We consider four distinct cases.

1. ∂L+ = ∅ and δ > α. Let x ∈ L be an arbitrary leader point. The distance between
x and any node in F+ is greater than α. If the follower places his facility into F+ we

8

1 set w(h)← w(F−)
2 remove h from F−

3 for each node v ∈ Fu − F− adjacent to F−

4 connect v to u via a new edge of length d(u, v)
5 discard all nodes of F− from the tree

Figure 4: Algorithm DiscardNear to discard most nodes in F−

1 remove h from F+

2 for all nodes v of F+ (starting with the leaves)
3 let a be the ancestor of v not in F+ with maximum distance d(u, a)
4 discard v from the tree and add its weight to a
5 increase the length of the edge incident with h to +∞

Figure 5: Algorithm DiscardFar to discard most nodes in F+

can assume without loss of generality that this location is h. Therefore T remains Φ-
equivalent if we change the weight of h to wu(h), lengthen the connecting edge, and
discard all other nodes in F+ from the tree T . This is exactly what DiscardFar
does.

2. ∂L+ = ∅ and δ ≤ α. Since u is a node contained in L+, the set L+ is not empty,
and ∂L+ = ∅ implies therefore that L is a subset of the α-ball S. The distance
between any node in F− and any leader node x ∈ L is at most α. Hence the
follower has no incentive to choose a node in F− and discarding these nodes of Fu

from the tree does not have any impact to the Φ-scores of points in L.
3. ∂L+ 6= ∅ and there is a unique F+-independent x ∈ ∂L+ which has no F+-

independent descendants. Moreover this x has an x-outer witness y. Let L′ be the
x-outer tree containing y. Then either L′ contains an L-optimal point by the guide
rule. Moreover each point in L′ is either equals x when it has witness y /∈ F+ or
y /∈ L+. In the latter case the follower has no incentive to place within the set F+.
Hence T remains Φ-equivalent after the execution of DiscardFar.

4. ∂L+ 6= ∅ and there are either zero or at least two F+-independent nodes x which
have no F+-independent descendants, or x has no x-outer point as a witness. Then
S contains L-optimal points by Lemma 2.5 and thus DiscardNear does not a�ect
the Φ-equivalence of T . 2

We are now going to show that the running time of HalveFollower is linear in the
size of the current terminal tree T . The computation of the median in Line 3 can be
carried out in linear time employing the well known median-of-medians algorithm from
[BF+73]. We now shed a light on the construction of the boundary set ∂L+ (Line 6): To
this end we describe how to determine the tree L+. If this is known, the computation of
∂L+ is easily carried out with an additional depth �rst search traversal.

9

1 input terminal tree T with terminals u, v and leader tree L
2 let m be the unweighted median of L
3 let m′ be the least common ancestor of u, v with respect to the root m
4 through splitting at m and m′ the tree L subdivides
5 into edge disjoint components
6 determine witnesses of m and m′

7 if Φ(z) = Φ(z ≺ z) for a z ∈ {m,m′} then output optimum z and stop
8 the witnesses of m and m′ select exactly one
9 of those components, L′

10 choose new terminal nodes s, t from L′ ∩ {u, v,m,m′}
11 if this only yields one terminal, choose an arbitrary leaf of L′

12 as the second terminal
13 output the new terminal tree

Figure 6: Algorithm HalveLeader

For each edge (s, t) ∈ L we de�ne

δs(t) := sup{ d(s, y) | y ∈ T − Tt(s)− F+, ws(y) ≥ ws(h) } . (2)

These values can be computed in linear time with the help of two depth �rst search
traversals; the details of a very similar algorithm have been outlined in [NSW07]. To
this end we need to discretize the condition �point y ∈ T − Tt(s) − F+� in (2) to �node
y ∈ T − Tt(s) − F+ + h�. Given all those δ-values, the segment of edge (s, t) (the edge
is oriented such that t ∈ Th(s)) which is contained in L+ is determined by

{ z ∈ (s, t) | d(t, z) ≥ δt(s)− α }

which can be computed in constant time.
It remains to argue that all tests whether nodes x ∈ ∂L+ are F+-independent (Line 14)

can be carried out in total linear time. In order to answer the test for a node x ∈ ∂L+

it su�ces to evaluate Φ(y ≺ x) only for all the α-neighbors of x in all x-outer trees.
Since all outer trees are pairwise edge disjoint the total running time for all those tests
is linear.

Lemma 2.7 Algorithm HalveFollower runs in linear time O(|T |) on a terminal

tree T . 2

2.2 Sparsen the Leader Tree

The second ingredient is a subroutine which decreases the size of the leader tree by almost
half of the nodes contained.

Lemma 2.8 (Halve leader tree) Let T be a terminal tree Φ-equivalent to T0, let L
be its leader tree. Then we can construct in linear time O(|T |) a Φ-equivalent terminal

tree T ′ of size |T ′| = |T | which has a leader set L′ where |L′| ≤ 1
2 |L|+ 1.

10

u m′ v

m

Figure 7: Example of the execution of HalveLeader algorithm. Left: start of phase,
right: end of phase. The shaded areas depict the stars of the candies.

Proof. We claim that algorithm HalveLeader depicted in Figure 6 performs the desired
construction. The correctness of the algorithm is an immediate consequence of the fact
that we restrict the leader set according to the guide rule. For the bound on the running
time it su�ces to observe that the unweighted median can be determined in linear time
employing Goldman's algorithm [Gol71]. 2

2.3 The Main Algorithm

We now describe the main algorithm. During the execution the algorithm maintains a
current terminal tree T with leader tree L, terminals u, v, and follower trees Fu, Fv. It
starts with the input tree T0 as the initial terminal tree, where two arbitrary leaves play
the role of the terminals (thus initially L = T0). Iteratively the algorithm determines
the largest among |L|, |Fu|, |Fv| (with a favor for a follower tree in case the maximum is
not unique) and halves that component using one of the subroutines HalveFollower
or HalveLeader described above. The algorithm ends when the size of T falls below 6
at which time the L-optimum solution in the resulting leader tree will be determined in
constant time. The correctness of this algorithm follows from Lemma 2.6 and Lemma 2.8.
We now analyze the running time. To this end we subdivide the sequence of iterations

into phases; an operation HalveFollower terminates the current phase. Let ni denote
the size of the terminal tree after the ith phase. Since HalveLeader does not change
the terminal tree's size it is easy to see that ni+1 ≤ 5

6ni + 1 for all i. In all but the �rst
phase we can have only one call to HalveLeader: Separating the leader tree of size a
at the median yields that at least 1

2a − 1 nodes are moved into the same follower tree,
which then exceeds the size of the new leader tree. (In the �rst phase we have at most
two of these calls.) Therefore the running time of phase i is linear in O(ni−1). Since the
sequence (ni)i is geometrically decreasing this yields an overall linear running time:

Theorem 2.9 For any monotonous gain function Φ an absolute Φ-solution can be

found in time O(n) in a tree with n nodes.

Corollary 2.10 An absolute Simpson, security, or Stackelberg solution in a tree can

be computed in linear time. 2

11

3 Conclusions and Further Remarks

In the case of user tolerance parameter α = 0 it has been shown in [HTW90] that on a
tree the Simpson solution, the security solution, and the Stackelberg solution all coincide
with the median and hence can be computed in linear time. In fact this result extends
to any monotonous gain function:

Theorem 3.1 If α = 0, for any monotonous gain function Φ the weighted median of

a tree is always a Φ-solution.

Proof. Let m be the weighted median and x 6= m. Then

Φ(m) ≤ ϕ(1
2w(T), 1

2w(T)) ≤ Φ(m ≺ x) ≤ Φ(x)

which follows from the property that the weight of any subtree of the forest T −m is at
most 1

2w(T). 2

On the other hand we have given in [SW07] an example which demonstrates that in
the case α > 0 all those solutions may actually be disjoint. In the current paper we have
provided an algorithm for these more general problems which still has linear running
time.

Competitor Sensitive Gain Functions

An intrinsic property of the suggested model of monotonous gain functions as speci�ed
in De�nition 1.3 is that the leader and the follower share the same estimations on the
weights of users. An obvious extension of the model is hence to have two di�erent weight
functions wL, wF for the leader and the follower, respectively, and to de�ne

Φ(y ≺ x) = ϕ(wF(y ≺ x), wL(x ≺ y)) .

Albeit the resulting function is strictly speaking not a monotonous gain function it can
easily be seen that the approach outlined in this paper can be adapted to also handle
this extended model.
This can be applied to a generalization of the Stackelberg problem. Normally, when

a user is undecided, its demand is split equally amongst the two competing providers
[HTW90]. However there can be situations where undecided users split their demand on
a per user basis among the two competitors. This can formally modelled by introducing a
function f : V → [0, 1] which speci�es the individual user demand gained by the follower
in the case where the user is undecided. (The original Stackelberg problem is then the
special case of f ≡ 1

2 .) Thus we end up with a gain function

Φ(y ≺ x) := w(y ≺ x) + (f · w)(y ∼ x) .

This can be modelled by a competitor sensitive gain function if we set wF := (1− f) ·w
and wL := f · w and ϕ(µ, ν) := (f · w)(T) + µ− ν.

12

Open Problems

It remains an open question how the problem investigated in this report behaves when re-
stricted to nodes only: can the O(n (log n)2)-algorithm from [SW07] for �nding a discrete
Φ-solution be improved?

References

[BF+73] M. Blum, RW. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan · Time bounds

for selection · Journal of Computer and System Sciences (1973), 448�461.

[CM03] C. M. Campos Rodríguez and J. A. Moreno Peréz · Relaxation of the condorcet

and simpson conditions in voting location · European Journal of Operations
Research 145 (2003), 673�683.

[Gol71] A. J. Goldman · Optimal center location in simple networks · Transportation
Science 5 (1971), 212�221.

[HTW90] P. Hansen, J.-F. Thisse, and R. E. Wendell · Equilibrium analysis for voting

and competitive location problems · in [MF90], 1990, pp. 479�501.

[MF90] P. B. Mirchandani and R. L. Francis · Discrete location theory · Series in
Discrete Mathematics and Optimization, Wiley-Interscience, 1990.

[NSW07] H. Noltemeier, J. Spoerhase, and H.-C. Wirth · Multiple voting location and

single voting location on trees · European Journal of Operations Research 181
(2007), 654�667.

[SW07] J. Spoerhase and H.-C. Wirth · Relaxed voting and competitive location on

trees under monotonous gain functions · Tech. Report no. 401, University of
Würzburg, Department of Computer Science, 2007, http://www.informatik.
uni-wuerzburg.de/forschung/technical_reports/.

13

