
Relaxed Voting and

Competitive Location on Trees

under Monotonous Gain Functions

J. Spoerhase and H.-C. Wirth

March 20, 2007

We examine problems of placing facilities in a tree graph to serve cus-
tomers. The decision of placement is driven by an election process amongst
the users, where the user preference is modeled by distances in the tree. Re-
laxed user preferences introduce a tolerance of users against small di�erences
in distances. Monotonous gain functions are introduced to provide general re-
sults of which well known problems including Simpson, security, Stackelberg
and Nash are special cases.

1 Introduction and Preliminaries

Location problems on graphs are characterized as follows: An edge weighted graph models
distances in a universe. Weighted nodes of the graph represent customers and their
demands. The customers have to be served by facilities which can be placed at the nodes
of the graph or at inner points of the edges. The goal is to �nd an optimal placement of
the facilities. Several objective functions are in common use, e.g. maximum or average
distance to the closest facility (center and median problem), or total sum of distances
and costs for opening the selected set of facilities (facility location problem).
Voting problems are a means of modeling the process of �nding compromises in a group

of social individuals. Here global decisions are often based on individual preferences
which can, more or less explicitely, be treated as a formal election between alternative
solutions. It is assumed that the resulting solutions are accepted by all participants and
hence stable, since they are preferred by a signi�cant majority of the users.
Voting location problems are a way to combine both lines of research: The static

universe is modeled by a weighted graph, while the optimal placement of facilities is the
result of an election process performed by the individual users. Here the user preferences
are fully determined by the distances in the underlying graph. In this paper we are only
investigating single location problems where only one facility is subject to be placed, and
we use trees as the underlying graphs.

1

In the problems under investigation in this paper we are particularly interested in stable
solutions which are characterized by the fact that the chosen candidate is confronted with
only weak oppositions. There are several measures for this stability, including Simpson

and security score as de�ned later.
It can be observed that in this model small di�erences between distances can have a

huge impact on the result. This is not a desired property, since it is not re�ected by the
behavior of users in the real world: here it is typical that users are undecided between
facilities at similar distances, and distinguished preferences emerge only when there are
signi�cant di�erences between the distances. This is modeled in the following by relaxed

user preferences as introduced in [CM03].
Applications of voting location problems can be found e.g. in the area of public re-

sources planning. In the classical facility location problem, decisions are performed based
solely on abstract cost functions which re�ect mainly the view of the supplier. In con-
trast to that, a voting solution can guarantee a wide acceptance since the opinions of the
customers are taken into account.

1.1 Problem Formulation

The de�nitions in this section follow closely those of [CM03, CM02]. The input instance
of the problems is given as a tree T = (V,E). A positive edge weight function d : E → R+

denotes lengths of edges and induces a distance function d : V × V → R+
0 . Nonnegative

node weights w : V → R+
0 specify the demand of individual user nodes. A nonnegative

number α ∈ R+
0 is used as a parameter to describe the users' tolerance against small

di�erences in distances as follows:

De�nition 1 (Relaxed user preference) A user u prefers node x over node y, de-
noted by x ≺u y, if

d(u, x) < d(u, y)− α .

The user u is undecided, x ∼u y, if |d(u, x)− d(u, y)| ≤ α.

We use the following notation: The set of users preferring x over y is denoted by
Uα(x ≺ y) := {u ∈ V | x ≺u y }, and its weight by Wα(x ≺ y) := w(Uα(x ≺ y)). Now
we are enabled to formulate the main problems under investigation in this paper.

De�nition 2 (Relaxed Simpson) The α-Simpson score of a candidate node x is
de�ned as

Γα(x) := max
y∈V

Wα(y ≺ x) .

The α-Simpson score of a graph is de�ned as Γ∗
α := minx∈V Γα(x). An α-Simpson

solution of a graph is a candidate node x with Γα(x) = Γ∗
α.

Observe that in the de�nition of the Simpson score of a node x, all undecided users
are actually treated as if they voted for x. This can pretend a high stability of a solution

2

which does not exist. To take into account only the sets of users actually preferring x
and y, respectively, and to ignore the undecided users, we set

∆α(y ≺ x) :=

{
Wα(y ≺ x)−Wα(x ≺ y) if d(x, y) > α

−∞ otherwise

and de�ne the security score as follows:

De�nition 3 (Relaxed Security) The α-security score of a candidate node x is
de�ned as

∆α(x) := max
y∈V

∆α(y ≺ x) .

The α-security score of a graph is de�ned as ∆∗
α := minx∈V ∆α(x). An α-security solution

of a graph is a candidate node x with ∆α(x) = ∆∗
α.

The de�nition of security is slightly di�erent from that of [CM02]. According to our
de�nition for a given candidate node it is required that any possible opposition node has
a distance of more than α to the candidate node, in other words, the opposition is anti-
cipated to attain a signi�cantly di�erent standpoint. This is motivated by the following
observation. Assume we de�ne ∆′

α(x) := maxy

(
Wα(y ≺ x) −Wα(x ≺ y)

)
without the

restriction d(y, x) > α. Then for any candidate node x, by selecting opposition y := x we
have ∆′

α(y ≺ x) = 0 and thus always ∆′
α(x) ≥ 0. This trivial property blurs the view to

the details of the graph instance, as the relation ∆′
α(x) = max{0,∆α(x)} always holds.

These details can be revealed when we add the requirement d(y, x) > α. In other words,
the function ∆α yields a re�nement (namely a subset) of the solutions described by the
unrestricted ∆′

α.
Throughout the paper we assume that the tolerance bound α is �xed. So we omit

indication of α in all notation where there is no ambiguity.
We use the following notation for trees. The unique path between two nodes u, v in T

is denoted by P (u, v). Let r, v ∈ V be two nodes in T and let the tree be rooted at
node r. Then the subtree of T hanging from v is denoted by Tr(v).

1.2 Related Work and Contribution of this Paper

Single voting location under the unrelaxed user preference model, i.e. α = 0, and allowing
placement of facilities on inner points of edges (see Section 3 for a formal de�nition) has
been discussed in [HTW90]. For general graphs there are no fast algorithms known albeit
the problems are polynomial time solvable. If the underlying graph is a tree, then most
of these unrelaxed problems can be solved in linear time. This is due to the fact that
they all become equivalent to the median problem [HTW90].
This equivalence is no longer true (see Figure 1 for an example) if we turn over to the

relaxed user preference model (α ≥ 0) which has been introduced in [CM03]. Clearly
this generalization does not lead to problems which are easier solvable. However, there
is an algorithm for the relaxed Simpson problem on trees with running time O(n log n)
as stated in [NSW07].

3

m u v

1 10 3 2 0 0 10 1 112

Figure 1: Example where median {m}, relaxed security solution {u} and relaxed Simpson
solution {v} are unique and pairwise di�erent. The edge lengths are 1, the
indi�erence is α = 4.

In this paper we provide fast algorithms for the relaxations of security solution, Stack-
elberg solution and Nash solution (see Section 4 for an exact de�nition) on trees. To this
end we introduce the notion of monotonous gain function which allows to describe all
those problems in a uniform way and to develop a general algorithmic framework.
The paper is organized as follows: in Section 2 we formally introduce monotonous

gain functions and provide the general scheme for formulating algorithms which evaluate
the score of a single node and �nd a solution in the tree, i.e., a node with optimal
score. In Section 3 we extend the discussion to the absolute score: here it is allowed
to place candidates and oppositions not only at nodes but also at inner points of edges.
In Section 4 we describe how the developed framework can be applied to the several
problems under investigation and suggest run time optimized implementations of the
algorithms.

2 Relaxed Score and Solution under Monotonous Gain

Functions

Observe that in the de�nition of Simpson and security scores, the only di�erence is that
function Γ is replaced by ∆. This suggests a generalization to an arbitrary gain function

Φ: V × V → R. This function maps a node pair (y, x) to the value Φ(y ≺ x) which
measures in some sense the in�uence of an opposition node y after candidate node x has
already been placed into the graph. Given a gain function, the notions score and solution

are de�ned similarly as in Section 1.1:

De�nition 4 (Φ-Score and Φ-Solution) For any gain function Φ, the Φ-score of
a candidate node x is de�ned as

Φ(x) := max
y∈V

Φ(y ≺ x) .

The Φ-score of a graph is de�ned as Φ∗ := minx∈V Φ(x). A Φ-solution of a graph is a
candidate node x with Φ(x) = Φ∗.

Clearly this de�nition is too weak to derive a general algorithm for Φ-score and solution
beyond the limits of a trivial enumeration. A minimum requirement is that a gain
function re�ects the user preference induced by the graph. In particular, if we start with
two nodes x, y and move them in such a way that the in�uence area U(y ≺ x) of the
opposition y increases while the in�uence area U(x ≺ y) of the candidate x decreases,

4

one would expect that this does not decrease the value Φ(y ≺ x). We call gain functions
with this property to be monotonous:

De�nition 5 (Monotonous Gain Function) A gain function Φ(y ≺ x) is called
monotonous, if for all candidate-opposition pairs (x, y) and (x′, y′) where

U(y ≺ x) ⊇ U(y′ ≺ x′) and U(x ≺ y) ⊆ U(x′ ≺ y′)

we have that
Φ(y ≺ x) ≥ Φ(y′ ≺ x′) .

We will discuss in Section 4 that especially the gain functions associated with the
Simpson, security, Stackelberg, Centroid, and Nash problems are in fact monotonous.
Observe further that the value of a monotonous gain function is already determined by
the preferences of the users; in particular Φ(y ≺ x) = Φ(y′ ≺ x′) follows already from
U(y ≺ x) = U(y′ ≺ x′) and U(x ≺ y) = U(x′ ≺ y′).

2.1 Computing the Relaxed Score of a Node

We �rst investigate the problem of computing the relaxed Φ-score of a node in a tree.
Consider the case where two nodes x, y are given. By de�nition the three sets U(x ≺ y),
U(x ∼ y), and U(y ≺ x) form a partition of the tree T . One can show that each of the
three sets is actually a connected subtree (in the case d(x, y) ≤ α the sets U(x ≺ y) and
U(y ≺ x) are empty).

U(x ∼ y)

ỹx̃ U(y ≺ x)U(x ≺ y)

yx

Lemma 2.1 (Front nodes) Let x, y be nodes such that d(x, y) > α. Then there are

nodes x̃, ỹ on path P (x, y) such that U(x ≺ y) = Tỹ(x̃) and U(y ≺ x) = Tx̃(ỹ).

The nodes x̃, ỹ are denoted as front nodes. These nodes are of special importance since
they completely characterize the above mentioned partition of the tree, from which the
desired value Φ(y ≺ x) can be derived. We remark that x̃ = x or ỹ = y can occur.

Proof (of Lemma 2.1). For any node z, let the projection of z be the node z̄ on P (x, y)
where d(z, z̄) is minimal. Since d(z, x)− d(z, y) = d(z̄, x)− d(z̄, y) it follows that prefer-
ences x ≺z y and x ≺z̄ y are identical. Choose x̃ ∈ P (x, y) such that x ≺x̃ y and d(x, x̃)
is maximal. Then the nodes on path P (x, y) which prefer x are exactly those on the
subpath P (x, x̃). If v ∈ T is an arbitrary node, then x ≺v y if and only if its projection v̄
prefers x, i.e., v̄ ∈ P (x, x̃). This is equivalent with v ∈ Ty(x̃). The situation for ỹ is
symmetric. 2

5

Now assume that x, y satisfy d(x, y) > α. When we move y along the path P (x, y)
towards x, this increases U(y ≺ x) and decreases U(x ≺ y), hence Φ(y ≺ x) does not
decrease. This is true until d(x, y) ≤ α. It appears that nodes at distance α play an
important role:

De�nition 6 (α-Neighborhood) Let x ∈ V be a candidate node. A node y ∈ V is
called an α-neighbor of x if it is the only node on the path P (x, y) whose distance to x
is strictly greater than α. The set of all α-neighbors of x is denoted by N(x, α).

From the above observations we can conclude that in order to compute Φ(x) it su�ces
to consider nodes y in the α-neighborhood of x:

Theorem 2.2 (Computation of Φ-Score) For each x there is a node y ∈ N(x, α)∪
{x} such that Φ(x) = Φ(y ≺ x).

Proof. Let y′ be an opposition node such that Φ(x) = Φ(y′ ≺ x). If d(x, y′) ≤ α, then
all nodes are undecided, i.e., U(y′ ∼ x) = V . Since also U(x ∼ x) = V we can conclude
Φ(x ≺ x) = Φ(y′ ≺ x) = Φ(x).
If d(x, y′) > α, then consider the α-neighbor y of x on path P (x, y′). Obviously,

U(y ≺ x) ⊇ U(y′ ≺ x) and U(x ≺ y) ⊆ U(x ≺ y′). Thus by monotonicity of Φ we have
Φ(y ≺ x) ≥ Φ(y′ ≺ x). Since Φ(y′ ≺ x) was maximal this shows Φ(y ≺ x) = Φ(x). 2

We have stated before that for a given pair (y, x) the value Φ(y ≺ x) can be derived
when we know the associated front nodes (ỹ, x̃). Combining both results yields that in
order to compute Φ(x) it su�ces to enumerate all α-neighbors y and the corresponding
pair (ỹ, x̃) of associated front nodes. The following theorem provides how front nodes
can be constructed.

Theorem 2.3 (Characterization of Front Nodes) Let x be a candidate node and

y be an α-neighbor of x. Then the front node x̃ is the
(d(x,y)+α

2

)
-neighbor of y on P (x, y),

and the front node ỹ is y itself. Thus we have

U(x ≺ y) = Ty(x̃) and U(y ≺ x) = Tx̃(y) .

Proof. As in the proof of Lemma 2.1 we only consider projections of nodes on P (x, y).
A node z ∈ P (x, y) prefers x if and only if

d(z, y)− d(z, x) > α ⇐⇒ 2 · d(z, y)− d(x, y) > α ⇐⇒ d(z, y) >
d(x, y) + α

2
.

The node z on P (x, y) which satis�es this condition and maximizes d(x, z) is the front

node x̃. Since it simultaneously minimizes d(z, y), it is the
(d(x,y)+α

2

)
-neighbor of y on

the path.
The remaining claim, ỹ = y, is clear since y is chosen to be an α-neighbor of x. 2

6

To determine all α-neighbors of x, we perform a DFS traversal from x and maintain
distances d(x, y) to the root where y is the currently traversed node. If y is an α-neighbor,
the corresponding front node x̃ can be found as follows: Let x = v0, v1, . . . , vk = y be
the nodes on the DFS path from x to y. Then x̃ = vi where i is the maximum index
such that d(vi, x) < (d(x, y) − α)/2. This node can be found in O(log k) ⊆ O(log n) by
binary search in the array (vi)i.

Theorem 2.4 (Enumeration of Front Node Pairs) For a given node x, the set

of all pairs (x̃, ỹ) where y is an α-neighbor and x̃, ỹ are the corresponding front nodes can

be computed in time O(n log n). 2

For most problems investigated in this paper the value of Φ depends only on the weights
W (y ≺ x) = w(Tx̃(ỹ)) and W (x ≺ y) = w(Tỹ(x̃)) of the subtrees hanging from the front
nodes. If we assume that the weights of all possible subtrees {Tu(v), Tv(u) | (u, v) ∈ E }
have already been computed as a preprocessing step (which needs two DFS traversals
and therefore runs in O(n)) the function value Φ(y ≺ x) can be evaluated in O(1) when
the front nodes (ỹ, x̃) are known. We call a gain function with this property to be front

node computable in the sequel.

Corollary 2.5 (Computation of Φ-Score) For all front node computable monotonous

gain functions Φ, the score Φ(x) of a node x can be computed in O(n log n).

2.2 Computing the Relaxed Solution

In this section we investigate the computation of the Φ-score of a tree and a corresponding
node x where this score is attained. It is trivial that iterating the algorithm from the
previous section over all nodes yields to an algorithm which needs O(n) evaluations of this
subroutine. We now propose a divide and conquer approach which takes only O(log n)
evaluations of Φ-score.
The algorithm maintains a node xmin with currently minimal value Φ(xmin) and a

subtree Tactive which is guaranteed to contain all better nodes, if there exist any. In
each iteration, the algorithm selects a pivot node x. Then it uses the subroutine from
the previous section to determine a new smaller subtree with the above properties which
hangs from a neighbor of x. We refer to this neighbor as a guide node which is formally
de�ned as follows:

De�nition 7 (Guide Node) Let x be an arbitrary node and y ∈ N(x, α) such that
Φ(x) = Φ(y ≺ x). Then the neighbor of x on path P (x, y) is called a guide node of x.

Notice that a guide node does not always need to exist. We remark further that the
algorithm for computing the Φ-score of a node (described in the previous section) already
yields a guide node as well with no additional time e�ort.
The crucial point of the divide and conquer approach, namely the division of the

current subtree, is justi�ed by the following result:

Theorem 2.6 (Divide Step) Let x be an arbitrary candidate node. If there exists

a guide node v of x, then all nodes x′ with Φ(x′) < Φ(x) must lie in subtree Tx(v).
Otherwise, Φ(x) = Φ∗.

7

Proof. At �rst we consider the case where x has at least one guide node v. Let y be an
α-neighbor of x in subtree Tx(v) with Φ(x) = Φ(y ≺ x). Further let x′ be an arbitrary
node in T − Tx(v). We show that Φ(x′) ≥ Φ(x): Since the path from x′ to y meets x, it
follows that U(y ≺ x) ⊆ U(y ≺ x′) and U(x′ ≺ y) ⊆ U(x ≺ y). Then we conclude

Φ(x′) ≥ Φ(y ≺ x′) ≥ Φ(y ≺ x) = Φ(x)

where we exploit the monotonicity property of Φ.
Secondly, assume that x does not have a guide node. Then Φ(x) = Φ(x ≺ x) =: ϕ0.

By monotonicity it follows that for all nodes x′ we have the same score Φ(x′ ≺ x′) = ϕ0.
Thus ϕ0 is a lower bound on Φ(x′) for all nodes x′ and therefore Φ∗ ≥ Φ(x). 2

1 input tree T
2 initialize set of active nodes Tactive ← T
3 initialize minimum score ϕmin ← +∞
4 while Tactive 6= ∅
5 let x be an (unweighted) median node of Tactive

6 compute Φ(x) and a guide node v, both with respect to T
7 if there is no guide node then output x, Φ(x) and stop
8 if Φ(x) < ϕmin

9 remember ϕmin ← Φ(x) and xmin ← x
10 set Tactive ← Tactive ∩ Tx(v)
11 output xmin, ϕmin

Figure 2: Algorithm for computing the Φ-score of a tree.

The details of the algorithm which computes the Φ-score of a tree are depicted in
Figure 2. In Line 6 of this algorithm, we compute the score Φ(x) by DFS as described
in Section 2.1. This routine yields not only the score Φ(x) but also additionally returns
a corresponding guide node or the information that x does not have a guide node. We
remark that this subroutine runs always on the full input tree T regardless of the current
restriction Tactive.

Theorem 2.7 (Φ-Solution of a Tree) A Φ-solution of a tree can be computed in

time O(n + log n · t(n)) where t(n) is the running time needed for evaluating the Φ-score
and a guide of a node.

Proof. The correctness follows by a repeated application of Theorem 2.6. Let x1, . . . , xk

be the sequence of median nodes selected after k iterations of the algorithm, and v1, . . . , vk

the corresponding guide nodes. Assume that x is a node with Φ(x) < Φ(xi) for all
i = 1, . . . , k. Then Theorem 2.6 implies that x ∈

⋂
i Txi(vi) which equals the set Tactive

maintained by our algorithm.
The claim on the running time follows from the observation that for any tree G a

median node m divides the tree such that none of the subtrees in G−m has more than

8

|G|/2 nodes. Hence we have O(log n) many iterations. In each iteration we evaluate one
Φ-score and compute a median. Since the number of active nodes shrinks at least by one
half per iteration, the total sum of computing the median nodes in all active trees is still
O(n). 2

Corollary 2.8 For all front node computable monotonous gain functions Φ, a Φ-
solution of a tree can be computed in O(n(log n)2).

A more detailed analysis shows that the time t(n) depends on the number s(n) of nodes
in any ball of radius α around nodes. Obviously, s ∈ O(n) is always true. However, there
are classes of trees where s ∈ o(n) (e.g. if the parameter α is small compared to the
average edge length, or the tree is degree bounded). In those cases, the running time can
be better estimated to be in O(n + log n · s(n) · log s(n)).

3 Extension to Absolute Score and Solution

In this section we extend the algorithms provided previously to the case where candidate
and opposition can be placed not only at nodes but also at inner points of edges of the
graph. To this end, an edge can be considered as an in�nite set of points [MF90]. A
point x on edge e = (u, v) is speci�ed by the distance from one of the endpoints of e,
and the remaining distance is derived from the invariant d(u, x) + d(x, v) = c(e). Notice
that the set of points of a graph includes the set of nodes.
If the domain of the monotonous gain function Φ includes the set of all pairs of points

of a graph, we are enabled to formulate the problems investigated before under the new
placement model:

De�nition 8 (Absolute Φ-Score, Absolute Φ-Solution) The notions absolute Φ-
score and absolute Φ-solution are de�ned similarly as in De�nition 4, where x and y are
now allowed to be points rather than nodes only.

Since the domain of the gain function is now an in�nite set, we must �rst ensure
that Φ(x) is well de�ned at all. As the value Φ(y ≺ x) is fully determined by the user
sets U(y ≺ x) and U(x ≺ y) and there is only a �nite number of user subsets, also the
image of Φ is a �nite set. This directly implies that the absolute Φ-score of a point is
always well de�ned. We will later show that the tree decomposes into a �nite family of
disjoint intervals and points such that the absolute Φ-score is constant at each member
of this family.

De�nition 9 (α-Neighborhood) Let x be a candidate point. An α-neighbor of x
is a point y where d(x, y) is in�nitesimally greater than α.

In the appendix we provide a more formal de�nition of such �in�nitesimally close�
points, together with the proof of the following lemma.

Lemma 3.1 Let x be a candidate point and y be an α-neighbor. Then all inner nodes z
on path P (x, y) are undecided.

9

Theorem 3.2 (Characterization of Front Nodes) Let x be a candidate point and

y be an α-neighbor of x. Let x̃ be the node nearest to x such that P (x̃, x) does not meet

inner points of P (x, y); similarly de�ne ỹ. Then

U(y ≺ x) = Tx̃(ỹ) and U(x ≺ y) = Tỹ(x̃) .

The nodes x̃ and ỹ are referred to as front nodes of x and y, respectively.

U(x ∼ y)

x̃ ỹU(x ≺ y) U(y ≺ x)

x y

Proof. Consider an arbitrary node z and its projection z̄ onto P (x̃, ỹ). If z̄ is an inner
node on P (x̃, ỹ), by Lemma 3.1 it is undecided. Otherwise, z is part of one of the subtrees
Tx̃(ỹ) or Tỹ(x̃) and clearly prefers x or y, respectively. 2

Theorem 3.3 (Enumeration of Front Node Pairs) For a given node x, the set

of all pairs (x̃, ỹ) where y is an α-neighbor and x̃, ỹ are the corresponding front nodes can

be computed in time O(n). 2

Corollary 3.4 (Computation of Absolute Φ-Score) For all front node computable

monotonous gain functions Φ, the absolute score Φ(x) of a node x can be computed in

time O(n).

In the sequel we develop an algorithm to compute the absolute Φ-score of a tree, i.e.,
a node x with minimum value Φ(x). The algorithm consists of two phases. The �rst
phase is merely a modi�cation of the divide and conquer algorithm suggested in the
previous section, and tests candidate points x at nodes of the tree only. The second
phase considers the situation when an optimal solution is actually an inner point of an
edge.

De�nition 10 (Guide Edge) Let x be an arbitrary node and y ∈ N(x, α) such that
Φ(x) = Φ(y ≺ x). Then the edge incident with x and sharing inner points with the path
P (x, y) is called a guide edge of x.

We now look at the divide step of the algorithm. The di�erence to the discrete case
presented in Section 2.2 is that now after dividing the tree at node x we cannot exclude
the points of the guide edge from further consideration. The rest of the proof of the
following claim is along the lines drawn out in the proof of Theorem 2.6.

Theorem 3.5 (Divide Step) Let x be an arbitrary node. If there exists a guide edge

(x, v), then all points x′ with Φ(x′) < Φ(x) must lie in the subtree Tx(v) ∪ {(x, v)}. 2

At this point we can invoke a slightly modi�ed version of the algorithm depicted in
Figure 2 as the �rst phase of our algorithm. The obvious changes are replacement of

10

guide node by guide edge and the change to Tactive ← Tactive ∩
(
Tx(v) ∪ {(x, v)}

)
in

Line 10. While in the original version it is true that the tree properly shrinks by at least
one node in each division step, this holds no longer in the new setting when we arrive
at two nodes connected by an edge. So in order to avoid endless loops, we adapt the
termination rules: if the active set consists of exactly two nodes connected by one edge,
then the phase terminates and enters phase two described in the sequel. (The case that
the active set consists only of one single node is, unless the input tree consists only of
one node, actually impossible, as is shown in Appendix 5.2.)
In Phase 2 of our algorithm we have to determine an optimal point when the active

set has reduced to a single edge already. We reduce this case to a computation of an
optimal point in a modi�ed tree. To this end, we identify the set of critical points on the
remaining edge e = (u, v), i.e., those points where the value of Φ can change. Clearly,
this set of critical points includes points with a distance of exactly α to a node of T . Let

X := { point x ∈ e | d(x, z) = α for some z ∈ V } ∪ {u, v}

be a set of points on e. We sort point set X such that for X = {x0, . . . , xk}, x0 = u,
xk = v, and d(u, xi) < d(u, xi+1) for all i. Notice that |X| ≤ n.
We claim that there are no more critical points on the edge e; in detail, the value of Φ is

constant on each of the open intervals (xi, xi+1). This follows from applying Theorem 3.2.
For any two inner points x′, x′′ of the same interval, the sets of edges which α-neighbors
of x′ and x′′ lie on are identical. Moreover, also the sets of corresponding front nodes
coincide. Hence the user preferences and �nally the Φ-scores must be the same.
We restart the algorithm of the �rst phase on the tree with node set X added, and with

initial active set Tactive := X. This phase will terminate again with a subedge (xi, xi+1)
of e. At this point we choose an arbitrary inner point x of this subedge and evaluate the
absolute scores Φ(xi),Φ(x),Φ(xi+1) and compare these with the best result so far.

Theorem 3.6 (Absolute Φ-Solution of a Tree) An absolute Φ-solution of a tree

can be computed in time O(log n · (t(n)+n)) where t(n) is the time needed for evaluating

the Φ-score and a guide of a node. 2

Corollary 3.7 For all front node computable monotonous gain functions Φ, an abso-

lute Φ-solution of a tree can be computed in O(n log n).

4 Applications

4.1 Relaxed Simpson Solution

If we set Φ(y ≺ x) := Γ(y ≺ x) we describe the Simpson problem. Obviously Φ satis�es
the conditions of a monotonous gain function in this case. Since Γ(y ≺ x) = w(Tx̃(ỹ))
this function is also front node computable which allows to compute a Simpson solution
in time O(n(log n)2) according to Corollary 2.8.
However, since the value Γ(y ≺ x) does not depend on U(x ≺ y) we need no knowledge

about the front node x̃. Hence we do not need the binary search described in the proof

11

of Theorem 2.4 and end up with an algorithm running in time O(n log n). (This matches
the result from [NSW07] which was derived using a di�erent approach.)

Corollary 4.1 The relaxed Simpson score and the relaxed absolute Simpson score of

a tree can be computed in time O(n log n).

4.2 Relaxed Security Solution

We now consider the gain function Φ(y ≺ x) := ∆(y ≺ x) to describe the security
problem. It is easy to observe that this is a monotonous gain function and also front
node computable.

Corollary 4.2 The relaxed security score of a tree can be computed in time O(n ·
(log n)2) and the relaxed absolute security score in time O(n log n).

We brie�y remark that this result can be applied also to variations of the standard
security score, e.g. when the di�erence is replaced by the ratio where we end up with a
gain function Φ(y ≺ x) = W (y ≺ x)/W (x ≺ y).

4.3 Stackelberg Solution

In the sequel we leave the area of voting problems and turn over to the family of compet-

itive location problems [ELT93]. Here two providers, called leader and follower, sequen-
tially locate facilities in a graph in order to maximize their market share. In the case of
Stackelberg solutions, users prefer nearest facilities. If a user is undecided, its demand is
split equally amongst the two competing providers [HTW90]. Once the leader has settled
down on position x the follower chooses a location y which maximizes its individual gain.
In the framework of this paper the market share of the follower can be modeled by the
monotonous gain function Φ(y ≺ x) = W (y ≺ x) + 1

2W (y ∼ x), and �nding an optimal
position for the follower is equivalent to computing the Φ-score of the leader. Hence the
behavior of the follower is fully foreseeable, and if the leader tries to maximize his gain,
this is equivalent to the problem of determining the Φ-score of the graph.
We generalize this problem by introducing a function f : V → [0, 1] which speci�es the

individual user demand gained by the follower in the case where the user is undecided.
(The above problem is then the special case of f ≡ 1

2 .) For simplicity we use the notation

F (U) := (f · w)(U) =
∑
u∈U

f(u) · w(u) for all user sets U

and write F (y ∼ x) := F (U(y ∼ x)). Thus we end up with a gain function

Φ(y ≺ x) := W (y ≺ x) + F (y ∼ x)

in the above framework. Clearly, this function is a monotonous gain function.
To convince ourselves that Φ is front node computable, we enhance the preprocessing

phase described in Section 2.1 to compute also the values F (Tu(v)) and F (Tv(u)) for

12

each edge (u, v) ∈ E. Since the value F (y ∼ x) can be computed with the help of the
identity

F (y ∼ x) = F (T)− F (y ≺ x)− F (x ≺ y) = F (T)− F (Tỹ(x̃))− F (Tx̃(ỹ))

in constant time, the claim follows.

Corollary 4.3 The relaxed Stackelberg solution on a tree can be computed in time

O(n(log n)2) and the relaxed absolute Stackelberg solution in time O(n log n).

We note that in the case of f ≡ 0 and α = 0 we arrive at the (1|1)-centroid problem
which is equivalent to the Simpson solution described earlier [Hak90].

4.4 Veri�cation of Nash Solution

A pair (x, y) of nodes in a graph is called a Nash solution if no party can increase its
payo� by moving to another location [HTW90]. The payo� is given as in the previous
section as Φ(y ≺ x) = W (y ≺ x) + 1

2W (y ∼ x). Formally, the pair must satisfy

Φ(y ≺ x) ≥ Φ(y′ ≺ x) and Φ(x ≺ y) ≥ Φ(x′ ≺ y) for all x′, y′ .

Obviously these conditions are equivalent to Φ(x) = Φ(y ≺ x) and Φ(y) = Φ(x ≺ y). So
the test can be performed in time O(n log n) as shown before.

Corollary 4.4 On a tree, the veri�cation whether a pair of nodes (a pair of points)

is a Nash solution (an absolute Nash solution) can be performed in time O(n log n) (in

time O(n)).

References

[CM02] C. M. Campos Rodríguez and J. A. Moreno Peréz · Multiple voting location

problems · unpublished manuscript, 2002.

[CM03] C. M. Campos Rodríguez and J. A. Moreno Peréz · Relaxation of the condorcet

and simpson conditions in voting location · European Journal of Operations
Research 145 (2003), 673�683.

[ELT93] H. A. Eiselt, G. Laporte, and J.-F. Thisse · Competitive location models: A

framework and bibliography · Transportation Science 27 (1993), no. 1, 44�54.

[Hak90] S. L. Hakimi · Locations with spatial interactions: Competitive locations and

games · in [MF90], 1990, pp. 439�478.

[HTW90] P. Hansen, J.-F. Thisse, and R. E. Wendell · Equilibrium analysis for voting

and competitive location problems · in [MF90], 1990, pp. 479�501.

[MF90] P. B. Mirchandani and R. L. Francis · Discrete location theory · Series in
Discrete Mathematics and Optimization, Wiley-Interscience, 1990.

13

[NSW07] H. Noltemeier, J. Spoerhase, and H.-C. Wirth · Multiple voting location and

single voting location on trees · to appear in European Journal of Operations
Research (EJOR), 2007.

14

5 Appendix

5.1 Justi�cation of In�nitesimality in De�nition 9

In De�nition 9 we de�ne an α-neighbor of candidate point x to be a point y where d(x, y)
is �in�nitesimaly greater� than α. We illustrate now the idea behind this de�nition.
Moreover we show also that an α-neighbor is ready for an implementation and can in
particular be computed e�ciently.
Let y′ be a point such that d(x, y′) = α. We distinguish two cases:

1. y′ is a node of the tree. A user at node y′ is undecided. Let z1, . . . , zk be those node
neighbors of y′ where the edge (y′, zi) does not have any inner point in common
with P (x, y′).

While choosing y := zi for some i guarantees that U(y ≺ x) = Tx(y), this leaves
the chance that there exists a node x̃ which is an inner node of P (x, y′) but has
distance d(y, x̃) > α. This node x̃ would prefer x and hence the front node of x
were an inner node of path P (x, y).

To avoid this we compute d := d(x, x′) where x′ is the neighbor of x in direction
towards y′. Then for some i, we choose y on edge (y′, zi) so that d(y′, y) < d.

2. y′ is not a node. Let z be the node neighbor of y′ such that subedge (y′, z) has no
inner points in common with path P (x, y′). Similar to above, select y on subedge
(y′, z) such that d(y′, y) < d.

De�ning an α-neighbor this way, we can now present the missing proof from page 9.

Proof (of Lemma 3.1). Let x′ be the neighbor of x and d = d(x, x′) as described above.
Further, let d′ := d(y′, y) < d be the distance by which y exceeds the α radius. Consider
a node z being an inner node on path P (x, y). We claim that |d(x, z)− d(z, y)| ≤ α. To
this end,

d(x, z)− d(z, y) = d− d′ + d(x′, z)− d(z, y′) > 0− d(z, y′) ≥ −α

and on the other hand

d(x, z)− d(z, y) = d + d(x′, z)− d(z, y′)− d′ ≤ d + d(x′, z) ≤ α .

This shows the claim. 2

5.2 Termination of Algorithm from Section 3

We show now that the �rst phase of the algorithm described in Section 3 does not need to
deal with the case that |Tactive| = 1 because this cannot happen as a result of the divide
step. (Observe �rst that if the initial tree consists of one node only, then the algorithm
terminates already correctly since there is no guide.)

15

To create a single node set Tactive = {x}, it is necessary that the node x is selected in
two di�erent divide steps as a pivot element, and the corresponding guide edges in these
steps being di�erent.
Observe that after the �rst of these divide steps, node x is a leaf in the tree induced

by Tactive at that time. Since the algorithm selects always a median node of Tactive as
pivot element, the node x can only be selected for the second time when a leaf can be a
median node.
This is impossible for trees containing at least three nodes. A tree with two nodes, i.e.,

a single edge, would leave phase 1 and enter phase 2. A tree with one node is impossible
by induction. This concludes the claim.

16

