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Abstract

We propose the e-model for leaf languages which generalizes the known balanced and unbalanced
concepts. Inspired by the neutral behavior of rejecting patb&machines, we allow transducers
to output empty words.

The paper explains several advantages of the new model. A central aspect is that it allows us to
prove strong gap theorems: For any cl@sthat is definable in the e-model, eithefUP C C or

C C NP. For the existing models, gap theorems, where they exist at all, only identify gaps for the
definability byregular languages. We prove gaps for the general case, i.e., for the definability by
arbitrary languages. We obtain such general gap\Br coNP, 1NP, andcolNP. For the regular

case we prove further gap theorems ¥, 115, andAY . These are the first gap theorems £of .

This work is related to former work by Bovet, Crescenzi, and Silvestri, Vereshchagin, Hertrampf et
al., Burtschick and Vollmer, and Borchert et al.

1 Introduction

Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] independently introduced leaf lan-
guages. This concept allows a uniform definition of many interesting complexity classé@sHikad
PSPACE. The advantage of such an approach is obvious: It allows to prove quite general theorems
in a concise way. For example, GlaRer et al. [GOB] recently showed that i is a class that is
balanced-leaf-language definable by a regular language, then all many-one complete problemes of
polynomial-time many-one autoreducible. This general theorem answered several open questions, since
classes likeNP, PSPACE, and the levels of theH are definable in this way.

Moreover, leaf languages allow concise oracle constructions. The background is the BCSV-theorem
[BCS92, Ver93] that connects polylog-time reducibility (plt-reducibility) with the robust inclusion of

two complexity classes (i.e., the inclusion with respect to all oracles). This connection reduces oracle
constructions to their combinatorial core. In particular, neither do we have to care about the detailed
stagewise construction of the oracle, nor do we have to describe the particular coding of the single
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stages. As an example, Lemma 5.6 below presents a short proof for the existence of an oracle relative to
whichUP v UP ¢ 1INP. A direct oracle construction would be substantially longer.

In this paper we offer a useful generalization of the known leaf-language concepts. Despite of its broader
definition, the new concept is convenient and has the nice features we appreciate with traditional leaf
languages. It even combines certain advantages of single known concepts. We summarize the benefit of
the new notion:

contains the traditional concepts

works with balanced computation trees

admits a BCSV-theorem [BCS92, Ver93]

P w0 dp PR

establishes a tight connection between the polynomial-time hierachy and the StraubiteiTh
hierarchy (the quantifier-alternation hierarchy of the logid€{0n words)

The new e-model of leaf languages is inspired by the observation that rejecting paths of nondeterministic
computations act aseutral elements. In this sense we allow nondeterministic transducers not only to
output single letters, but also to output the empty wondhich is the neutral element af*. More
precisely, we consider nondeterministic polynomial-time-bounded Turing machihesch that on

every input, every computation path stops and outputs an elementdrome}. Let M (z) denote

the computation tree on input and definedy,(z) as the concatenation of all outputs f(z). For

any languageB, let Leaf? (B) (the e-class of3) be the class of languagdssuch that there exists a
nondeterministic polynomial-time-bounded Turing machiieas above such that for all

rel < pu(x)cB.

If we demand thaf\/ never outputs, then this defined.eafl(B) (the u-class of3). If we demand
that M is balanced and never outputsthen this define&eaf} (B) (the b-class oB). (M is balanced
if there exists a polynomial-time computable function that on input:) computes the-th path of
M (x).) The notions e-class, u-class, and b-class are extended from a single lagtmgeclass of
languageg in the standard wayL.eaf! (C) (the e-class of) is the union of allLeaf? (B) whereB € C.
For a survey on the leaf-language approach we refer to Wagner [WagO04].

It is immediately clear that the u-model and the b-model are restrictions of the e-model.
Leaff (B) C Leaf?(B) C Leaf?(B)

Moreover, it is intuitively clear that the presence of the neutral elemgives the classeaf! (B) some

inherent nondeterministic power which makesf? (B) seemingly bigger thaR. We will discuss this

issue and we will identiffUP N coUP as a lower bound (we obtain stronger bounds if we restrict to
regular languageB). The advantage of the e-model over the u-model is its simplicity: In the e-model

we can assume balanced computation trees which in turn leads to easy plt-reductions. The advantage
over the b-model is the established tight connection between the polynomial-time hierarchy and the
Straubing-Tkrien hierarchy, a well-studied hierarchy of regular languages. GlaR3er [Gla05] shows that
such a connection does not hold for the b-model. This connection within the e-model makes it possible
to exactly characterize leaf-language classes in the environmaiit.of

In order to describe our results we have to define the levels of the Straubér@giThierarchy (STH). In
the scope of this paper it suffices to summarize that the STH is a hierarchy of levels that contain regular
languages. We use a notation that already suggests a connection to the polynomial-time hierarchy (PH).
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A language belongs to levalf© if it can be defined by a sentence of the logic[EQon words such
that the sentence starts with an existential quantifier and has atrmostquantifier aIternationsHEO
denotes the level of the complements of elementsfjR. AF®, denotes the intersection &f“ and
I1FO. The formal definition can be found in the preliminaries.

Results: We start with observations that let us easily transfer the known BCSV-theorem to the new
notion. Along these lines we show that the polynomial-time hierarchy (PH) is connected with the
Straubing-Tkrien hierarchy in the following sense: The e-class of Iéxié? ofthe STH equals Ievél:f{’

of the PH. Note that this leaves room for the possibility that languages Olﬂgfﬁléorm e-classes that

are still contained irEY. So even the e-class of a superseEff might be equal ta-F'. For the lower
levels, however, we are able to rule out this possibility. This proves a substatitihligr connection
between both hierarchies. For instance, under the reasonable assumptidrZz NP, we show that

the languages ixi© are the only languages whose e-classes are contairé®.irHence, under this
assumption, a language belongs if and only if its e-class is contained MP. This connect£i©
andNP in the strongest possible way. We obtain several other strong relationships of this type, they are
summarized in Table 1. In particular, we prove the first gap theoremhfo(Corollary 4.9). This is
possible by the e-model’s tight connection to the STH, by the forbidden-pattern characterizatigh of
which was proved by Pin and Weil [PW97], and by the equdlityf; (X5°) = AL which was showen

by Borchert, Schmitz, and Stephan [BSS99] and Borchert et al. {BBH

Some comments about the results in Table 1 are appropriate. First, they can be interpreted as gap
theorems for leaf-language definability. For instance, the row appdttells us that any e-class either

is contained iNNP or contains at leastoUP. Hence, once an e-class becomes bigger tBn its
complexity jumps to at leasVP U coUP. Second, there exist several evidences that classes in the
columns 3-5 are not contained in the corresponding class of column 2. In any case there exist oracles
relative to which this non-containment holds. Third, all classes in the first column are decidable, i.e., on
input of a finite automatoml we can decide whether the language accepted bglongs to the class.

This allows a decidable and precise classification of e-classes under the assumption that the classes in the
4th column are not contained in the respective class in the 2nd column. On input of a regular language
B (via its finite automaton) we can determine whether orB@te-class is contained in the classes of

the 2nd column.

With U we identify the class of all languages whose e-class is (robustly) contain@inA language
belongs toU if and only if membership of a word can be expressed in terms of a unique occurrence of
a substring and in terms of forbidden substrings. This showdihsia class of regular languages. We
prove a decidable characterizationlgfa so-called forbidden-pattern characterization. It exactly reveals
the structure in a finite automaton that is responsible for shifting a language oltside

Gap theorems for leaf-language definability are rather rare. With the following theorem we summarize
the known results.

Theorem 1.1 Let B be a nontrivial regular language.

1. [Bor95] The u-class oB either is contained i, or contains at least one of the following classes:
NP, coNP, MOD,P for some primep.

2. [BKS99] The u-class oB either is contained irlNP, or contains at least one of the following
classesccoNP, colNP, MOD,P for some prime.

'Some remarks about notatior@:v D (resp.,C V D) is the class of unions (resp., disjoint unions) of somec C and
someL, € D. From this, the operators and A are derived via DeMorgan’s lawAUXY and AUIIS denote levels of the
unambiguous polynomial-time hierarchy. More details can be found in the preliminaries section.



C Leaff(C) = | if B ¢ Cthen if B € REG — Cthen | if B € SF —C then
Leaf? (L) contains | Leaff (L) contains Leaf? (L) contains
0 0 UP or coUP NP, coNP, or NP or coNP
MOD,,P for a primep
Efo NP coUP coNP, colNP, or coNP or colNP
MOD,P for a primep
IO | coNP UP NP, INP, or MOD,P | NP or INP
for a primep
U INP UP vV UPor UP Vv UP or UP Vv UP or
UP VcoUP UP VecoUP UP VcoUP
coU colNP coUP A coUP or coUP A coUP or coUP A coUP or
UP AcoUP UP AcoUP UP AcoUP
AFO | AP — AUXY or AUTTY AUXY or AUTIY
»fo | xP — AUTLY AUY
o | ¥ — AUSY AUSY

Table 1: Summary of the obtained gap theorems wiikiga language different frohand>*.

3. [Sch01] The u-class aB either is contained irtY, or containsAUITY.

4. [Gla05] The b-class of3 either is contained if?, or contains at least one of the following classes:

NP, coNP, MOD,P for some prime.

5. [Gla05] The b-class ofB either is contained irNP, or contains at least one of the following

classesccoNP, colNP, MOD,P for some prime.

2 Preliminaries

2.1 Basic Notions

We denote with NL, P, NP, coNP and PSPACE the standard complexity classes whose definitions can be
found in any textbook on computational complexity (cf. [Pap94], for example). ThelGRssthe class

of decision problems solvable by an NP machine such that if the input belongs to the language, exactly
one computation path accepts and if the input does not belong to the language, all computation paths
reject. Contrary, the clags\NP is the class of decision problems solvable by an NP machine such that
the input belongs to the language if and only if exactly one computation path aédeptanyk > 1,

MOD,P is the class of decision problems solvable by an NP machine such that the number of accepting
paths is divisible by if and only if the input does not belong to the language. The characteristic function

of a setA is denoted ag 4. We will always assume that our alphabgtontains at least 2 letters.

2Observe that in contrast to UP, a machine can legally have more than one accepting path.
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Let < denote the usual subword relation, ie=xw if v = vy...v, for lettersvy,...,v, andw €

SHvdFvg .. X, 2. We writev <w if v<w andv # w. Fork > 0 we writev <, w if vis a
nonempty word that appears precisélfimes as a subword af. In addition we define <; w for

every wordw. Fork > 0 we writev <., w if there existd > k such that) <; w. Fork > 0 and a finite
setB of wordswy, . .., vz we write B < w if k can be written a& = k; + - - - + kg such that

U1 jk‘l w, V2 jkg w, ..., U|B| jlel w.
Sowv < w if and only if there exist& > 1 such that <; w. Also,v A w if and only if v <y w.

We call a languagés nontrivial if B # () andB # ¥*. If L, K C ¥* are disjoint languages, we also
write (L, K) C ¥*, i.e. whenever we talk about a pait, K) C X* of languages, we assume tHat
and K are disjoint.

Definition 2.1 Let K, M be complexity classes. We define

KVM =gt {AUB|A€K,Be M}, KAM =get co(coK V coM),
KVM  =gef {AUB|AEIC,B€M,AQB:@},/C/,\M =def co(cok VcoM).

Definition 2.2 For any languagel C ¥* anda ¢ X, we definel, C (X U {a})* as

Lo =def {a™wia™ woa™? ... a™ " wpa™ [ mg, ..., my > 0,wiwse .. w, € LY}

2.2 The Unambiguous Alternation Hierarchy

Niedermeier and Rossmanith [NR98] introduced the unambiguous alternation hierarchy. For its defini-
tion we use Hemaspaandra’s characterization in terms of unambiguous alternating quantifiers. For any
complexity clasg’, define3"-C as the class of languagéssuch that there exist a polynomialand

L’ € C such that for allz,

zeL = there exists exactly onge ©=r(*) such thatz, y) € L'
x¢ L = there exists ng € ¥=P(1) such thai(z,y) € L.

Analogously,v"-C is the class of languagdssuch that there exist a polynomjabnd L’ € C such that
for all z,

rel = forallye x=rlD, (z,y) e L'
x¢ L = there exists exactly onge ©=*(=) such that(z, y) ¢ L’.

Definition 2.3 (attributed to unpublished work of Hemaspaandra [NR98])
AUX{ = AUTT)  =get P
AUSL,, =qef JUAUI, fork >0
AUTIL , =qef V"-AUXL fork > 0.

It is expected that levet of the unambiguous alternation hierarchy is not contained in tevell of
the polynomial-time hierarchy. Spakowski and Tripathi [ST04] construct an oracle relative to which for
everyn > 1, leveln of the unambiguous alternation hierarchy is not containddtin
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2.3 Straubing-Thérien Hierarchy

Starfree languages are regular languages that can be build from single letters by using Boolean operations
and concatenation. L8F denote the class of starfree languages. Brzozowski and Cohen [CB71, Brz76]
introduced the dot-depth hierarchy which measures the complexity of starfree languages in terms of
necessary alternations between Boolean operations and concatenation in the definition of the language.
Straubing and Térien [Str81, TB81, Str85] introduced a modification that is more appropriate for the
algebraic theory of languages, but still covers the important aspects of the dot-depth hierarchy. This
hierarchy is called Straubing-€hien hierarchy (STH).

Perrin and Pin [PP86] proved a logical characterization of the STH. We use this characterization as
definition, since it uses an easy logic on words and it shows nice parallels to the definition of the
polynomial-time hierarchy. Formulas of the first-order logic[EDconsist of first-order quantifiers,
Boolean operators, the binary relation symkolnd unary relation symbots, for each letter.. A sen-
tence¢ is satisfied by a word if ¢ evaluates to true where variables are interpreted as positians in
andr,x is interpreted as “letter appears at position in w”. A languageB is FO<] definable if there
exists a sentencg such that for all wordsv, w € L if and only if ¢ is satisfied byw. A ZEO-sentence
(resp. ITO-sentence) is a sentence of KQthat is in prenex normal form, that starts with an existential
(resp., universal) quantifier, and that has at mkostl quantifier alternations. A language belongs to the
classof© (resp. IIEC) of the STH if it can be defined by B} ©-sentence (respllf©-sentence)Al?,
denotes the intersection Bf© andITf©.

3 Machines with Computation Trees Havinge-Leaves

We introduce the e-model of leaf languages which is inspired by the observation that rejecting paths of
nondeterministic computations act as neutral elements. We allow nondeterministic transducers not only
to output single letters, but also to output the empty wordfter the formal definition we introduce pte-
reducibility which allows us to formulate and prove an analogon of the BCSV-theorem. Furthermore,
we show that the e-model connects the polynomial-time hierarchy with the StraubémggT hierarchy.

For afinite alphabeX anda ¢ ¥, we define a homomorphishy, , : (XU{a})* — X* by hy, 4(b) =def b
for b € ¥ andhy ,(a) =gef €.

Definition 3.1 Let (L, K) C X*. The clasd.eaf? (L, K) consists of all languaged for which there
exists a nondeterministic polynomial time transdut£producing on every computation path a symbol
from X or the empty word such that the following holds:

reA = [yx)el,
r €A = [yx)€K.

For (L,K) C ¥*, if K = ¥* — L, we will often useLeaff (L) as abbreviation fof.eaff (L, K). In

these cases, we will make clear what alphabet we usg.fdiotice the it makes no difference whether

we use balanced or unbalanced computation trees. So for convenience we may assume that paths not
only can output single letters, but arbitrary words.

Example 3.2 1. Leaff (11*,¢) = Leaff (0*1(0 v 1)*,0*) = NP.
2. LetL =gef {1} C {0,1}*. ThenLeaf?(L) = 1NP.
3. Leaff(1,¢) = UP.



A function g is computable in polylogarithmic time if there exiéts> 1 such thay(z) can be computed
in time O(log*|z|) by a Turing-machine which accesses the input as an oracle.

Definition 3.3 Let (L, K) C %, (L/,K’) C ¥} anda ¢ ¥} U X5, Then(L, K)<h®(K, K') if and
only if there exists a functiofi : (31 U {a})* — (X2 U {a})* such that

e there exist functiong : (X, U{a})* — 32U {a},h: (X;U{a})* — N computable in polyloga-
rithmic time such that for alk € (3, U {a})*, f(z) = g(z,1)g(x,2) ... g(z, h(z)),

o forallz € (S U{a})*, (hs,a(x) € L = hy,o(f(z)) € L),

)

o forall z € (3 U{a})*, (hs,a(z) € K = hyyo(f(2)) € K').

If (L, K)<h®(L/,K') holds andKk = %% — L andK’ = ¥§ — L/, we will often useL<R°K as
abbreviation.

Lemma 3.4 For (L, K) C X%, (L', K') C ¥} wherea ¢ %1 U Xy, it holds that(L, K)<h°(L/, K') if
and only if(Lq, Ko)<h'(L}, K}).

Proof This is an immediate consequence of the definitiorcBf: Let (L,K) C 33, (L',K') C 33
anda ¢ ¥, U Xo. Observe that for the if-part, it suffices to modify the reducing function such that it
outputse instead ofu. For the only if-part, it is the other way round. O

Lemma3.5For (L,K) C * anda ¢ %, Leaff (L, K) = Leaf! (Lq, K,) = Leaff (L., K,) =
Leaf? (Lg, K,).

Proof It suffices to show thateaf? (L, K) C Leafl (L4, K,) andLeaf? (L, K,) C Leaf? (L, K). For
the first inclusion, letd € Leaf? (L, K) via the nondeterministic transduckf, which outputs symbols
fromXU{e}. M can easily be transformed into a transdutErwhich proves thatl € Leaf] (Lq, K,):
M’ works like M, but wheneven/ outputss, M’ outputsa. For the second inclusion, let agdif be the
nondeterministic transducer which provésc Leaf? (L, K,). Observe that letters in the leafstring
of M on an inputz have no influence on whetherbelongs toA or not. Hence, we can transforfd
into a machine\/’ that outputs wheneverM outputsa. Hence,A € Leaf? (L, K). O

We obtain the following BCSV-theorem for the e-model.
Theorem 3.6 Let (L, K) C X7 and (L, K’) C 3. Then the following statements are equivalent:

1. (L, K)<®*(L/,K").

2. For all oraclesO it holds thatLeaf? (L, K)© C Leaf? (L', K')°.



Proof Let L, K C X5, LNK =0, L', K’ C ¥5, L' N K' = () anda ¢ ¥; U 9. Then the following
equivalences hold:

(L K)<Pe(L K') & (La, Ko)<BY(L, K7,
1,

L vo,Leaf??(Ly, K,) C Leaf?® (L, K1),

& vO,LeafPP(L, K) C Leaf??(L/, K').

Note that I. holds because of Lemma 3.4, Il. holds because of [BCS92, Ver93], and lll. holds because
Lemma 3.5 is relativizable. O

The next theorem shows a connection between the STH and the PH via the e-model. A similar connec-
tion for the existing b- and u-models was proved by Hertrampf et al. [F233, Burtschick and Vollmer
[BV98], and Borchert et al. [BLS04].

Theorem 3.7 Letk > 1.

1. Leaf?(£F0) = ¥F
2. Leaf?(ITF°) =11
3. Leaf? (AFO) = AP

Proof Let B C ¥* and choose a new letter¢ 3. We show: if B € $¥O, thenB, € IO, Let¢
be aZEO-sentence definingg. Assumep = Q1i1Q2i2 - - - Qnin 1 Where thel)’s are quantifiers, thés
are variables, and is quantifier-free. Now replace the quantifi€}s, . .., @1 and the formulas: they
range on:

Jia isreplaced by Ji (—7qi A @)
Via isreplaced by Vi (7qi V )

Denote the resulting formula by. Observe that’ definesB, and thatp’ can be converted to &8}©-
sentence. HencB, € XFO. The same argument shows (j)iif € TIf©, thenL, € TIF° and (ii) if
L € AfO thenL, € AC.

If we consider the u-model instead of the e-model, then the statements of the theorem are known [BV98,
BSS99, BLS04]. By Leaff (B) C Leaf?(B), it suffices to argue for the inclusions from left to right.
Let L € Leaff(XE©), i.e., there exist$3 € %FO such thatl. € Leaff(B). By Lemma 3.5, €
Leaff(B,) wherea is a new letter. As argued abowg, € ©F° and thereforel € Leaff(XF°) C ©F.

The inlucionsLeaf? (ITF°) C IIF andLeaf? (AFO) C AT follow analogously. O

4 Gap Theorems forNP, AY, and ¥

In this section we use existing forbidden-pattern characterizations to obtain lower bounds for certain
e-classes. From this we derive gap theorem\Br AL, and¥%. A summary of these results can be
found in Table 1.

Pin and Weil [PW97] proved the following forbidden-pattern characterization of Eyelof the STH.
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Figure 1: Forbidden pattern f&F wherep is prime.

Proposition 4.1 ([PW97]) The following are equivalent for any language

1. Aexto
2. Yo,w € T*v 2w = xa(v) < xa(w)]

3. Yo,w € ¥*Va € E[xa(vw) < xa(vaw)]

This characterization enables us to prove lower bounds for the e-class of languages Biitside
combination with Theorem 3.7 we obtain a gap theorenNBr(Corollary 4.3).

Theorem 4.2 Let A be an arbitrary language.

1. If A ¢ ¥FO thencoUP C Leaf?(A).

2. IfAe REG— 2?0, thenLeaf! (A) contains at least one of the following classesNP, colNP,
MOD,P for a primep.

3. If A € SF — ¥FO, thenLeaf? (A) contains at least one of the following classesNP, colNP.

Proof If A ¢ Efo, then by Proposition 4.1, there exist wordsv and a letter such thatvw € A
andvaw ¢ A. Let L € coUP, i.e., there exists a nondeterministic polynomial-time machihsuch
that on inputr ¢ L, M has exactly one accepting path, and input L, M has no accepting path.
We modify M such that accepting paths outpytejecting paths output an additional path on the left
outputsv, and an additional path on the right outputslt follows that for inputsz € L the generated
leaf word isvw, and for inputsr ¢ L the generated word isaw. This showsl, € Leaff (A) and hence
coUP C Leaff (A).

Now assumed € REG — XFO.

Case 1: A ¢ SF. By Sclutzenberger [Sch65] and McNaughton and Papert [MPAY, minimal
automaton contains the counting pattern (Fig. 1). So there exist wotds and a primep such that for
all i, yw?z € A andyw®'z ¢ A. We showMOD,P C Leaf?(A). Let L € MOD,P and letM be a
nondeterministic polynomial-time machine such tha L if and only if the number of accepting paths
of M on inputz is = 0(mod p). Without loss of generality we may assume that i L, then the latter
number is= 1(mod p). (If not, then simulatél/’s computatiorp — 1 times in a row, which takes the
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number of accepting paths to the powepef1 and hence, by Fermat’s theorem, results in a number that
either is= 0(mod p) or is= 0(mod p).) We modify M such that accepting paths output rejecting
paths output, an additional path on the left outpujsand an additional path on the right outputs
Hence, for inputs: € L the generated leaf word is of the fogm ™z, and for inputs: ¢ L the generated
leaf word is of the formyw®*!z. This showsL € Leaff (A) and henc&lOD,P C Leaf?(A).

Case 2:A € SF — xFO. By Proposition 4.1, there exist wordsw and a letter; such thatw € A and
vaw ¢ A. By the pumping lemma, there exigt» > 1 such that for ali, va’w € A < va/t™w € A.
Choose the smallest sueh By Schitzenberger [Sch65] and McNaughton and Papert [MPA 4, SF
implies thatA’s minimal automaton doesot contain the counting pattern (Fig. 1). Therefaremust
be equal tal and it follows thatva’a*w either is a subset ol or is a subset ofl.

Assumeva’a*w C A. Hencevw € A andwv(a/)*w C A. We showcoNP C Leaff(A). Let

L € coNP and letM be a nondeterministic polynomial-time machine that accéptsVe modify M
such that accepting paths outpuit rejecting paths output, an additional path on the left outputs
and an additional path on the right outpuis If = € L, then the modified machine produces the leaf
word vw; otherwise it produces a leaf word fronfa’)*w. This showsL € Leaf?(A) and hence
coNP C Leaff (A).

Assumeva’a*w C A. Choose the smallegt € [1, ;) such thawa*atw C A. Henceva*w ¢ A.
We showcolNP C Leaff(A). Let L € colNP and letM be a nondeterministic polynomial-time
machine such that ¢ L if and only if M on x produces exactly one accepting path. We modify
such that accepting paths outpilt, rejecting paths output, an additional path on the left outputs
and an additional path on the right outputslf = € L, then the modified machine produces a leaf word
in va*atw U {vw}; otherwise it produces the leaf word*w. This showsl € Leaff(A) and hence
colNP C Leaff (A). O

Corollary 4.3 Let B be a nontrivial language.

1. The e-class oB either is contained ilNP, or containscoUP.

2. If B € REG, then the e-class aB either is contained irNP, or contains at least one of the
following classestoNP, colNP, MOD,P for a primep.

3. If B € SF, then the e-class d? either is contained ilNP, or contains at least one of the following
classesicoNP, colNP.

Proof Follows from Theorems 3.7 and 4.2. O

Now we can prove general lower bounds for e-classes. In particular, no complexity clasdiieliew
definable with this concept.

Corollary 4.4 Let A be a nontrivial language.

1. Leaf?(A) contains at least one of the following class&&, coUP.

2. If A € REG, thenLeaf?(A) contains at least one of the following class&&, coNP, MOD,P
for a primep.

3. If A € SF, thenLeaf?(A) contains at least one of the following class&&?, coNP.
10



Proof By assumption there exist a word #hand a word not inA. If ¢ € A, then by Proposition 4.1,
A ¢ ¥TO; otherwised ¢ IO, It follows from Theorem 4.2 thatoUP C Leaff(A) or coUP C

Leaf?(A) = coLeaff (A). Hence,UP C Leaf?(A) or coUP C Leaf?(A).

If A additionally belongs tREG, thenLeaff (A) or Leaff (A) contains at least one of the following
classescoNP, colNP, MOD, P for a primep. HenceLeaf? (A) contains at least one of the following
classesNP, coNP, MOD,P for a primep. If A even belongs tSF, then the same argument shows
thatLeaf? (4) contains at least one of the following classN®, coNP. O

Under reasonable assumptions that there is no regusaich thatd’s e-class lies strictly betweenNP
and1NP. By symmetry, the same holds i andcolNP.

Corollary 4.5 Let A € REG be a nontrivial language. Assum& ¢ 1NP andMOD,P ¢ 1NP for
all primesp. Then the following implication holds.

Leaf?(A) C INP = Leaf?(A) C coNP.

Proof If Leaff (A) Z coNP, thenA ¢ coL, /,. By Theorem 4.2Leaf? (A) contains at least one of the
following classesNP, INP, MOD,P for a primep. a

Starting with a forbidden-pattern characterizationX§f> [PW97] (Figure 2) we develop a lower bound
for the e-class oE5©. Again, this yields a gap theorem, this time 0§ (Corollary 4.7).

Theorem 4.6 If A € REG — X£©, thenAUIIY C LeafP(A).

Proof Pin and Weil [PW97] proved the following forbidden pattern characterizatiothot: A regular
language belongs t85° if and only if the transition graph of its minimal automaton does not contain
the subgraph shown in Figure 2. So by assumptibsminimal automaton contains this graph.

(% (%
x x
_—
)
z z

Figure 2: Forbidden pattern fai5© wherew < v.
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Let L € AUIIY, i.e., there exisB € P and polynomial andq such that for alk:,

cel = VyexPlh gz e @Dz 4, 2) e B,
x¢ L = there existy € XP(#) such that the following holds:

) vz & 50D((z, . 2) ¢ B,
(i) Vu e 2Pz — {1 31z € 92D [(z,u, 2) € B.

We describe a nondeterministic machime on inputz: First, M nondeterministically guesses €
»rUe)), Now M splits into|v| paths which we associate with the letterssofConsider the first occur-
rence ofw as a subword of. The paths that are associated with the positions involved in this occurrence
output the respective letters ofand stop. On all other paths (i.e., those which are not involved in the
first occurence ofv in v) the computation is continued as follows: Assume we are on a path that is
assiciated with lette in v. M nondeterministically guessess 220 If (z,y, z) € B, then output

and stop. Otherwise, outpagnd stop.

In order to determine the leaf stririty, (x) we first consider certain factors of this string. More precisely,
let 5, be the leaf string that is produced by the paths that gyess:.. Note that

B (x) = Bobr -+ Pop(lal) -

Assumeu € Y1) such thaB!z € $917D[(x, u, ) € B]. Consider the path wherel guessey = w.

In the next steps) splits into|v| paths associated with the letters:of The paths involved in the
first occurrence ofv in v will output the respective letters from Each remaining path continues the
computation. By assumption, there exists exactly osech thaf(x, y, z) € B]. The path guessing that
z will output the respective letter in, while all other paths will output. Therefore3, = v.

Assumeu € ¥P(#) such that'z € %907 [(z, u, 2) ¢ B]. Consider the path where guesseg = u.
Again M splits into|v| paths. The paths involved in the occurrenceafill output the respective letters
from v. However, now there is ne such thaf(z, y, z) € B] and therefore, all remaining paths output
e. It follows thatg, = w.

Now let us considepy(z). If z € L, then for allu, 3!z € 290=D[(z,u, 2) € B]. Therefore, al,
B. = v and it follows that8y,(z) € v*. Otherwisex ¢ L. So there existy € P2 such that (i)
vz € $aleD[(2,y,2) ¢ B] and (ji) for allu # y, 3z € $U=D[(2,u, 2) € B]. Therefore, ()3, = w
and (ii) for allu # y, 8, = v. It follows that3,,(z) € v*wv*. So we obtained:

zel = ﬂM(az) ev*
¢ L = Pu(z)ev wr”

Let y be a word leading from the initial state 9 in the minimal automaton ofl. Let M’ be the
modification of M that on the left additionally outpugsand on the right additionally outputs Hence,
z € Lifand only if 8y (x) € A. This showsl € Leaff (A). O

Corollary 4.7 Let B be a nontrivial, regular language. The e-class@®tither is contained irt}, or
containsAUTLY .

Proof Follows from Theorems 3.7 and 4.6. O

In addition, Theorem 4.6 gives us a lower bound for the e-clags}6F:

12



Corollary 4.8 If A € REG — (£5° N coL35), thenLeaf? (A) contains at least one of the following
classes: AUITY, AUXY.

Proof By assumptionA or A is outsidex5©. By Theorem 4.6 AUTI, C Leaff(A) or AUTIY C
coLeaff (A). The latter is equivalent tAUYY C Leaf?(A). O

Note that the following is the first gap theorem fak . It holds for both the u-model and the e-model.
Corollary 4.9 Let B be a nontrivial, regular language.

1. The e-class of3 either is contained iM\Y, or contains at least one of the following classes:
AUXY, AUTTY.

2. The u-class ofB either is contained inAQP, or contains at least one of the following classes:
AUXY, AUTTY.

Proof The first statement is an immediate consequence of Theorem 3.7 and Corollary 4.8. For the
second statement, 185, denote leveB /2 of the dot-depth hierarchy [CB71, PW97]. Schmitz [Sch01]
showed thatifA € REG —(B3/2NcoBy)»), thenLeafi; (A) contains at least one of the following classes:
AUXY, AUIL}. Borchert et al. [BLS04] mention thafLeaff (85> N coBs ;) = A} can be obtained

by an extension of their method. O

5 A Gap Theorem for INP

In view of the gap theorems fa¥P andcoNP (Corollary 4.3) it becomes evident that the claseS®
andMOD,P play an important role, since they appear as lower bounds. In this section we alslyze

in detail and prove a gap theorem for this class. This case is more challenging since we cannot utilize
an existing forbidden-pattern characterization. With Theorem 5.10 we give such a characterization for
the class of languages corresponding . Additionally, this theorem shows that with this class we
have in fact identifiedll languages whose e-class is robustly containedNR. This lets us derive a

gap theorem fot NP. For a given languagg, we define the following conditions:

P1: There existwords € L,v ¢ L, andw € L such thats <v < w.

P2: There exist > 2 and nonempty words, v, w € L such thafu, v} < w and
(Vo)[z<uorz<v =2 ¢ L]

We interpret the patterns P1 and P2 as forbidden patterns and define a class of labigufdgaguages
which neither fulfill P1 nor P2:

U =gef {L : P1 and P2 fail for.}
We will later on see thal is in fact a class of regular languages, and, more important, precisely charac-

terizes the classNP in the e-model of leaf-languages. The next two lemmas show that the e-class of a
language which fulfills P1 or P2 is already quite powerful.

3Note that in P2, the words andv can be the same.

13



Lemma 5.1 Let L C ¥* such thatL satisfies P1. Then

Leaf?(L) D UP VcoUP.

Proof Let L C ¥* such that there exist wordse L, v ¢ L, andw € L such thatu <v <w, i.e. L
satisfies pattern P1. Furthermore, At UP VVcoUP. HenceA = B U C whereB € UP, C € coUP,
andB C C. Let Mp be theUP-machine accepting, and letM be thecoUP-machine accepting.
Observe that whenevér z on an inputz produces an accepting path (and thus accepts the input in an
UP-sense) M also produces an accepting path and hence rejects (inldpP-sense).

In order to proveleaf? (L) 2 UP VcoUP, we show how to construct a nondeterministic polynomial-
time Turing machiné/ such that the following holds for all:

r ¢ A = [By(x)
re€B = pBu(z)
reC = Buy(z)

Il
e g <

Sinceu <v <w = wy ... wy, we can mark the letters of one fixed occurrence of w, we do the same
with one fixed occurrence afin w. LetI, C {1,...,l} be the indices of letters im that are marked

to belong tou, and let,, C {1,...,1} be the indices of letters i that are marked to belong to Note
that#1, = |v|, #I, = |u|, andl, C I,.

=

Forl < i < k, we construct Turing machinéd; as follows:

e If i € I,, M; develops only one path and outputson this path.

e If i € I,\I,, M; simulates machin@/- on the same input. On every rejecting pathaf:, M;
outputse, if an accepting path exists, this path outputs

o If i & I,, M; simulates machind/p on the same input. On every rejecting pathi\df, M;
outputse, if an accepting path exists, this path outputs

Turing machineM is constructed as follows: On input M branches intd: nondeterministic paths.
On pathi, M then simulated/; on inputz. Notice that)/ can only produce leafstrings frofa, v, w}.
It is easy to see thal/ satisfies the above condition: It holds that A < (y(x) € L, and hence
A € Leaf?(L). O

Lemma 5.2 Let L C ¥* such thatL satisfies P2. Then

LeafP(L) D UP V UP.

Proof Let L C ¥* such that there exists > 2 and nonempty words, v, w = w; ... w; € L such that
{u,v} <pwand(Ve)[z <uorz<v = x ¢ L. If u=<owwe setu := v, if v=<gw we setv := u. We

obtain{u, v} < w andu < w,v < w. Observe that sincé satisfies P2, the empty woedcannot be in
L, which has to have nonempty minimal words. Furthermoredlet UP v UP. Henced = BUC

whereB € UP andC' € UP. Let Mg be theUP-machine accepting, and letM - be theUP-machine
accepting’'.
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In order to prové.eaff (L) O UP v UP, we show how to construct a nondeterministic polynomial-time
Turing machinel/ such that the following holds for all:

rgA = Pulz)<u
zr€B\C = pu(z)=u
reC\B = fByz)=v
re€BNC = pfyz)=w

Observe that no proper subword ®fcan be inL, since P2 requests thatandv are minimal words
in L. Consequently, constructing a machihé as above yields: € A < (y(x) € L and hence
A € Leaf?(L).

Sinceu < w andv < w, we can mark the letters of one fixed occurrence of w, we do the same with
one fixed occurrence af in w.* Let I, C {1,...,1} be the indices of letters im that are marked to
belong tou, and let/,, C {1,...,[} be the indices of letters i that are marked to belong to Observe
thatl, # I, and hence# (I, N I,) < min(|ul, |v]).

For1 < i <[, we construct Turing machined; as follows:

I. If i € I, N I,, M; develops only one path and outputson this path.

Il. If i € I,\I,, M; simulates machin@/p on the same input. On every rejecting path\ég, M;
outputse, if an accepting path exists, this path outputs

. If ¢ € I,\I,, M; simulates machin@/~ on the same input. On every rejecting path\éf, M;
outputse, if an accepting path exists, this path outputs

V. If i & I, UI,, M; produces an accepting path if and onhifz and M (running on the same
input asM;) produce an accepting path. Rejecting path&/@butpute.

Turing machineM is constructed as follows: On input M branches inté nondeterministic paths. On
pathsi for 1 < i <, M then simulates/; on inputz.

We consider the four different possibilities for the behaviolMbbn an inputz. We do this by analyzing
the behavior of the machindd consists of. Notice that depending anw, w, there might not be any
machines of types | and IV.

Case 1:x ¢ A. Hence,UP-machinesMp and M do not accept, i.e. both produce only rejecting
paths. Clearly, all machines of type Il, lll, and IV only output empty wordsl, Ify I, # 0, precisely
those letters ofv are output that belong simultaneously to the marked occurrencard to the marked
occurrence. Letiy < iz < ... <iy(r,nr,) be the elements df,N 1, thensy,(z) = w;, . Wi gy
As we then havedy, () < u, we can conclude thaty, (z) ¢ L, since no subword af is element ofL.

If I, N I, =0, Bar(x) = e. Again, we concludgdy,(x) & L sinces ¢ L.

Case 2x € B\ C, i.e. Mp produces an accepting path on inpuvhereas\/- produces only rejecting
paths. This means all machines of type Ill and IV output empty words. Recall that letters belonging to
andv simultaneously are created by machines of type | regardless of the input. So wefbtain= v
andfys(z) € L.

Case 3z € C'\ B. Analogous to case 2.

4If w = v, we fix two different occurrences afin w.
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Case 4x € BNC,i.e. Mp andM both produce an accepting path on inputf 7, UI, = {1,...,k},
it is clear thaty(z) = w € L. I, UI, € {1,...,k}, the missing letters oy are produced by the
machines of type IV. We again obtaiti;(z) = w € L.

From the above case differentiation, we obtaia A < (/(x) € L which provesA € Leaff (L). O

The next lemma gives simple languages that define the claddesand UP VcoUP in terms of leaf-
languages.

Lemma5.3 1. Leaf?(1, (¢ v 111*)) = INP.
2. Leaff((e v 12),2) = UP VcoUP.
3.Leaff((1V2V12),e) = UPV UP,

Proof 1. ForD, simply modify thelNP-machine such that every accepting path outpuasd every
rejecting path outputs. For C, modify thee-machine such that every path that outputhen rejects,
and every path that outputghen accepts.

2. D: Let A € UP VcoUP, that meansA = B U C whereB,C € UP andB C C. Let Mg, M be

the UP-machines that prov&, C € UP. As B C C, it holds for all inputsz that wheneve\/ on
inputz produces an accepting patii- on inputx also produces an accepting path. We now construct a
nondeterministic Turing-machin® as follows: In inputx, M first branches nondeterministically. On
the left path,/M simulatesM g on inputz, on the right path, it simulates/ on inputz. All rejecting
paths of these simulations outpytthe accepting path af/z (if existent) outputd, the accepting path

of M (if existent) output®. It is easy to see that the following now holds:

This provesA € Leaff((e v 12), 2).

C: Let A € Leaff ((e v 12), 2) via the nondeterministie-machine)M . Observe thatl = BU C, where
B =gef {z | Bu(z) = 12} andC' =ger {x | 2= By (2)}. Clearly, B,C € UP andB C C. Hence,
A € UP VcoUP.

3. Analogous. a

In order to show that for any languade fulfillment of P1 suffices for the cladseaf? (L) to be not ro-
bustly contained in NP, we first prove that languages characteriZifig\/ coUP cannot be pte-reduced
to languages characterizinyP.

Lemma5.4 ((e vV 12),2)Z5(1, (e vV 111%)).

Proof We assume that(L, K)<%°(L/,K'). Due to Lemma 3.4, this is equivalent to
(LO,KO)g?I}t(Lg,K{)). Recall that(Lo, Ko) =def ((0* V 0710*20*),0*20*) and (L{, K{)) =def
(0*10*, (0* v 0*10*1(0 v 1)*)). Say(Ly, Ko)g?r}t(Lg, K holds via plt-reductiory.
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This means there exist functiogsh which are computable in time- log® fur suitablec, k& > 0 such
that f(x) = g(x, 1)g(x,2) ... g(z, h(x)) and the following holds:

(,1)g(z,2)...g(x, h(x)) € Ly,
(2,1)g(,2)...9(x, h(x)) € K|.

r€ely = f(l’)

g
reKy = f(xr)=g

Let M, be the deterministic polylog-time machine that compuytssthin the above time bound. We
choosen sufficiently large such that > 2 - ¢ - log®(n + clog” n) + 2 and consider the input =gef 0.
Sincew € Ly, there exists precisely orle< i < h(w) such thaty(w,i) = 1. Hence,M, on input
(w, i) outputsl, while it outputsd on input(w, k) for all otherk. Sincen > 2-¢-log®(n+clog® n)+2,
M, on input(w, ) cannot have queried all positions#n Let j be a position that is not queried by
M, on input(w, ). We then set =qer 0°~120" 7. Notice thatM, still outputs1 when ran on input
(v, 1) sincew andwv only differ on a position not queried by/, on input(w,i). Asv € Ky, f has to
output a word fromK). Sinceg(v,i) = 1, there has to be anothérsuch thatg(v,i’) = 1. Due to
n > 2-c-logh(n+clog® n) + 2, we can easily find a positioff < j such thatV/, neither querieg’ on
input (v, i) nor on input(v, i'). Letu =gef 07 ~1109—7" 12077, As we still havey(u, i) = g(u,i’) = 1,
f(u) € K|, althoughu € Ly. By this contradiction, we have shown that no syfatan exist. O

Lemma 5.5 There exists an oracl® such thatUP VcoUP ¢ 1NP©.

Proof This follows directly fromLeaff ((¢ vV 12),2) = UP VcoUP, Leaff(1, (¢ V 111*)) = INP
(Lemma 5.3)((e V 12),2)£5°(1, (e V 111*)) (Lemma 5.4) and Theorem 3.6. O

Similarly to the above note, we prove that languages characteflidig UP cannot be pte-reduced to
languages characteriziigNP. This is a step towards showing that for any languagtilfillment of P2
suffices for the claskeaff (L) not to be robustly contained ifNP.

Lemma5.6 ((1V2V12),e)Zh(1, (e vV 111%)).

Proof We assume that(L, K)<%°(L/,K’). Due to Lemma 3.4, this is equivalent to
(Lo, Ko)<R'(L}, Kj). Recall that(Lo, Ko) =gef ((0¥10*V0*10*20*V0*20*),0%) and (L}, K{)) =det
(0%10%, (0* v 0¥10*1(0 V 1)*)). Say(Lo, Ko)<a'(L}, K}) holds via plt-reductiory.

This means there exist functiogsh which are computable in time- log® fur suitablec, k > 0 such
that f(z) = g(x,1)g(x,2) ... g(z, h(z)) and the following holds:

z€Ly = f(x)=g(z 1g(z,2)...9(z,h(z)) € L,

re Ky = f(x)=g(z,1)g(z,2)...g(z,h(z)) € K.
Let M, be the deterministic polylog-time machine that compujesithin the above time bound.
We choosen sufficiently large such thaf > 2 - c - logk(2n + clog® 2n) and consider words
T, Yi, zij € {0,1,2}2% Fori,j € {1,...,n}, we definer; =ger 0°7110"20", y; =get 070" 120",
andz; j =ger 0110707 ~120"~7. Observe that foi, j € {1,...,n}, x;,y;, andz; ; are allin Ly and
hencef(z;), f(yi), andf(z; ;) are all inL;,. Therefore, we have

Va € {z,y}Vie {1,...,n}3j : g(a;,j) = 1.
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Forl <4 < n, we define

(1) =det [, whereg(x;,1) =1,

(i) =det {l€{1,...,2n}|M,oninput(z;,d(i)) queries positiod in z;}
e(i) =dqet I, whereg(y;,l) =1,

(i) =det {l€{1,...,2n}|M,oninput(y;,e(i)) queries positiod in z;}

Claim: There exist, j € {1,...,n} suchthat ¢ C(j) andn + j & B(i).

Proof of the claim:Assuming that our claim is wrong, we conclude that for(all) € {1,...,n}?, it

holds thati € C(j) orn+j € B(i). Without loss of generality, we can assume that C(j) holds

for at least half of allz, j), i.e. for at Ieas’l’g—2 tuples® Observe that there now exists< j < n such

that among thes%2 tuples, there are tuplés,, j), (i, j), - - -, (in/2,J) SUch thaty < iy < ... <ip /.
Hence, it holds that; € C(j),i2 € C(j),...in2 € C(j). This in turn implies thatV/, on input
(yj,e(j)) queries at leask positions iny;. Since we have chosensufficiently large such tha§ >
2-c-log®(2n+clog® 2n), M, cannot query all these positions. So we have contradicted our assumption
and thus proven the claim.

By this, we know that there existj € {1,...,n} such that ¢ C(j) andn + 5 ¢ B(i). Using a
standard technique, we can show th@d # e(j).

Let us assume for a moment thét) = e(j). This means that on inp\t;, d(i)), M, does not query
positionn + j in x;, and on input(y;, d(4)), M, does not query positiohin y;. Recall thatr; andy;
only differ on positions andn + j. SinceM,, cannot distinguish between;, d(:)) and(y;, d()) until

it has queried either positiaror positionn 4 j (and may not be allowed to do so, depending on whether
it is running on(z;,d(4)) or (y;,d(4))), the only way to get out of the dilemma is to neither query
positioni nor positionn + j. However, this implies thag(z;, d(i)) = g(y;, e(4)) = g(0*",d(i)) = 1.
Moreover, M, cannot distinguish whether it is running on infut;, d()), (y;,d(i)), or (0?*,d(i)).
Since(” € K, there exists (at least one) # d(i) such thaiy(0?",¢’) = 1. Letp be a position irp?"
such thatM, neither queriep when running on input0®®, d(i)), nor when running on inpu2", ¢’).
Such a position exists sinég > 2 - ¢ - log"(2n + clog” 2n). Consequentlyg(0P~1102"?, d(i)) =

1 andg(0P~110%"P ¢/) = 1. Hence,f(0P~110?""P) € K’ although0?~110?"~? € L. This is a
contradiction, hencé(i) # e(j).

Sincei ¢ C(j) andn + j ¢ B(i) it follows that g(x;,d(i)) = g(y;,e(4)) = g(zi;,d(i)) =
9(zij,e(j)) = 1. Fromd(i) # e(j), we can then conclude thgtz; ;) € 0°10*10* and thusf(z; ;) €
K’ althoughz; ; € L. This contradiction proves that no sugltan exist; hencél, K) (L', K'). O

Lemma 5.7 There exists an oraclé such thatUP v UP ¢ 1NP?.

Proof This follows directly fromLeaff((1 Vv 2 v 12),¢) = UP v UP (Lemma 5.3.3)Leaff (1, (¢ V
111%)) = INP (Lemma 5.3)((1 vV 2 V 12),)£%°(1, (¢ V 111*)) (Lemma 5.6) and Theorem 3.6.0

We now know that e-classes of languages outsidae not inINP. The next theorem will enable us
to better understand the languages indideAs it turns out, we can avail ourselves of a well-known
algebraic property of* to obtain a convenient characterizationtof

®Otherwisen+j € B(i) has to hold for at Ieas'ftzi tuples. The reasoning is analog.
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Definition 5.8 A partial ordering is awell-partial orderingf it contains no infinite descending sequence
and no infinite antichain (i.e., a set of pairwise incomparable elements).

Theorem 5.9 ([Hig52]) (¥*, <) is a well-partial ordering.

The following theorem gives the announced characterizatidh, dhe class that precisely corresponds
to INP in the e-model.

Theorem 5.10 The following statements are equivalent for any language >*.

1. L € RP*(1), the pte-closure of1}.
2. For all oraclesO it holds thatLeaf? (L)® C INP©.
3. L € U, that means both conditions, P1 and P2, fail far

4. There exist finite setd, B C X* such that

L:{w|Aj1wand(VvEB)[vﬁw]}.G 1)

Proof 1 < 2 : Thisis animmediate consequence of Theorem 3.6, since for all ofaclesifl (1)° =
INP©.

2 = 3 : Assume that relative to all oracldszaf?’ (L) C 1NP. From Lemmas 5.1, 5.5 and Lemmas 5.2,
5.7, we know that ifL satisfies P1 or P2, we can construct an oratkuch thaiLeaff(L)O z 1INPO,
This contradicts our assumption. Therefakeeither satisfies P1 nor P2.

3= 4: Let
A={veL|(WW=<v)[ ¢L]}.

Observe thatl can be seen as the set of minimal wordé iFurthermore, the elements.ihare pairwise
incomparable with respect t§. From Theorem 5.9 and Definition 5.8 it follows théts finite. Let

B={w¢L|(I e A)v=2wandvw'vw' <w = v € L|]}.

This set can be thought of as the set of minimal words outsitteat have predecessorsin We claim
that B is finite as well: Otherwise, sincé is finite, there exists € A such that the following subset of
B isinfinite.

B ={w¢ L|v=wandvw'[v=w <w = w' € L]}.
Observe that the elements i are pairwise incomparable with respecttoAgain, from Theorem 5.9
and Definition 5.8 it follows thaB is finite.

We are going to show equation (1). Lete L. So there exists € A such that <w. Assume there

exist differentv, v2 € A such that; < w andwv, <w. It follows thatwvy, vo, andw are nonempty. This
implies thatL satisfies condition P2 which contradicts our assumption. Therefore, there exists exactly
onev € A such that <w. If v <, w for somek > 2, thenL satisfies condition P2 which again is a
contradiction. S <7 w and henced <; w.

6B can be thought of as the set of forbidden subwords, i.e., events that may not occur in words. fiGomtrary, A
represents the set of events such that every wordtiiggers exactly one such event.
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Assume now that there exists € B such thatv <w. By B’s definition, there exists’ € A such

thatv’ <v and for allw’, [v/ <w' <v = w' € L]. In particular,y’ <v<w andv’ € L,v ¢ L, and

w € L. HencelL satisfies condition P1 which contradicts our assumption. So there does not exist such
v € B and thereforew belongs to the right-hand side of equation (1). This shows the inclysion
equation (1).

Let w be an element of the right-hand side of (1). Hence there exists precisely end such that
v=w. Assumew ¢ L and choose a shortest wotd¢ L such that <u < w. It follows thatu € B.
Together withu < w this implies thatw is not an element of the right-hand side of (1). This contradiction
showsw € L and finishes the proof of equation (1).

4=2: LetA = {w,...,un} and B = {vy,...,v,} wherem = |A| andn = |B|. Let

L' € Leaff (L). So there exists a polynomial-time Turing machiewhose computation paths output
symbols fromX U {¢} such thatr € L' < ) (x) € L. Define a nondeterministic machidé that
works as follows on input. First, N splits intom + n pathspy, ..., p, andqi, ..., q,. If u; = ¢, then
pathp; outputsl. If u; # ¢, then on patlp; the machine nondeterministically guesses an occurrence
of u; (by guessing the positions af’s letters) in the leaf string,;(x). If such a guess is successful,
thenV outputsl, otherwise it outputs. Similarly, on pathy; the machine nondeterministically guesses
an occurrence of; in Gy(x). If such a guess is successful, th&nhoutputs11 (by producing two
neighbouring paths with outpa), otherwise it outputs. From (1) it follows that

QJEL/@[}M($) €L < pn(z) =1

HencelL’ € Leaf?(1) and thereford.eaff (L) C Leaff(1). Finally, observe that our argumentation is
relativizable. O

Observe that due to the characterizatiorUogiven by Theorem 5.10.4, we immediately obtain that
only contains regular languages. We can now formulate the new gap theorem.

Theorem 5.11 Let L be a nontrivial language.

1. If L € U, then the e-class df is contained inLNP.

2. If L ¢ U, then the e-class df containsUP VVcoUP or UP v UP.

Proof Follows from Theorem 5.10 and the fact that the Lemmas 5.2 and 5.1 are relativizable.O
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