
Machines that can Output Empty Words

Christian Glaßer and Stephen Travers∗

Theoretische Informatik
Julius-Maximilians Universiẗat Würzburg

Am Hubland,
97074 Ẅurzburg, Germany

Abstract

We propose the e-model for leaf languages which generalizes the known balanced and unbalanced
concepts. Inspired by the neutral behavior of rejecting paths ofNP machines, we allow transducers
to output empty words.

The paper explains several advantages of the new model. A central aspect is that it allows us to
prove strong gap theorems: For any classC that is definable in the e-model, eithercoUP ⊆ C or
C ⊆ NP. For the existing models, gap theorems, where they exist at all, only identify gaps for the
definability byregular languages. We prove gaps for the general case, i.e., for the definability by
arbitrary languages. We obtain such general gaps forNP, coNP, 1NP, andco1NP. For the regular
case we prove further gap theorems forΣP

2 , ΠP
2 , and∆P

2 . These are the first gap theorems for∆P
2 .

This work is related to former work by Bovet, Crescenzi, and Silvestri, Vereshchagin, Hertrampf et
al., Burtschick and Vollmer, and Borchert et al.

1 Introduction

Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] independently introduced leaf lan-
guages. This concept allows a uniform definition of many interesting complexity classes likeNP and
PSPACE. The advantage of such an approach is obvious: It allows to prove quite general theorems
in a concise way. For example, Glaßer et al. [GOP+05] recently showed that ifC is a class that is
balanced-leaf-language definable by a regular language, then all many-one complete problems ofC are
polynomial-time many-one autoreducible. This general theorem answered several open questions, since
classes likeNP, PSPACE, and the levels of thePH are definable in this way.

Moreover, leaf languages allow concise oracle constructions. The background is the BCSV-theorem
[BCS92, Ver93] that connects polylog-time reducibility (plt-reducibility) with the robust inclusion of
two complexity classes (i.e., the inclusion with respect to all oracles). This connection reduces oracle
constructions to their combinatorial core. In particular, neither do we have to care about the detailed
stagewise construction of the oracle, nor do we have to describe the particular coding of the single

∗Emails:{glasser, travers}@informatik.uni-wuerzburg.de

1

stages. As an example, Lemma 5.6 below presents a short proof for the existence of an oracle relative to
whichUP ∨UP 6⊆ 1NP. A direct oracle construction would be substantially longer.

In this paper we offer a useful generalization of the known leaf-language concepts. Despite of its broader
definition, the new concept is convenient and has the nice features we appreciate with traditional leaf
languages. It even combines certain advantages of single known concepts. We summarize the benefit of
the new notion:

1. contains the traditional concepts

2. works with balanced computation trees

3. admits a BCSV-theorem [BCS92, Ver93]

4. establishes a tight connection between the polynomial-time hierachy and the Straubing-Thérien
hierarchy (the quantifier-alternation hierarchy of the logic FO[<] on words)

The new e-model of leaf languages is inspired by the observation that rejecting paths of nondeterministic
computations act asneutralelements. In this sense we allow nondeterministic transducers not only to
output single letters, but also to output the empty wordε which is the neutral element ofΣ∗. More
precisely, we consider nondeterministic polynomial-time-bounded Turing machinesM such that on
every input, every computation path stops and outputs an element fromΣ ∪ {ε}. Let M(x) denote
the computation tree on inputx, and defineβM (x) as the concatenation of all outputs ofM(x). For
any languageB, let Leafpε (B) (the e-class ofB) be the class of languagesL such that there exists a
nondeterministic polynomial-time-bounded Turing machineM as above such that for allx,

x ∈ L ⇐⇒ βM (x) ∈ B.

If we demand thatM never outputsε, then this definesLeafpu (B) (the u-class ofB). If we demand
thatM is balanced and never outputsε, then this definesLeafpb (B) (the b-class ofB). (M is balanced
if there exists a polynomial-time computable function that on input(x, n) computes then-th path of
M(x).) The notions e-class, u-class, and b-class are extended from a single languageB to a class of
languagesC in the standard way:Leafpε (C) (the e-class ofC) is the union of allLeafpε (B) whereB ∈ C.
For a survey on the leaf-language approach we refer to Wagner [Wag04].

It is immediately clear that the u-model and the b-model are restrictions of the e-model.

Leafpb (B) ⊆ Leafpu (B) ⊆ Leafpε (B)

Moreover, it is intuitively clear that the presence of the neutral elementε gives the classLeafpε (B) some
inherent nondeterministic power which makesLeafpε (B) seemingly bigger thanP. We will discuss this
issue and we will identifyUP ∩ coUP as a lower bound (we obtain stronger bounds if we restrict to
regular languagesB). The advantage of the e-model over the u-model is its simplicity: In the e-model
we can assume balanced computation trees which in turn leads to easy plt-reductions. The advantage
over the b-model is the established tight connection between the polynomial-time hierarchy and the
Straubing-Th́erien hierarchy, a well-studied hierarchy of regular languages. Glaßer [Gla05] shows that
such a connection does not hold for the b-model. This connection within the e-model makes it possible
to exactly characterize leaf-language classes in the environment ofNP.

In order to describe our results we have to define the levels of the Straubing-Thérien hierarchy (STH). In
the scope of this paper it suffices to summarize that the STH is a hierarchy of levels that contain regular
languages. We use a notation that already suggests a connection to the polynomial-time hierarchy (PH).

2

A language belongs to levelΣFO
k if it can be defined by a sentence of the logic FO[<] on words such

that the sentence starts with an existential quantifier and has at mostk − 1 quantifier alternations.ΠFO
k

denotes the level of the complements of elements inΣFO
k . ∆FO

k+1 denotes the intersection ofΣFO
k and

ΠFO
k . The formal definition can be found in the preliminaries.

Results: We start with observations that let us easily transfer the known BCSV-theorem to the new
notion. Along these lines we show that the polynomial-time hierarchy (PH) is connected with the
Straubing-Th́erien hierarchy in the following sense: The e-class of levelΣFO

k of the STH equals levelΣP
k

of the PH. Note that this leaves room for the possibility that languages outsideΣFO
k form e-classes that

are still contained inΣP
k . So even the e-class of a superset ofΣFO

k might be equal toΣP
k . For the lower

levels, however, we are able to rule out this possibility. This proves a substantiallytighter connection
between both hierarchies. For instance, under the reasonable assumptioncoUP 6⊆ NP, we show that
the languages inΣFO

1 are the only languages whose e-classes are contained inNP. Hence, under this
assumption, a language belongs toΣFO

1 if and only if its e-class is contained inNP. This connectsΣFO
1

andNP in the strongest possible way. We obtain several other strong relationships of this type, they are
summarized in Table 1. In particular, we prove the first gap theorem for∆P

2 (Corollary 4.9). This is
possible by the e-model’s tight connection to the STH, by the forbidden-pattern characterization ofΣFO

2

which was proved by Pin and Weil [PW97], and by the equalityLeafpu (ΣFO
2) = ∆P

2 which was showen
by Borchert, Schmitz, and Stephan [BSS99] and Borchert et al. [BLS+04].

Some comments about the results in Table 1 are appropriate. First, they can be interpreted as gap
theorems for leaf-language definability. For instance, the row aboutΣFO

1 tells us that any e-class either
is contained inNP or contains at leastcoUP. Hence, once an e-class becomes bigger thanNP, its
complexity jumps to at leastNP ∪ coUP. Second, there exist several evidences that classes in the
columns 3–5 are not contained in the corresponding class of column 2. In any case there exist oracles
relative to which this non-containment holds. Third, all classes in the first column are decidable, i.e., on
input of a finite automatonA we can decide whether the language accepted byA belongs to the class.
This allows a decidable and precise classification of e-classes under the assumption that the classes in the
4th column are not contained in the respective class in the 2nd column. On input of a regular language
B (via its finite automaton) we can determine whether or notB’s e-class is contained in the classes of
the 2nd column.

With U we identify the class of all languages whose e-class is (robustly) contained in1NP. A language
belongs toU if and only if membership of a word can be expressed in terms of a unique occurrence of
a substring and in terms of forbidden substrings. This shows thatU is a class of regular languages. We
prove a decidable characterization ofU, a so-called forbidden-pattern characterization. It exactly reveals
the structure in a finite automaton that is responsible for shifting a language outsideU.

Gap theorems for leaf-language definability are rather rare. With the following theorem we summarize
the known results.

Theorem 1.1 LetB be a nontrivial regular language.

1. [Bor95] The u-class ofB either is contained inP, or contains at least one of the following classes:
NP, coNP, MODpP for some primep.

2. [BKS99] The u-class ofB either is contained inNP, or contains at least one of the following
classes:coNP, co1NP, MODpP for some primep.

1Some remarks about notations:C ∨ D (resp.,C ∨· D) is the class of unions (resp., disjoint unions) of someL1 ∈ C and
someL2 ∈ D. From this, the operators∧ and ∧· are derived via DeMorgan’s law.AUΣP

2 andAUΠP
2 denote levels of the

unambiguous polynomial-time hierarchy. More details can be found in the preliminaries section.

3

C Leafpε (C) = if B /∈ C then
Leafpε (L) contains

if B ∈ REG− C then
Leafpε (L) contains

if B ∈ SF− C then
Leafpε (L) contains

∅ ∅ UP or coUP NP, coNP, or
MODpP for a primep

NP or coNP

ΣFO
1 NP coUP coNP, co1NP, or

MODpP for a primep
coNP or co1NP

ΠFO
1 coNP UP NP, 1NP, or MODpP

for a primep
NP or 1NP

U 1NP UP ∨UP or
UP∨· coUP

UP ∨UP or
UP∨· coUP

UP ∨UP or
UP∨· coUP

coU co1NP coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

∆FO
2 ∆P

2 – AUΣP
2 or AUΠP

2 AUΣP
2 or AUΠP

2

ΣFO
2 ΣP

2 – AUΠP
2 AUΠP

2

ΠFO
2 ΠP

2 – AUΣP
2 AUΣP

2

Table 1: Summary of the obtained gap theorems whereB is a language different from∅ andΣ∗.1

3. [Sch01] The u-class ofB either is contained inΣP
2 , or containsAUΠP

2 .

4. [Gla05] The b-class ofB either is contained inP, or contains at least one of the following classes:
NP, coNP, MODpP for some primep.

5. [Gla05] The b-class ofB either is contained inNP, or contains at least one of the following
classes:coNP, co1NP, MODpP for some primep.

2 Preliminaries

2.1 Basic Notions

We denote with NL, P, NP, coNP and PSPACE the standard complexity classes whose definitions can be
found in any textbook on computational complexity (cf. [Pap94], for example). The classUP is the class
of decision problems solvable by an NP machine such that if the input belongs to the language, exactly
one computation path accepts and if the input does not belong to the language, all computation paths
reject. Contrary, the class1NP is the class of decision problems solvable by an NP machine such that
the input belongs to the language if and only if exactly one computation path accepts.2 For anyk > 1,
MODkP is the class of decision problems solvable by an NP machine such that the number of accepting
paths is divisible byk if and only if the input does not belong to the language. The characteristic function
of a setA is denoted asχA. We will always assume that our alphabetΣ contains at least 2 letters.

2Observe that in contrast to UP, a machine can legally have more than one accepting path.

4

Let ¹ denote the usual subword relation, i.e.v¹w if v = v1 . . . vn for lettersv1, . . . , vn andw ∈
Σ∗v1Σ∗v2 . . .Σ∗vnΣ∗. We write v≺w if v¹w andv 6= w. For k ≥ 0 we write v¹k w if v is a
nonempty word that appears preciselyk-times as a subword ofw. In addition we defineε¹1 w for
every wordw. Fork ≥ 0 we writev¹≥k w if there existsl ≥ k such thatv¹l w. Fork ≥ 0 and a finite
setB of wordsv1, . . . , v|B| we writeB¹k w if k can be written ask = k1 + · · ·+ k|B| such that

v1¹k1 w, v2¹k2 w, . . . , v|B|¹k|B| w.

Sov¹w if and only if there existsk ≥ 1 such thatv¹k w. Also,v 6¹w if and only if v¹0 w.

We call a languageB nontrivial if B 6= ∅ andB 6= Σ∗. If L, K ⊆ Σ∗ are disjoint languages, we also
write (L,K) ⊆ Σ∗, i.e. whenever we talk about a pair(L,K) ⊆ Σ∗ of languages, we assume thatL
andK are disjoint.

Definition 2.1 LetK,M be complexity classes. We define

K ∨M =def {A ∪B
∣∣A ∈ K, B ∈M}, K ∧M =def co(coK ∨ coM),

K∨· M =def {A ∪B
∣∣A ∈ K, B ∈M, A ∩B = ∅}, K∧· M =def co(coK∨· coM).

Definition 2.2 For any languageL ⊆ Σ∗ anda 6∈ Σ, we defineLa ⊆ (Σ ∪ {a})∗ as

La =def {am0w1a
m1w2a

m2 . . . amn−1wnamn
∣∣m0, . . . , mn ≥ 0, w1w2 . . . wn ∈ L}.

2.2 The Unambiguous Alternation Hierarchy

Niedermeier and Rossmanith [NR98] introduced the unambiguous alternation hierarchy. For its defini-
tion we use Hemaspaandra’s characterization in terms of unambiguous alternating quantifiers. For any
complexity classC, define∃u·C as the class of languagesL such that there exist a polynomialp and
L′ ∈ C such that for allx,

x ∈ L ⇒ there exists exactly oney ∈ Σ=p(|x|) such that(x, y) ∈ L′

x /∈ L ⇒ there exists noy ∈ Σ=p(|x|) such that(x, y) ∈ L′.

Analogously,∀u·C is the class of languagesL such that there exist a polynomialp andL′ ∈ C such that
for all x,

x ∈ L ⇒ for all y ∈ Σ=p(|x|), (x, y) ∈ L′

x /∈ L ⇒ there exists exactly oney ∈ Σ=p(|x|) such that(x, y) /∈ L′.

Definition 2.3 (attributed to unpublished work of Hemaspaandra [NR98])

AUΣP
0 = AUΠP

0 =def P
AUΣP

k+1 =def ∃u·AUΠP
k for k ≥ 0

AUΠP
k+1 =def ∀u·AUΣP

k for k ≥ 0.

It is expected that leveln of the unambiguous alternation hierarchy is not contained in leveln − 1 of
the polynomial-time hierarchy. Spakowski and Tripathi [ST04] construct an oracle relative to which for
everyn ≥ 1, leveln of the unambiguous alternation hierarchy is not contained inΠP

n .

5

2.3 Straubing-Thérien Hierarchy

Starfree languages are regular languages that can be build from single letters by using Boolean operations
and concatenation. LetSF denote the class of starfree languages. Brzozowski and Cohen [CB71, Brz76]
introduced the dot-depth hierarchy which measures the complexity of starfree languages in terms of
necessary alternations between Boolean operations and concatenation in the definition of the language.
Straubing and Th́erien [Str81, Th́e81, Str85] introduced a modification that is more appropriate for the
algebraic theory of languages, but still covers the important aspects of the dot-depth hierarchy. This
hierarchy is called Straubing-Thérien hierarchy (STH).

Perrin and Pin [PP86] proved a logical characterization of the STH. We use this characterization as
definition, since it uses an easy logic on words and it shows nice parallels to the definition of the
polynomial-time hierarchy. Formulas of the first-order logic FO[<] consist of first-order quantifiers,
Boolean operators, the binary relation symbol<, and unary relation symbolsπa for each lettera. A sen-
tenceφ is satisfied by a wordw if φ evaluates to true where variables are interpreted as positions inw
andπax is interpreted as “lettera appears at positionx in w”. A languageB is FO[<] definable if there
exists a sentenceφ such that for all wordsw, w ∈ L if and only if φ is satisfied byw. A ΣFO

k -sentence
(resp.,ΠFO

k -sentence) is a sentence of FO[<] that is in prenex normal form, that starts with an existential
(resp., universal) quantifier, and that has at mostk− 1 quantifier alternations. A language belongs to the
classΣFO

k (resp.,ΠFO
k) of the STH if it can be defined by aΣFO

k -sentence (resp.,ΠFO
k -sentence).∆FO

k+1

denotes the intersection ofΣFO
k andΠFO

k .

3 Machines with Computation Trees Havingε-Leaves

We introduce the e-model of leaf languages which is inspired by the observation that rejecting paths of
nondeterministic computations act as neutral elements. We allow nondeterministic transducers not only
to output single letters, but also to output the empty wordε. After the formal definition we introduce pte-
reducibility which allows us to formulate and prove an analogon of the BCSV-theorem. Furthermore,
we show that the e-model connects the polynomial-time hierarchy with the Straubing-Thérien hierarchy.

For a finite alphabetΣ anda 6∈ Σ, we define a homomorphismhΣ,a : (Σ∪{a})∗ → Σ∗ byhΣ,a(b) =def b
for b ∈ Σ andhΣ,a(a) =def ε.

Definition 3.1 Let (L, K) ⊆ Σ∗. The classLeafpε (L,K) consists of all languagesA for which there
exists a nondeterministic polynomial time transducerM producing on every computation path a symbol
fromΣ or the empty wordε such that the following holds:

x ∈ A ⇒ βM (x) ∈ L,

x 6∈ A ⇒ βM (x) ∈ K.

For (L,K) ⊆ Σ∗, if K = Σ∗ − L, we will often useLeafpε (L) as abbreviation forLeafpε (L,K). In
these cases, we will make clear what alphabet we use forL. Notice the it makes no difference whether
we use balanced or unbalanced computation trees. So for convenience we may assume that paths not
only can output single letters, but arbitrary words.

Example 3.2 1. Leafpε (11∗, ε) = Leafpε (0∗1(0 ∨ 1)∗, 0∗) = NP.
2. LetL =def {1} ⊆ {0, 1}∗. ThenLeafpε (L) = 1NP.
3. Leafpε (1, ε) = UP.

6

A functiong is computable in polylogarithmic time if there existsk ≥ 1 such thatg(x) can be computed
in timeO(logk|x|) by a Turing-machine which accesses the input as an oracle.

Definition 3.3 Let (L,K) ⊆ Σ∗1, (L
′,K ′) ⊆ Σ∗2 anda 6∈ Σ∗1 ∪ Σ∗2. Then(L,K)≤pte

m (K, K ′) if and
only if there exists a functionf : (Σ1 ∪ {a})∗ → (Σ2 ∪ {a})∗ such that

• there exist functionsg : (Σ1 ∪ {a})∗ → Σ2 ∪ {a}, h : (Σ1 ∪ {a})∗ → N computable in polyloga-
rithmic time such that for allx ∈ (Σ1 ∪ {a})∗, f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)),

• for all x ∈ (Σ1 ∪ {a})∗,
(
hΣ1,a(x) ∈ L ⇒ hΣ2,a(f(x)) ∈ L′

)
,

• for all x ∈ (Σ1 ∪ {a})∗,
(
hΣ1,a(x) ∈ K ⇒ hΣ2,a(f(x)) ∈ K ′).

If (L,K)≤pte
m (L′,K ′) holds andK = Σ∗1 − L andK ′ = Σ∗2 − L′, we will often useL≤pte

m K as
abbreviation.

Lemma 3.4 For (L,K) ⊆ Σ∗1, (L′, K ′) ⊆ Σ∗2 wherea 6∈ Σ1 ∪ Σ2, it holds that(L,K)≤pte
m (L′,K ′) if

and only if(La,Ka)≤plt
m (L′a,K ′

a).

Proof This is an immediate consequence of the definition of≤pte
m : Let (L,K) ⊆ Σ∗1, (L′,K ′) ⊆ Σ∗2

anda 6∈ Σ1 ∪ Σ2. Observe that for the if-part, it suffices to modify the reducing function such that it
outputsε instead ofa. For the only if-part, it is the other way round. 2

Lemma 3.5 For (L,K) ⊆ Σ∗ and a 6∈ Σ, Leafpε (L,K) = Leafpb (La, Ka) = Leafpu (La,Ka) =
Leafpε (La,Ka).

Proof It suffices to show thatLeafpε (L,K) ⊆ Leafpu (La,Ka) andLeafpε (La,Ka) ⊆ Leafpε (L,K). For
the first inclusion, letA ∈ Leafpε (L,K) via the nondeterministic transducerM , which outputs symbols
from Σ∪{ε}. M can easily be transformed into a transducerM ′ which proves thatA ∈ Leafpb (La,Ka):
M ′ works likeM , but wheneverM outputsε, M ′ outputsa. For the second inclusion, let againM be the
nondeterministic transducer which provesA ∈ Leafpε (La,Ka). Observe that lettersa in the leafstring
of M on an inputx have no influence on whetherx belongs toA or not. Hence, we can transformM
into a machineM ′ that outputsε wheneverM outputsa. Hence,A ∈ Leafpε (L,K). 2

We obtain the following BCSV-theorem for the e-model.

Theorem 3.6 Let (L, K) ⊆ Σ∗1 and(L′,K ′) ⊆ Σ∗2. Then the following statements are equivalent:

1. (L,K)≤pte
m (L′,K ′).

2. For all oraclesO it holds thatLeafpε (L,K)O ⊆ Leafpε (L′,K ′)O.

7

Proof Let L,K ⊆ Σ∗1, L ∩K = ∅, L′,K ′ ⊆ Σ∗2, L
′ ∩K ′ = ∅ anda 6∈ Σ1 ∪ Σ2. Then the following

equivalences hold:

(L,K)≤pte
m (L′,K ′) I.⇔ (La,Ka)≤plt

m (L′a,K
′
a),

II.⇔ ∀O, Leafpb
B(La,Ka) ⊆ Leafpb

B(L′a,K
′
a),

III.⇔ ∀O, Leafpε
B(L,K) ⊆ Leafpε

B(L′,K ′).

Note that I. holds because of Lemma 3.4, II. holds because of [BCS92, Ver93], and III. holds because
Lemma 3.5 is relativizable. 2

The next theorem shows a connection between the STH and the PH via the e-model. A similar connec-
tion for the existing b- and u-models was proved by Hertrampf et al. [HLS+93], Burtschick and Vollmer
[BV98], and Borchert et al. [BLS+04].

Theorem 3.7 Letk ≥ 1.

1. Leafpε (ΣFO
k) = ΣP

k

2. Leafpε (ΠFO
k) = ΠP

k

3. Leafpε (∆FO
k) = ∆P

k

Proof Let B ⊆ Σ∗ and choose a new lettera /∈ Σ. We show: ifB ∈ ΣFO
k , thenBa ∈ ΣFO

k . Let φ
be aΣFO

k -sentence definingB. Assumeφ = Q1i1Q2i2 · · ·Qnin ψ where theQ’s are quantifiers, thei’s
are variables, andψ is quantifier-free. Now replace the quantifiersQn, . . . , Q1 and the formulasα they
range on:

∃i α is replaced by ∃i (¬πai ∧ α)
∀i α is replaced by ∀i (πai ∨ α)

Denote the resulting formula byφ′. Observe thatφ′ definesBa and thatφ′ can be converted to aΣFO
k -

sentence. HenceBa ∈ ΣFO
k . The same argument shows (i) ifL ∈ ΠFO

k , thenLa ∈ ΠFO
k and (ii) if

L ∈ ∆FO
k , thenLa ∈ ∆FO

k .

If we consider the u-model instead of the e-model, then the statements of the theorem are known [BV98,
BSS99, BLS+04]. By Leafpu (B) ⊆ Leafpε (B), it suffices to argue for the inclusions from left to right.
Let L ∈ Leafpε (ΣFO

k), i.e., there existsB ∈ ΣFO
k such thatL ∈ Leafpε (B). By Lemma 3.5,L ∈

Leafpu (Ba) wherea is a new letter. As argued above,Ba ∈ ΣFO
k and therefore,L ∈ Leafpu (ΣFO

k) ⊆ ΣP
k .

The inlucionsLeafpε (ΠFO
k) ⊆ ΠP

k andLeafpε (∆FO
k) ⊆ ∆P

k follow analogously. 2

4 Gap Theorems forNP, ∆P
2 , and ΣP

2

In this section we use existing forbidden-pattern characterizations to obtain lower bounds for certain
e-classes. From this we derive gap theorems forNP, ∆P

2 , andΣP
2 . A summary of these results can be

found in Table 1.

Pin and Weil [PW97] proved the following forbidden-pattern characterization of levelΣFO
1 of the STH.

8

s1 s2

wp−1

w

? ?
+ −

z z

*

¼

Figure 1: Forbidden pattern forSF wherep is prime.

Proposition 4.1 ([PW97]) The following are equivalent for any languageA.

1. A ∈ ΣFO
1

2. ∀v, w ∈ Σ∗[v¹w ⇒ χA(v) ≤ χA(w)]

3. ∀v, w ∈ Σ∗∀a ∈ Σ[χA(vw) ≤ χA(vaw)]

This characterization enables us to prove lower bounds for the e-class of languages outsideΣFO
1 . In

combination with Theorem 3.7 we obtain a gap theorem forNP (Corollary 4.3).

Theorem 4.2 LetA be an arbitrary language.

1. If A /∈ ΣFO
1 , thencoUP ⊆ Leafpε (A).

2. If A ∈ REG−ΣFO
1 , thenLeafpε (A) contains at least one of the following classes:coNP, co1NP,

MODpP for a primep.

3. If A ∈ SF− ΣFO
1 , thenLeafpε (A) contains at least one of the following classes:coNP, co1NP.

Proof If A /∈ ΣFO
1 , then by Proposition 4.1, there exist wordsv, w and a lettera such thatvw ∈ A

andvaw /∈ A. Let L ∈ coUP, i.e., there exists a nondeterministic polynomial-time machineM such
that on inputx /∈ L, M has exactly one accepting path, and inputx ∈ L, M has no accepting path.
We modifyM such that accepting paths outputa, rejecting paths outputε, an additional path on the left
outputsv, and an additional path on the right outputsw. It follows that for inputsx ∈ L the generated
leaf word isvw, and for inputsx /∈ L the generated word isvaw. This showsL ∈ Leafpε (A) and hence
coUP ⊆ Leafpε (A).

Now assumeA ∈ REG− ΣFO
1 .

Case 1:A /∈ SF. By Scḧutzenberger [Sch65] and McNaughton and Papert [MP71],A’s minimal
automaton contains the counting pattern (Fig. 1). So there exist wordsy, w, z and a primep such that for
all i, ywipz ∈ A andywip+1z /∈ A. We showMODpP ⊆ Leafpε (A). Let L ∈ MODpP and letM be a
nondeterministic polynomial-time machine such thatx ∈ L if and only if the number of accepting paths
of M on inputx is≡ 0(mod p). Without loss of generality we may assume that ifx /∈ L, then the latter
number is≡ 1(mod p). (If not, then simulateM ’s computationp − 1 times in a row, which takes the

9

number of accepting paths to the power ofp−1 and hence, by Fermat’s theorem, results in a number that
either is≡ 0(mod p) or is≡ 0(mod p).) We modifyM such that accepting paths outputw, rejecting
paths outputε, an additional path on the left outputsy, and an additional path on the right outputsz.
Hence, for inputsx ∈ L the generated leaf word is of the formywipz, and for inputsx /∈ L the generated
leaf word is of the formywip+1z. This showsL ∈ Leafpε (A) and henceMODpP ⊆ Leafpε (A).

Case 2:A ∈ SF− ΣFO
1 . By Proposition 4.1, there exist wordsv, w and a lettera such thatvw ∈ A and

vaw /∈ A. By the pumping lemma, there existj, n ≥ 1 such that for alli, vajw ∈ A ⇔ vaj+inw ∈ A.
Choose the smallest suchn. By Scḧutzenberger [Sch65] and McNaughton and Papert [MP71],A ∈ SF
implies thatA’s minimal automaton doesnot contain the counting pattern (Fig. 1). Therefore,n must
be equal to1 and it follows thatvaja∗w either is a subset ofA or is a subset ofA.

Assumevaja∗w ⊆ A. Hencevw ∈ A and v(aj)+w ⊆ A. We showcoNP ⊆ Leafpε (A). Let
L ∈ coNP and letM be a nondeterministic polynomial-time machine that acceptsL. We modifyM
such that accepting paths outputaj , rejecting paths outputε, an additional path on the left outputsv,
and an additional path on the right outputsw. If x ∈ L, then the modified machine produces the leaf
word vw; otherwise it produces a leaf word fromv(aj)+w. This showsL ∈ Leafpε (A) and hence
coNP ⊆ Leafpε (A).

Assumevaja∗w ⊆ A. Choose the smallestk ∈ [1, j) such thatvaka+w ⊆ A. Hencevakw /∈ A.
We showco1NP ⊆ Leafpε (A). Let L ∈ co1NP and letM be a nondeterministic polynomial-time
machine such thatx /∈ L if and only if M on x produces exactly one accepting path. We modifyM
such that accepting paths outputak, rejecting paths outputε, an additional path on the left outputsv,
and an additional path on the right outputsw. If x ∈ L, then the modified machine produces a leaf word
in vaka+w ∪ {vw}; otherwise it produces the leaf wordvakw. This showsL ∈ Leafpε (A) and hence
co1NP ⊆ Leafpε (A). 2

Corollary 4.3 LetB be a nontrivial language.

1. The e-class ofB either is contained inNP, or containscoUP.

2. If B ∈ REG, then the e-class ofB either is contained inNP, or contains at least one of the
following classes:coNP, co1NP, MODpP for a primep.

3. If B ∈ SF, then the e-class ofB either is contained inNP, or contains at least one of the following
classes:coNP, co1NP.

Proof Follows from Theorems 3.7 and 4.2. 2

Now we can prove general lower bounds for e-classes. In particular, no complexity class belowUP is
definable with this concept.

Corollary 4.4 LetA be a nontrivial language.

1. Leafpε (A) contains at least one of the following classes:UP, coUP.

2. If A ∈ REG, thenLeafpε (A) contains at least one of the following classes:NP, coNP, MODpP
for a primep.

3. If A ∈ SF, thenLeafpε (A) contains at least one of the following classes:NP, coNP.

10

Proof By assumption there exist a word inA and a word not inA. If ε ∈ A, then by Proposition 4.1,
A /∈ ΣFO

1 ; otherwiseA /∈ ΣFO
1 . It follows from Theorem 4.2 thatcoUP ⊆ Leafpε (A) or coUP ⊆

Leafpε (A) = coLeafpε (A). Hence,UP ⊆ Leafpε (A) or coUP ⊆ Leafpε (A).

If A additionally belongs toREG, thenLeafpε (A) or Leafpε (A) contains at least one of the following
classes:coNP, co1NP, MODpP for a primep. HenceLeafpε (A) contains at least one of the following
classes:NP, coNP, MODpP for a primep. If A even belongs toSF, then the same argument shows
thatLeafpε (A) contains at least one of the following classes:NP, coNP. 2

Under reasonable assumptions that there is no regularA such thatA’s e-class lies strictly betweencoNP
and1NP. By symmetry, the same holds forNP andco1NP.

Corollary 4.5 Let A ∈ REG be a nontrivial language. AssumeNP 6⊆ 1NP andMODpP 6⊆ 1NP for
all primesp. Then the following implication holds.

Leafpε (A) (1NP ⇒ Leafpε (A) ⊆ coNP.

Proof If Leafpε (A) 6⊆ coNP, thenA /∈ coL1/2. By Theorem 4.2,Leafpε (A) contains at least one of the
following classes:NP, 1NP, MODpP for a primep. 2

Starting with a forbidden-pattern characterization forΣFO
2 [PW97] (Figure 2) we develop a lower bound

for the e-class ofΣFO
2 . Again, this yields a gap theorem, this time forΣP

2 (Corollary 4.7).

Theorem 4.6 If A ∈ REG− ΣFO
2 , thenAUΠP

2 ⊆ Leafpε (A).

Proof Pin and Weil [PW97] proved the following forbidden pattern characterization ofΣFO
2 : A regular

language belongs toΣFO
2 if and only if the transition graph of its minimal automaton does not contain

the subgraph shown in Figure 2. So by assumption,A’s minimal automaton contains this graph.

s1 s2

= =

v v

-
w

??
+ −

z z

Figure 2: Forbidden pattern forΣFO
2 wherew¹ v.

11

Let L ∈ AUΠP
2 , i.e., there existB ∈ P and polynomialsp andq such that for allx,

x ∈ L ⇒ ∀y ∈ Σp(|x|), ∃!z ∈ Σq(|x|)[(x, y, z) ∈ B],
x /∈ L ⇒ there existsy ∈ Σp(|x|) such that the following holds:

(i) ∀z ∈ Σq(|x|)[(x, y, z) /∈ B],

(ii) ∀u ∈ Σp(|x|) − {y},∃!z ∈ Σq(|x|)[(x, u, z) ∈ B].

We describe a nondeterministic machineM on inputx: First, M nondeterministically guessesy ∈
Σp(|x|). Now M splits into|v| paths which we associate with the letters ofv. Consider the first occur-
rence ofw as a subword ofv. The paths that are associated with the positions involved in this occurrence
output the respective letters ofv and stop. On all other paths (i.e., those which are not involved in the
first occurence ofw in v) the computation is continued as follows: Assume we are on a path that is
assiciated with letterc in v. M nondeterministically guessesz ∈ Σq(|x|). If (x, y, z) ∈ B, then outputε
and stop. Otherwise, outputc and stop.

In order to determine the leaf stringβM (x) we first consider certain factors of this string. More precisely,
let βu be the leaf string that is produced by the paths that guessy = u. Note that

βM (x) = β0β1 · · ·β2p(|x|) .

Assumeu ∈ Σp(|x|) such that∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Consider the path whereM guessesy = u.
In the next steps,M splits into |v| paths associated with the letters ofv. The paths involved in the
first occurrence ofw in v will output the respective letters fromv. Each remaining path continues the
computation. By assumption, there exists exactly onez such that[(x, y, z) ∈ B]. The path guessing that
z will output the respective letter inv, while all other paths will outputε. Therefore,βu = v.

Assumeu ∈ Σp(|x|) such that∀z ∈ Σq(|x|)[(x, u, z) /∈ B]. Consider the path whereM guessesy = u.
AgainM splits into|v| paths. The paths involved in the occurrence ofw will output the respective letters
from v. However, now there is noz such that[(x, y, z) ∈ B] and therefore, all remaining paths output
ε. It follows thatβu = w.

Now let us considerβM (x). If x ∈ L, then for allu, ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Therefore, allu,
βu = v and it follows thatβM (x) ∈ v∗. Otherwise,x /∈ L. So there existsy ∈ Σp(|x|) such that (i)
∀z ∈ Σq(|x|)[(x, y, z) /∈ B] and (ii) for all u 6= y, ∃!z ∈ Σq(|x|)[(x, u, z) ∈ B]. Therefore, (i)βy = w
and (ii) for allu 6= y, βu = v. It follows thatβM (x) ∈ v∗wv∗. So we obtained:

x ∈ L ⇒ βM (x) ∈ v∗

x /∈ L ⇒ βM (x) ∈ v∗wv∗

Let y be a word leading from the initial state tos1 in the minimal automaton ofA. Let M ′ be the
modification ofM that on the left additionally outputsy and on the right additionally outputsz. Hence,
x ∈ L if and only if βM ′(x) ∈ A. This showsL ∈ Leafpε (A). 2

Corollary 4.7 Let B be a nontrivial, regular language. The e-class ofB either is contained inΣP
2 , or

containsAUΠP
2 .

Proof Follows from Theorems 3.7 and 4.6. 2

In addition, Theorem 4.6 gives us a lower bound for the e-class of∆FO
2 :

12

Corollary 4.8 If A ∈ REG − (ΣFO
2 ∩ coL3/2), thenLeafpε (A) contains at least one of the following

classes:AUΠP
2 , AUΣP

2 .

Proof By assumption,A or A is outsideΣFO
2 . By Theorem 4.6,AUΠP

2 ⊆ Leafpε (A) or AUΠP
2 ⊆

coLeafpε (A). The latter is equivalent toAUΣP
2 ⊆ Leafpε (A). 2

Note that the following is the first gap theorem for∆P
2 . It holds for both the u-model and the e-model.

Corollary 4.9 LetB be a nontrivial, regular language.

1. The e-class ofB either is contained in∆P
2 , or contains at least one of the following classes:

AUΣP
2 , AUΠP

2 .

2. The u-class ofB either is contained in∆P
2 , or contains at least one of the following classes:

AUΣP
2 , AUΠP

2 .

Proof The first statement is an immediate consequence of Theorem 3.7 and Corollary 4.8. For the
second statement, letB3/2 denote level3/2 of the dot-depth hierarchy [CB71, PW97]. Schmitz [Sch01]
showed that ifA ∈ REG−(B3/2∩coB3/2), thenLeafpu (A) contains at least one of the following classes:
AUΣP

2 , AUΠP
2 . Borchert et al. [BLS+04] mention thatLeafpu (B3/2 ∩ coB3/2) = ∆P

2 can be obtained
by an extension of their method. 2

5 A Gap Theorem for 1NP

In view of the gap theorems forNP andcoNP (Corollary 4.3) it becomes evident that the classes1NP
andMODpP play an important role, since they appear as lower bounds. In this section we analyze1NP
in detail and prove a gap theorem for this class. This case is more challenging since we cannot utilize
an existing forbidden-pattern characterization. With Theorem 5.10 we give such a characterization for
the class of languages corresponding to1NP. Additionally, this theorem shows that with this class we
have in fact identifiedall languages whose e-class is robustly contained in1NP. This lets us derive a
gap theorem for1NP. For a given languageL, we define the following conditions:

P1: There exist wordsu ∈ L, v /∈ L, andw ∈ L such thatu¹ v¹w.

P2: There existk ≥ 2 and nonempty wordsu, v, w ∈ L such that{u, v}¹k w and
(∀x)[x≺u or x≺ v ⇒ x /∈ L].3

We interpret the patterns P1 and P2 as forbidden patterns and define a class of languagesU of languages
which neither fulfill P1 nor P2:

U =def {L : P1 and P2 fail forL}

We will later on see thatU is in fact a class of regular languages, and, more important, precisely charac-
terizes the class1NP in the e-model of leaf-languages. The next two lemmas show that the e-class of a
language which fulfills P1 or P2 is already quite powerful.

3Note that in P2, the wordsu andv can be the same.

13

Lemma 5.1 LetL ⊆ Σ∗ such thatL satisfies P1. Then

Leafpε (L) ⊇ UP∨· coUP.

Proof Let L ⊆ Σ∗ such that there exist wordsu ∈ L, v /∈ L, andw ∈ L such thatu¹ v¹w, i.e. L
satisfies pattern P1. Furthermore, letA ∈ UP∨· coUP. HenceA = B ∪ C whereB ∈ UP, C ∈ coUP,
andB ⊆ C. Let MB be theUP-machine acceptingB, and letMC be thecoUP-machine acceptingC.
Observe that wheneverMB on an inputx produces an accepting path (and thus accepts the input in an
UP-sense),MC also produces an accepting path and hence rejects (in ancoUP-sense).

In order to proveLeafpε (L) ⊇ UP∨· coUP, we show how to construct a nondeterministic polynomial-
time Turing machineM such that the following holds for allx:

x 6∈ A =⇒ βM (x) = v

x ∈ B =⇒ βM (x) = w

x ∈ C =⇒ βM (x) = u

Sinceu¹ v¹w = w1 . . . wk, we can mark the letters of one fixed occurrence ofu in w, we do the same
with one fixed occurrence ofv in w. Let Iu ({1, . . . , l} be the indices of letters inw that are marked
to belong tou, and letIv ({1, . . . , l} be the indices of letters inw that are marked to belong tov. Note
that#Iv = |v|, #Iu = |u|, andIu (Iv.

For1 ≤ i ≤ k, we construct Turing machinesMi as follows:

• If i ∈ Iu, Mi develops only one path and outputswi on this path.

• If i ∈ Iv\Iu, Mi simulates machineMC on the same input. On every rejecting path ofMC , Mi

outputsε, if an accepting path exists, this path outputswi.

• If i 6∈ Iv, Mi simulates machineMB on the same input. On every rejecting path ofMB, Mi

outputsε, if an accepting path exists, this path outputswi.

Turing machineM is constructed as follows: On inputx, M branches intok nondeterministic paths.
On pathi, M then simulatesMi on inputx. Notice thatM can only produce leafstrings from{u, v, w}.
It is easy to see thatM satisfies the above condition: It holds thatx ∈ A ⇔ βM (x) ∈ L, and hence
A ∈ Leafpε (L). 2

Lemma 5.2 LetL ⊆ Σ∗ such thatL satisfies P2. Then

Leafpε (L) ⊇ UP ∨UP.

Proof Let L ⊆ Σ∗ such that there existsk ≥ 2 and nonempty wordsu, v, w = w1 . . . wl ∈ L such that
{u, v}¹k w and(∀x)[x≺u or x≺ v ⇒ x /∈ L]. If u¹0 w we setu := v, if v¹0 w we setv := u. We
obtain{u, v}¹k w andu¹w, v¹w. Observe that sinceL satisfies P2, the empty wordε cannot be in
L, which has to have nonempty minimal words. Furthermore, letA ∈ UP ∨ UP. HenceA = B ∪ C
whereB ∈ UP andC ∈ UP. LetMB be theUP-machine acceptingB, and letMC be theUP-machine
acceptingC.

14

In order to proveLeafpε (L) ⊇ UP∨UP, we show how to construct a nondeterministic polynomial-time
Turing machineM such that the following holds for allx:

x 6∈ A =⇒ βM (x)≺u

x ∈ B \ C =⇒ βM (x) = u

x ∈ C \B =⇒ βM (x) = v

x ∈ B ∩ C =⇒ βM (x) = w

Observe that no proper subword ofu can be inL, since P2 requests thatu andv are minimal words
in L. Consequently, constructing a machineM as above yieldsx ∈ A ⇔ βM (x) ∈ L and hence
A ∈ Leafpε (L).

Sinceu¹w andv¹w, we can mark the letters of one fixed occurrence ofu in w, we do the same with
one fixed occurrence ofv in w.4 Let Iu ({1, . . . , l} be the indices of letters inw that are marked to
belong tou, and letIv ({1, . . . , l} be the indices of letters inw that are marked to belong tov. Observe
thatIu 6= Iv and hence#(Iu ∩ Iv) < min(|u|, |v|).
For1 ≤ i ≤ l, we construct Turing machinesMi as follows:

I. If i ∈ Iu ∩ Iv, Mi develops only one path and outputswi on this path.

II. If i ∈ Iu\Iv, Mi simulates machineMB on the same input. On every rejecting path ofMB, Mi

outputsε, if an accepting path exists, this path outputswi.

III. If i ∈ Iv\Iu, Mi simulates machineMC on the same input. On every rejecting path ofMC , Mi

outputsε, if an accepting path exists, this path outputswi.

IV. If i 6∈ Iu ∪ Iv, Mi produces an accepting path if and only ifMB andMC (running on the same
input asMi) produce an accepting path. Rejecting paths ofMi outputε.

Turing machineM is constructed as follows: On inputx, M branches intol nondeterministic paths. On
pathsi for 1 ≤ i ≤ l, M then simulatesMi on inputx.

We consider the four different possibilities for the behavior ofM on an inputx. We do this by analyzing
the behavior of the machinesM consists of. Notice that depending onu, v, w, there might not be any
machines of types I and IV.

Case 1:x 6∈ A. Hence,UP-machinesMB andMC do not acceptx, i.e. both produce only rejecting
paths. Clearly, all machines of type II, III, and IV only output empty words. IfIu ∩ Iv 6= ∅, precisely
those letters ofw are output that belong simultaneously to the marked occurrence ofu and to the marked
occurrencev. Let i1 < i2 < . . . < i#(Iu∩Iv) be the elements ofIu∩Iv, thenβM (x) = wi1 . . . wi#(Iu∩Iv)

.
As we then haveβM (x)≺u, we can conclude thatβM (x) 6∈ L, since no subword ofu is element ofL.
If Iu ∩ Iv = ∅, βM (x) = ε. Again, we concludeβM (x) 6∈ L sinceε 6∈ L.

Case 2:x ∈ B \C, i.e. MB produces an accepting path on inputx whereasMC produces only rejecting
paths. This means all machines of type III and IV output empty words. Recall that letters belonging tou
andv simultaneously are created by machines of type I regardless of the input. So we obtainβM (x) = u
andβM (x) ∈ L.

Case 3:x ∈ C \B. Analogous to case 2.

4If u = v, we fix two different occurrences ofu in w.

15

Case 4:x ∈ B∩C, i.e. MB andMC both produce an accepting path on inputx. If Iu∪Iv = {1, . . . , k},
it is clear thatβM (x) = w ∈ L. Iu ∪ Iv ({1, . . . , k}, the missing letters ofw are produced by the
machines of type IV. We again obtainβM (x) = w ∈ L.

From the above case differentiation, we obtainx ∈ A ⇔ βM (x) ∈ L which provesA ∈ Leafpε (L). 2

The next lemma gives simple languages that define the classes1NP andUP∨· coUP in terms of leaf-
languages.

Lemma 5.3 1. Leafpε (1, (ε ∨ 111∗)) = 1NP.
2. Leafpε ((ε ∨ 12), 2) = UP∨· coUP.
3. Leafpε ((1 ∨ 2 ∨ 12), ε) = UP ∨UP.

Proof 1. For⊇, simply modify the1NP-machine such that every accepting path outputs1 and every
rejecting path outputsε. For⊆, modify theε-machine such that every path that outputsε then rejects,
and every path that outputs1 then accepts.

2. ⊇: Let A ∈ UP∨· coUP, that meansA = B ∪ C whereB,C ∈ UP andB ⊆ C. Let MB,MC be
theUP-machines that proveB, C ∈ UP. As B ⊆ C, it holds for all inputsx that wheneverMB on
inputx produces an accepting pathMC on inputx also produces an accepting path. We now construct a
nondeterministic Turing-machineM as follows: In inputx, M first branches nondeterministically. On
the left path,M simulatesMB on inputx, on the right path, it simulatesMC on inputx. All rejecting
paths of these simulations outputε, the accepting path ofMB (if existent) outputs1, the accepting path
of MC (if existent) outputs2. It is easy to see that the following now holds:

∀x, βM (x) ∈ {ε, 2, 12},
x ∈ B ⇒ βM (x) = 12,

x ∈ C ⇒ βM (x) = ε,

x 6∈ A ⇒ βM (x) = 2.

This provesA ∈ Leafpε ((ε ∨ 12), 2).

⊆: Let A ∈ Leafpε ((ε∨ 12), 2) via the nondeterministicε-machineM . Observe thatA = B ∪C, where
B =def {x

∣∣ βM (x) = 12} andC =def {x
∣∣ 2¹βM (x)}. Clearly,B,C ∈ UP andB ⊆ C. Hence,

A ∈ UP∨· coUP.

3. Analogous. 2

In order to show that for any languageL, fulfillment of P1 suffices for the classLeafpε (L) to be not ro-
bustly contained in1NP, we first prove that languages characterizingUP∨· coUP cannot be pte-reduced
to languages characterizing1NP.

Lemma 5.4 ((ε ∨ 12), 2) 6≤pte
m (1, (ε ∨ 111∗)).

Proof We assume that(L,K)≤pte
m (L′,K ′). Due to Lemma 3.4, this is equivalent to

(L0, K0)≤plt
m (L′0,K

′
0). Recall that(L0, K0) =def ((0∗ ∨ 0∗10∗20∗), 0∗20∗) and (L′0,K

′
0) =def

(0∗10∗, (0∗ ∨ 0∗10∗1(0 ∨ 1)∗)). Say(L0, K0)≤plt
m (L′0,K

′
0) holds via plt-reductionf .

16

This means there exist functionsg, h which are computable in timec · logk fur suitablec, k ≥ 0 such
thatf(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) and the following holds:

x ∈ L0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L′0,
x ∈ K0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ K ′

0.

Let Mg be the deterministic polylog-time machine that computesg within the above time bound. We
choosen sufficiently large such thatn > 2 · c · logk(n + c logk n) + 2 and consider the inputw =def 0n.
Sincew ∈ L0, there exists precisely one1 ≤ i ≤ h(w) such thatg(w, i) = 1. Hence,Mg on input
(w, i) outputs1, while it outputs0 on input(w, k) for all otherk. Sincen > 2 ·c · logk(n+c logk n)+2,
Mg on input(w, i) cannot have queried all positions inw. Let j be a position that is not queried by
Mg on input(w, i). We then setv =def 0j−120n−j . Notice thatMg still outputs1 when ran on input
(v, i) sincew andv only differ on a position not queried byMg on input(w, i). As v ∈ K0, f has to
output a word fromK ′

0. Sinceg(v, i) = 1, there has to be anotheri′ such thatg(v, i′) = 1. Due to
n > 2 · c · logk(n+ c logk n)+ 2, we can easily find a positionj′ < j such thatMg neither queriesj′ on
input (v, i) nor on input(v, i′). Letu =def 0j′−110j−j′+120n−j . As we still haveg(u, i) = g(u, i′) = 1,
f(u) ∈ K ′

0 althoughu ∈ L0. By this contradiction, we have shown that no suchf can exist. 2

Lemma 5.5 There exists an oracleO such thatUP∨· coUP 6⊆ 1NPO.

Proof This follows directly fromLeafpε ((ε ∨ 12), 2) = UP∨· coUP, Leafpε (1, (ε ∨ 111∗)) = 1NP
(Lemma 5.3),((ε ∨ 12), 2) 6≤pte

m (1, (ε ∨ 111∗)) (Lemma 5.4) and Theorem 3.6. 2

Similarly to the above note, we prove that languages characterizingUP ∨ UP cannot be pte-reduced to
languages characterizing1NP. This is a step towards showing that for any languageL, fulfillment of P2
suffices for the classLeafpε (L) not to be robustly contained in1NP.

Lemma 5.6 ((1 ∨ 2 ∨ 12), ε)6≤pte
m (1, (ε ∨ 111∗)).

Proof We assume that(L,K)≤pte
m (L′,K ′). Due to Lemma 3.4, this is equivalent to

(L0, K0)≤plt
m (L′0,K

′
0). Recall that(L0,K0) =def ((0∗10∗∨0∗10∗20∗∨0∗20∗), 0∗) and(L′0, K

′
0) =def

(0∗10∗, (0∗ ∨ 0∗10∗1(0 ∨ 1)∗)). Say(L0, K0)≤plt
m (L′0,K

′
0) holds via plt-reductionf .

This means there exist functionsg, h which are computable in timec · logk fur suitablec, k ≥ 0 such
thatf(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) and the following holds:

x ∈ L0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L′0,
x ∈ K0 ⇒ f(x) = g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ K ′

0.

Let Mg be the deterministic polylog-time machine that computesg within the above time bound.
We choosen sufficiently large such thatn2 > 2 · c · logk(2n + c logk 2n) and consider words
xi, yi, zi,j ∈ {0, 1, 2}2n: For i, j ∈ {1, . . . , n}, we definexi =def 0i−110n−i0n, yi =def 0n0i−120n−i,
andzi,j =def 0i−110n−i0j−120n−j . Observe that fori, j ∈ {1, . . . , n}, xi, yi, andzi,j are all inL0 and
hencef(xi), f(yi), andf(zi,j) are all inL′0. Therefore, we have

∀a ∈ {x, y}∀i ∈ {1, . . . , n}∃!j : g(ai, j) = 1.

17

For1 ≤ i ≤ n, we define

d(i) =def l, whereg(xi, l) = 1,

B(i) =def {l ∈ {1, . . . , 2n} ∣∣Mg on input(xi, d(i)) queries positionl in xi}
e(i) =def l, whereg(yi, l) = 1,

C(i) =def {l ∈ {1, . . . , 2n} ∣∣Mg on input(yi, e(i)) queries positionl in xi}

Claim: There existi, j ∈ {1, . . . , n} such thati 6∈ C(j) andn + j 6∈ B(i).

Proof of the claim:Assuming that our claim is wrong, we conclude that for all(i, j) ∈ {1, . . . , n}2, it
holds thati ∈ C(j) or n+j ∈ B(i). Without loss of generality, we can assume thati ∈ C(j) holds
for at least half of all(i, j), i.e. for at leastn

2

2 tuples.5 Observe that there now exists1 ≤ j ≤ n such

that among thesen
2

2 tuples, there are tuples(i1, j), (i2, j), . . . , (in/2, j) such thati1 < i2 < . . . < in/2.
Hence, it holds thati1 ∈ C(j), i2 ∈ C(j), . . . in/2 ∈ C(j). This in turn implies thatMg on input
(yj , e(j)) queries at leastn2 positions inyj . Since we have chosenn sufficiently large such thatn2 >

2 ·c · logk(2n+c logk 2n), Mg cannot query all these positions. So we have contradicted our assumption
and thus proven the claim.

By this, we know that there existi, j ∈ {1, . . . , n} such thati 6∈ C(j) andn + j 6∈ B(i). Using a
standard technique, we can show thatd(i) 6= e(j).

Let us assume for a moment thatd(i) = e(j). This means that on input(xi, d(i)), Mg does not query
positionn + j in xi, and on input(yj , d(i)), Mg does not query positioni in yj . Recall thatxi andyi

only differ on positionsi andn + j. SinceMg cannot distinguish between(xi, d(i)) and(yj , d(i)) until
it has queried either positioni or positionn+ j (and may not be allowed to do so, depending on whether
it is running on(xi, d(i)) or (yj , d(i))), the only way to get out of the dilemma is to neither query
positioni nor positionn + j. However, this implies thatg(xi, d(i)) = g(yj , e(j)) = g(02n, d(i)) = 1.
Moreover,Mg cannot distinguish whether it is running on input(xi, d(i)), (yj , d(i)), or (02n, d(i)).
Since0n ∈ K,, there exists (at least one)e′ 6= d(i) such thatg(02n, e′) = 1. Let p be a position in02n

such thatMg neither queriesp when running on input(02n, d(i)), nor when running on input(02n, e′).
Such a position exists sincen2 > 2 · c · logk(2n + c logk 2n). Consequently,g(0p−1102n−p, d(i)) =
1 and g(0p−1102n−p, e′) = 1. Hence,f(0p−1102n−p) ∈ K ′ although0p−1102n−p ∈ L. This is a
contradiction, henced(i) 6= e(j).

Since i 6∈ C(j) and n + j 6∈ B(i) it follows that g(xi, d(i)) = g(yj , e(j)) = g(zi,j , d(i)) =
g(zi,j , e(j)) = 1. Fromd(i) 6= e(j), we can then conclude thatf(zi,j) ∈ 0∗10∗10∗ and thusf(zi,j) ∈
K ′ althoughzi,j ∈ L. This contradiction proves that no suchf can exist; hence(L,K)6≤pte

m (L′,K ′). 2

Lemma 5.7 There exists an oracleO such thatUP ∨UP 6⊆ 1NPO.

Proof This follows directly fromLeafpε ((1 ∨ 2 ∨ 12), ε) = UP ∨ UP (Lemma 5.3.3),Leafpε (1, (ε ∨
111∗)) = 1NP (Lemma 5.3),((1 ∨ 2 ∨ 12), ε)6≤pte

m (1, (ε ∨ 111∗)) (Lemma 5.6) and Theorem 3.6.2

We now know that e-classes of languages outsideU are not in1NP. The next theorem will enable us
to better understand the languages insideU. As it turns out, we can avail ourselves of a well-known
algebraic property ofΣ∗ to obtain a convenient characterization ofU.

5Otherwise,n+j ∈ B(i) has to hold for at leastn
2

2
tuples. The reasoning is analog.

18

Definition 5.8 A partial ordering is awell-partial orderingif it contains no infinite descending sequence
and no infinite antichain (i.e., a set of pairwise incomparable elements).

Theorem 5.9 ([Hig52]) (Σ∗,¹) is a well-partial ordering.

The following theorem gives the announced characterization ofU, the class that precisely corresponds
to 1NP in the e-model.

Theorem 5.10 The following statements are equivalent for any languageL ⊆ Σ∗.

1. L ∈ Rpte(1), the pte-closure of{1}.
2. For all oraclesO it holds thatLeafpε (L)O ⊆ 1NPO.

3. L ∈ U, that means both conditions, P1 and P2, fail forL.

4. There exist finite setsA, B ⊆ Σ∗ such that

L = {w ∣∣ A¹1 w and(∀v ∈ B)[v 6¹w]}.6 (1)

Proof 1 ⇔ 2 : This is an immediate consequence of Theorem 3.6, since for all oraclesO, Leafpε (1)O =
1NPO.

2 ⇒ 3 : Assume that relative to all oracles,Leafpε (L) ⊆ 1NP. From Lemmas 5.1, 5.5 and Lemmas 5.2,
5.7, we know that ifL satisfies P1 or P2, we can construct an oracleO such thatLeafpε (L)O 6⊆ 1NPO.
This contradicts our assumption. Therefore,L neither satisfies P1 nor P2.

3 ⇒ 4 : Let
A = {v ∈ L

∣∣ (∀v′≺ v)[v′ /∈ L]}.
Observe thatA can be seen as the set of minimal words inL. Furthermore, the elements inA are pairwise
incomparable with respect to¹. From Theorem 5.9 and Definition 5.8 it follows thatA is finite. Let

B = {w /∈ L
∣∣ (∃v ∈ A)[v¹w and∀w′[v¹w′≺w ⇒ w′ ∈ L]]}.

This set can be thought of as the set of minimal words outsideL that have predecessors inA. We claim
thatB is finite as well: Otherwise, sinceA is finite, there existsv ∈ A such that the following subset of
B is infinite.

B′ = {w /∈ L
∣∣ v¹w and∀w′[v¹w′≺w ⇒ w′ ∈ L]}.

Observe that the elements inB′ are pairwise incomparable with respect to¹. Again, from Theorem 5.9
and Definition 5.8 it follows thatB is finite.

We are going to show equation (1). Letw ∈ L. So there existsv ∈ A such thatv¹w. Assume there
exist differentv1, v2 ∈ A such thatv1¹w andv2¹w. It follows thatv1, v2, andw are nonempty. This
implies thatL satisfies condition P2 which contradicts our assumption. Therefore, there exists exactly
onev ∈ A such thatv¹w. If v¹k w for somek ≥ 2, thenL satisfies condition P2 which again is a
contradiction. Sov¹1 w and henceA¹1 w.

6B can be thought of as the set of forbidden subwords, i.e., events that may not occur in words fromL. Contrary,A
represents the set of events such that every word inL triggers exactly one such event.

19

Assume now that there existsv ∈ B such thatv¹w. By B’s definition, there existsv′ ∈ A such
that v′¹ v and for allw′, [v′¹w′≺ v ⇒ w′ ∈ L]. In particular,v′¹ v¹w andv′ ∈ L, v /∈ L, and
w ∈ L. HenceL satisfies condition P1 which contradicts our assumption. So there does not exist such
v ∈ B and therefore,w belongs to the right-hand side of equation (1). This shows the inclusion⊆ in
equation (1).

Let w be an element of the right-hand side of (1). Hence there exists precisely onev ∈ A such that
v¹w. Assumew /∈ L and choose a shortest wordu /∈ L such thatv¹u¹w. It follows thatu ∈ B.
Together withu¹w this implies thatw is not an element of the right-hand side of (1). This contradiction
showsw ∈ L and finishes the proof of equation (1).

4 ⇒ 2 : Let A = {u1, . . . , um} and B = {v1, . . . , vn} where m = |A| and n = |B|. Let
L′ ∈ Leafpε (L). So there exists a polynomial-time Turing machineM whose computation paths output
symbols fromΣ ∪ {ε} such thatx ∈ L′ ⇔ βM (x) ∈ L. Define a nondeterministic machineN that
works as follows on inputx. First,N splits intom + n pathsp1, . . . , pm andq1, . . . , qn. If ui = ε, then
pathpi outputs1. If ui 6= ε, then on pathpi the machine nondeterministically guesses an occurrence
of ui (by guessing the positions ofui’s letters) in the leaf stringβM (x). If such a guess is successful,
thenN outputs1, otherwise it outputsε. Similarly, on pathqi the machine nondeterministically guesses
an occurrence ofvi in βM (x). If such a guess is successful, thenN outputs11 (by producing two
neighbouring paths with output1), otherwise it outputsε. From (1) it follows that

x ∈ L′ ⇔ βM (x) ∈ L ⇔ βN (x) = 1.

HenceL′ ∈ Leafpε (1) and thereforeLeafpε (L) ⊆ Leafpε (1). Finally, observe that our argumentation is
relativizable. 2

Observe that due to the characterization ofU given by Theorem 5.10.4, we immediately obtain thatU
only contains regular languages. We can now formulate the new gap theorem.

Theorem 5.11 LetL be a nontrivial language.

1. If L ∈ U, then the e-class ofL is contained in1NP.

2. If L 6∈ U, then the e-class ofL containsUP∨· coUP or UP ∨UP.

Proof Follows from Theorem 5.10 and the fact that the Lemmas 5.2 and 5.1 are relativizable.2

Acknowledgments

We thank Bernd Borchert, Victor Selivanov, and Klaus W. Wagner for very interesting discussions and
many helpful suggestions.

20

References

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Science, 104:263–283, 1992.

[BKS99] B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable languages and
their relation to NP.Theoretical Informatics and Applications, 33:259–269, 1999.

[BLS+04] B. Borchert, K. Lange, F. Stephan, P. Tesson, and D. Thérien. The dot-depth and the polyno-
mial hierarchy correspond on the delta levels. InDevelopments in Language Theory, pages
89–101, 2004.

[Bor95] B. Borchert. On the acceptance power of regular languages.Theoretical Computer Science,
148:207–225, 1995.

[Brz76] J. A. Brzozowski. Hierarchies of aperiodic languages.RAIRO Inform. Theor., 10:33–49,
1976.

[BSS99] B. Borchert, H. Schmitz, and F. Stephan. Unpublished manuscript, 1999.

[BV98] H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language definability.In-
ternational Journal of Foundations of Computer Science, 9:277–294, 1998.

[CB71] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events.Journal of Computer and
System Sciences, 5:1–16, 1971.

[Gla05] C. Glaßer. Polylog-time reductions decrease dot-depth. InProceedings 22nd Symposium
on Theoretical Aspects of Computer Science, volume 3404 ofLecture Notes in Computer
Science. Springer Verlag, 2005.

[GOP+05] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibility, mitoticity,
and immunity. InProceedings 30th International Symposium on Mathematical Foundations
of Computer Science, volume 3618 ofLecture Notes in Computer Science, pages 387–398.
Springer-Verlag, 2005.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. InProc. London Math. Soc.,
volume 3, pages 326–336, 1952.

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power
of polynomial time bit-reductions. InProceedings 8th Structure in Complexity Theory, pages
200–207, 1993.

[MP71] R. McNaughton and S. Papert.Counterfree Automata. MIT Press, Cambridge, 1971.

[NR98] R. Niedermeier and P. Rossmanith. Unambiguous computations and locally definable ac-
ceptance types.Theoretical Computer Science, 194(1-2):137–161, 1998.

[Pap94] C. H. Papadimitriou.Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[PP86] D. Perrin and J. E. Pin. First-order logic and star-free sets.Journal of Computer and System
Sciences, 32:393–406, 1986.

[PW97] J. E. Pin and P. Weil. Polynomial closure and unambiguous product.Theory of computing
systems, 30:383–422, 1997.

21

[Sch65] M. P. Scḧutzenberger. On finite monoids having only trivial subgroups.Information and
Control, 8:190–194, 1965.

[Sch01] H. Schmitz. The Forbidden-Pattern Approach to Concatenation Hierarchies. PhD thesis,
Fakulẗat für Mathematik und Informatik, Universität Würzburg, 2001.

[ST04] H. Spakowski and R. Tripathi. On the power of unambiguity in alternating machines. Tech-
nical Report 851, University of Rochester, 2004.

[Str81] H. Straubing. A generalization of the Schützenberger product of finite monoids.Theoretical
Computer Science, 13:137–150, 1981.

[Str85] H. Straubing. Finite semigroups varieties of the form V * D.J. Pure Appl. Algebra, 36:53–
94, 1985.

[Thé81] D. Thérien. Classification of finite monoids: the language approach.Theoretical Computer
Science, 14:195–208, 1981.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory
of algorithms.Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.

[Wag04] K. W. Wagner. Leaf language classes. InProceedings International Conference on Ma-
chines, Computations, and Universality, volume 3354 ofLecture Notes in Computer Sci-
ence. Springer Verlag, 2004.

22

