
A Reducibility that Corresponds to Unbalanced
Leaf-Language Classes

Christian Glaßer, Stephen Travers, and Klaus W. Wagner

Theoretische Informatik
Julius-Maximilians Universiẗat Würzburg,

97074 Ẅurzburg, Germany

28th February 2005

Abstract

We introduce the polynomial-time tree reducibility (ptt-reducibility). Our main result states that
for languagesB andC it holds thatB ptt-reduces toC if and only if the unbalanced leaf-language
class ofB is robustly contained in the unbalanced leaf-language class ofC. This is theunbalanced
analogue of the well-known result by Bovet, Crescenzi, Silvestri, and Vereshchagin which connects
polylog-time reducibility withbalancedleaf-languages.

We show that restricted to regular languages, the levels0, 1/2, 1, and3/2 of the dot-depth hier-
archy (DDH) are closed under ptt-reducibility. This gives evidence that with respect to unbalanced
leaf-languages, the dot-depth hierarchy and the polynomial-time hierarchy perfectly correspond.
Level0 of the DDH is closed under ptt-reducibility even without the restriction to regular languages.
We show that this does not hold for higher levels.

As a consequence of our study of ptt-reducibility, we obtain the first gap theorem of leaf-language
definability above the Boolean closure ofNP: If D = Leafpu(C) for someC ⊆ REG, thenD ⊆
BC(NP) or there exists an oracleO such thatDO 6⊆ PNP[ε·log n]O for everyε < 1.

1 Introduction

In their pioneering work for the leaf-language approach, Bovet, Crescenzi, and Silvestri [BCS92] and
Vereshchagin [Ver93] independently introduced the notion of polylog-time reducibility (plt-reducibility
for short). This reducibility allows an amazing translation between two seemingly independent ques-
tions.

1. Are given complexity classes separable by oracles?

2. Are given languages plt-reducible?

Leaf Languages. The translation mentioned above uses the concept ofleaf languages. Let M be a
nondeterministic polynomial-time bounded Turing machine such that every computation path outputs
one letter from a fixed alphabet. LetM(x) denote the computation tree ofM on inputx. Let βM (x) be
the concatenation of all leaf-symbols ofM(x). For a languageB, letLeafpu(B) be the class of languages

1

L such that there exists a nondeterministic polynomial-time-bounded Turing machineM as above such
that for allx,

x ∈ L ⇐⇒ βM (x) ∈ B.

We refer toLeafpu(B) as theunbalanced leaf-language classof B. Call a nondeterministic polynomial-
time-bounded Turing machineM balancedif there exists a polynomial-time computable function that
on input(x, n) computes then-th path ofM(x). If we assumeM to be balanced in the definition above,
then this defines the classLeafpb(B) which we call thebalanced leaf-language classof B. For any class
of languagesC let Leafpu(C) =

⋃
B∈C Leafpu(B) andLeafpb(C) =

⋃
B∈C Leafpb(B). Call a complexity

classD unbalanced leaf-language definableif there existsC such thatD = Leafpu(C). Analogously
definebalanced leaf-language definability. For a survey on leaf-languages we refer to [Wag04].

BCSV-Theorem. Suppose for given complexity classesD1 andD2, there exist languagesL1 andL2

such thatD1 = Leafpb(L1) andD2 = Leafpb(L2). The theorem by Bovet, Crescenzi, Silvestri, and
Vereshchagin states the following.

L1≤plt
m L2 ⇔ ∀O(

Leafpb
O(L1) ⊆ Leafpb

O(L2)
)

(1)

Here≤plt
m denotes polylog-time reducibility (Definition 2.2). For this equivalence it is crucial that bal-

anced leaf-language classes are used. The theorem does not hold for the unbalanced model: Observe that
languagesL,L′ ⊆ {0, 1}∗ with L =def {w

∣∣ |w| is odd}, L′ =def 0{0, 1}∗ form a counterexample, since
Leafpu(L) = ⊕P is not robustly contained inLeafpu(L

′) = P thoughL plt-reduces toL′. In this paper
we introduce a new reducibility (ptt-reducibility) which allows us to prove the following unbalanced
analogue.

L1≤ptt
m L2 ⇔ ∀O(

Leafpu
O(L1) ⊆ Leafpu

O(L2)
)

(2)

Beside the pure academic interest of a Bovet-Crescenzi-Silvestri-Vereshchagin-like theorem (BCSV-
theorem for short) for the unbalanced case, further motivation comes from a connection between com-
plexity theory and the theory of finite automata: On the lower levels, the dot-depth hierarchy perfectly
corresponds to the polynomial-time hierarchy when we considerunbalancedleaf-languages. Below,
after the introduction of both hierarchies, we will emphasize that equivalence (2) can be very useful in
this respect.

Dot-Depth Hierarchy. Starfree regular languages(starfree languages for short) are regular languages
that can be built up from single letters by using Boolean operations and concatenation (so iteration
is not allowed). SF denotes the class of starfree languages. Brzozowski and Cohen [CB71, Brz76]
introduced thedot-depth hierarchy(DDH for short) which is a parameterization of the class of starfree
languages. The dot-depth counts the minimal number of nested alternations between Boolean operations
and concatenation that is needed to define a language. The classes of the dot-depth hierarchy consist of
languages that have the same dot-depth. For a class of languagesC, let Pol(C) denoteC’s closure under
finite union and finite concatenation. LetBC(C) denote the Boolean closure ofC. The classes (or levels)
of the dot-depth hierarchy are defined as:

B0 =def {L ⊆ A∗
∣∣A is a finite alphabet with at least two letters andL
is a finite union of termsvA∗w wherev, w ∈ A∗}

Bn+ 1
2

=def Pol(Bn)

Bn+1 =def BC(Bn+ 1
2
)

The dot-depth of a languageL is defined as the minimalm such thatL ∈ Bm wherem = n/2 for some
integern. All levels of the dot-depth hierarchy are closed under union, under intersection, under taking
inverse morphisms, and under taking residuals [PP86, Arf91, PW97]. The dot-depth hierarchy is strict
[BK78, Tho84] and exhausts the class of starfree languages [Eil76].

2

Polynomial-Time Hierarchy. For a complexity classD let coD = {L ∣∣L ∈ D}. Let ∃·D denote the
class of languagesL such that there exists a polynomialp andB ∈ D such thatx ∈ L ⇔ ∃y, |y| ≤
p(|x|), (x, y) ∈ B. Let∀·D = co∃·coD. Define∃!·D and∀!·D similarly by using∃! and∀! instead of∃
and∀. Stockmeyer [Sto77] introduced the polynomial-time hierarchy (PH for short). We use a definition
which is due to Wrathall [Wra77].

ΣP
0 = ΠP

0 =def P
ΣP

n+1 =def ∃·ΠP
n

ΠP
n+1 =def ∀·ΣP

n

Connection between DDH and PH.We continue reasoning the better suitability of the unbalanced
model for the connection between dot-depth hierarchy and polynomial-time hierarchy. Hertrampf et al.
[HLS+93], and Burtschick and Vollmer [BV98] proved that the levels of the polynomial-time hierarchy
are connected with the levels of the dot-depth hierarchy. Forn ≥ 1,

L ∈ Bn−1/2 ⇒ ∀O(Leafpb
O(L) ⊆ ΣP

n
O
), (3)

L ∈ Bn−1/2 ⇒ ∀O(Leafpu
O(L) ⊆ ΣP

n
O
). (4)

In particular, the attraction of this connection comes from the fact that both hierarchies are prominent
and well-studied objects. Even more, with the P-NP problem and the dot-depth problem, they represent
two of the most fundamental problems in theoretical computer science.

Can we turn the implications (3) and (4) into equivalences?

The reverse of (3) does not hold, even if we demandL to be starfree: For everyn ≥ 1, there exists a
starfree regular languageLn /∈ Bn−1/2 such thatLn plt-reduces to a language inB1/2 [Gla05]. So by

(1), ∀O, Leafpb
O(Ln) ⊆ ΣP

n
O

, butLn /∈ Bn−1/2. This shows that the levels of the dot-depth hierarchy
are not closed under plt-reducibility even if we restrict ourselves to starfree regular languages. Contrary
to that, we will prove that things are different for ptt-reducibility. We can show that restricted to regular
languages, the classesB0, B1/2, B1, andB3/2 are closed under ptt-reducibility. (Here and in the fol-

lowing, this formulation means that for instanceRptt
m (B1) ∩ REG = B1 whereRptt

m (B1) denotesB1’s
closure under ptt-reducibility.) It follows that for every regular languageL the following holds:

L ∈ B0 ⇔ ∀O(Leafpu
O(L) ⊆ PO) (5)

L ∈ B1/2 ⇔ ∀O(Leafpu
O(L) ⊆ NPO) (6)

L ∈ B1 ⇔ ∀O(Leafpu
O(L) ⊆ BC(NP)O) (7)

L ∈ B3/2 ⇔ ∀O(Leafpu
O(L) ⊆ ΣP

2
O
) (8)

We consider this observation as evidence that restricted to regular languages, all levels of the dot-depth
hierarchy might be closed under ptt-reducibility. This would turn (4) into an equivalence.

By (5)–(8), at least on the lower levels, the dot-depth hierarchy exactly corresponds to robust inclu-
sions of unbalanced leaf-language classes in the polynomial-time hierarchy. This correspondence does
not hold for balanced leaf-language classes. So this shows that unbalanced leaf-language classes are
indeed well-worth being considered. This motivates the study of ptt-reducibility which is the suitable
reducibility for the unbalanced model.

3

Note that Borchert and Silvestri [BS97] showed that for every classLeafpu(L), there exists anL′ such
thatLeafpu(L) = Leafpb(L

′). So from the plain definability point of view, we can restrict ourselves to
balanced leaf-languages. However, a shortcoming of this point of view is that it obliterates the inherent
connection of a leaf-language and the complexity class defined by it. Naturally, the leaf-language for
a complexity class should be as simple as possible, i.e., the language should capture the properties of
the class it describes as close as possible.L′ can be much more complex thanL, and this brings the
unbalanced model into play again. In some cases, the unbalanced model can describe a complexity class
by a simpler language than the balanced model can do.

Perfect Correspondence.We describe another aspect of ptt-reducibility. The perfect correspondence
between the dot-depth hierarchy and the polynomial-time hierarchy allows to prove statements like the
following which are due to Borchert, Kuske, Stephan, and Schmitz.

Theorem 1.1 ([Bor95, BKS99, Sch01])LetL be a regular language.

1. [Bor95] If L ∈ B0, thenLeafpu(L) ⊆ P. If L /∈ B0, thenLeafpu(L) ⊇ NP or Leafpu(L) ⊇ coNP
or Leafpu(L) ⊇ MODpP for a primep.

2. [BKS99] IfL ∈ B1/2, thenLeafpu(L) ⊆ NP. If L /∈ B1/2, thenLeafpu(L) ⊇ coNP or Leafpu(L) ⊇
co1NP or Leafpu(L) ⊇ MODpP for a primep.

3. [Sch01] IfL ∈ B3/2, thenLeafpu(L) ⊆ ΣP
2 . If L /∈ B3/2, thenLeafpu(L) ⊇ ∀·UP or Leafpu(L) ⊇

co∃!·UP or Leafpu(L) ⊇ MODpP for a primep.

In view of this theorem we say thatB0 andP (resp.,B1/2 andNP, B3/2 andΣP
2) perfectly correspond.

For instance, considerB1/2 and NP. By Burtschick and Vollmer [BV98],Leafpu(B1/2) = NP. In
addition, Theorem 1.1 states that the languages inB1/2 are the only regular languagesL such that
Leafpu(L) is robustly contained inNP. Hence,B1/2 andNP perfectly correspond. With help of plt-
reducibility and the new ptt-reducibility, we can make the notion of perfect correspondence precise.

1. A class of regular languagesC and a complexity classD perfectly correspondwith respect to
balanced leaf-languages if (restricted to regular languages)C is closed under plt-reducibility and
Leafpb(C) = D.

2. A class of regular languagesC and a complexity classD perfectly correspondwith respect to
unbalanced leaf-languages if (restricted to regular languages)C is closed under ptt-reducibility
andLeafpu(C) = D.

The following perfect correspondences with respect to unbalanced leaf-languages are easily obtained
from known results [Bor95, BKS99, Sch01].

• B0 perfectly corresponds toP.

• B1/2 perfectly corresponds toNP.

• B3/2 perfectly corresponds toΣP
2 .

We show that restricted to regular languages,B1 is closed under ptt-reducibility. From this we obtain a
new perfect correspondence with respect to unbalanced leaf-languages:

4

• B1 perfectly corresponds to the Boolean closure ofNP.

It follows that above the Boolean hierarchy overNP there is a gap in unbalanced leaf-language defin-
ability: If D = Leafpu(C) for some classC of regular languages, thenD ⊆ BC(NP) or there exists an
oracleO such thatDO 6⊆ PNP[ε·log n]O for all ε < 1.

Our investigations of the ptt-reducibility show the following phenomenon: While we can (uncondi-
tionally) prove that level0 of the dot-depth hierarchy is closed under ptt-reducibility, we can show the
similar property for higher levels only if we restrict ourselves to regular languages. We can construct a
languageB ∈ NP r REG that is ptt-reducible to a language inB1/2. The exception of level0 allows
to improve the correspondence betweenB0 andP: Not only thatB0 andP perfectly correspond, but in
fact it even holds that for any languageL /∈ B0 (this includes all nonregular languages) there exists an
oracleO such thatLeafpu

O(L) 6⊆ PO.

Organization of the Paper. Section 3 defines ptt-reducibility. In section 4 we formulate and prove
the central result of this paper, the unbalanced analogue of the BCSV-theorem. Section 5 studies the
ptt-closure of classes of the dot-depth hierarchy, and it shows that on some lower levels, the dot-depth
hierarchy perfectly corresponds to the polynomial-time hierarchy.

2 Preliminaries

For a machine or automatonM , let L(M) denote the accepted language. For a finite alphabetΣ, the
initial word relationv onΣ∗ is defined by

u v v
df⇐⇒ ∃w(w ∈ Σ∗ ∧ uw = v).

We writeu @ v if and only if u v v andu 6= v. The lexicographical order on{0, 1}∗ is defined by

x ¹ y
df⇐⇒ x v y ∨ ∃u(u0 v x ∧ u1 v y).

The quasi-lexicographical order on{0, 1}∗ is defined by

x ≤ y
df⇐⇒ |x| < |y| ∨ (|x| = |y| ∧ ∃u(u0 v x ∧ u1 v y)) ∨ x = y.

In what follows we identify the set{0, 1}∗ with the setN of natural numbers according to the quasi-
lexicographical order. So{0, 1}∗ inherits operations like+ from the natural numbers. Furthermore, we
identify a setO ⊆ N with the characteristic sequencecO(0)cO(1)cO(2) · · · ∈ {0, 1}ω wherecO is the
characteristic function ofO. For a setO ⊆ {0, 1}ω andu ∈ {0, 1}∗ we define the following sets.

u|O =def ucO(|u|)cO(|u|+ 1)cO(|u|+ 2) · · ·
uO =def ucO(0)cO(1)cO(2) · · ·

The following theorem shows the close relation between the dot-depth hierarchy and the polynomial-
time hierarchy. HereNP(n) denotes leveln of the Boolean hierarchy overNP. PLT is the class of
languages that have polylog-time computable characteristic functions where the input is accessed as an
oracle.

Theorem 2.1 ([HLS+93, BV98, BKS99]) The following holds forn ≥ 1 and relative to all oracles.

5

1. P = Leafpb(PLT) = Leafpb(B0) = Leafpu(B0)

2. ΣP
n = Leafpb(Bn−1/2) = Leafpu(Bn−1/2)

3. ΠP
n = Leafpb(coBn−1/2) = Leafpu(coBn−1/2)

4. BC(ΣP
n) = Leafpb(Bn) = Leafpu(Bn)

5. NP(n) = Leafpb(B1/2(n)) = Leafpu(B1/2(n))

Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] showed that polylog-time reducibil-
ity exactly corresponds to balanced leaf-language definable classes.

Definition 2.2 A functionf : A∗ → A∗ is polylog-time computableif there exist two polynomial-time-
bounded oracle transducersR : A∗ × N→ A andl : A∗ → N such that for allx,

f(x) = Rx(|x|, 1)Rx(|x|, 2) · · ·Rx(|x|, lx(|x|))

whereR and l access the inputx as an oracle. A languageB is polylog-time reducible(plt-reducible)
to a languageC, B≤plt

m C for short, if there exists a polylog-time computablef such that for allx,
x ∈ B ⇔ f(x) ∈ C.

Theorem 2.3 ([BCS92, Ver93])For all languagesB andC,

B≤plt
m C ⇔ ∀O(

Leafpb
O(B) ⊆ Leafpb

O(C)
)
.

LetD be a complexity class. A languageL belongs to the class∃u·D if there exist a polynomialp and
B ∈ D such that:

x ∈ L ⇒ (∃!y, |y| ≤ p(|x|))[(x, y) ∈ B]
x /∈ L ⇒ (∀y, |y| ≤ p(|x|))[(x, y) /∈ B]

Analogously,L belongs to∀u·D if there exist a polynomialp andB ∈ D such that:

x ∈ L ⇒ (∀y, |y| ≤ p(|x|))[(x, y) ∈ B]
x /∈ L ⇒ (∃!y, |y| ≤ p(|x|))[(x, y) /∈ B]

3 Polynomial-Time Tree Reducibility

With polynomial-time tree reducibility (ptt-reducibility for short) we introduce the unbalanced analog
of polylog-time reducibility (plt-reducibility). For the representation of a balanced computation tree it
suffices to think of a leaf string such that each symbol is accessible in polylog-time in the length of the
leaf string. Representations of unbalanced computation trees are more complicated. Here the particular
structure of the tree must be taken into account. This makes it necessary to define suitable representations
of trees. Intuitively, a languageB ptt-reduces to a languageC if there exists a polynomial-time (in the
height of the tree) computable function that transforms trees such that for every treet, the leafstring oft
belongs toB if and only if the leafstring off(t) belongs toC.

6

We start with representations of trees. LetΣ be a finite alphabet. A triplet = (T, h, m) is called a
Σ-tree if T ⊆ {0, 1}∗ is finite,h : T → Σ, andm ∈ N such that∀z∀u((u v z ∧ z ∈ T) → u ∈ T) and
∀z(z ∈ T → |z| ≤ m). LetTΣ be the set of allΣ-trees. Aleafof t is az ∈ T such that there is nou ∈ T
with z @ u. For aΣ-treet = (T, h,m), we define theleaf wordof t asβ(t) =def h(z1)h(z2) · · ·h(zs)
where{z1, z2, . . . , zs} is the set of all leaves oft andz1 ≺ z2 ≺ · · · ≺ zs.

Chooser ≥ 1 such that|Σ| ≤ 2r, and lete : Σ → {0, 1}r be an injective mapping. AΣ-tree t =
(T, h,m) is encoded by the setOt =def {ze(h(z))

∣∣ z ∈ T} and the numbermt =def m. On the other
hand, an arbitrary setO ⊆ {0, 1}∗ and a numberm ∈ N define aΣ-treetO,m =def (TO,m, hO,m,m)
where

TO,m =def {z ∣∣ |z| ≤ m ∧ ∀u(u v z → ∃v(v ∈ e(Σ) ∧ uv ∈ O))} and

hO,m(z) =def e−1(lexicographically firstv ∈ e(Σ) such thatzv ∈ O).

It is easy to see thattOt,mt = t for everyΣ-treet. Now let us define functions that transform unbalanced
computation trees.

Definition 3.1 LetΣ1 andΣ2 be finite alphabets. A functionf : TΣ1 → TΣ2 is called apolynomial-time
tree function(ptt-function for short) if there existk > 0 and functionsg1 : TΣ1 × {0, 1}∗ ×N→ {0, 1}
andg2 : TΣ1 × {0, 1}∗ × N→ Σ2 such that:

• There exists a polynomialp(·, ·) such thatg1(t, z, m) and g2(t, z,m) are computable in time
p(|z|, m) where the treet is accessed as the oracleOt.

• It holds thatf(t) = (T ′, h′,mk
t + k) whereT ′ =def {z

∣∣ g1(t, z, mt) = 1} and h′(z) =def

g2(t, z, mt).

We will also writegOt
1 (z, m) andgOt

2 (z, m) instead ofg1(t, z,m) andg2(t, z, m), respectively. Finally
we define polynomial-time tree reducibility.

Definition 3.2 For L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2, we defineL1≤ptt
m L2 (L1 is ptt-reducibleto L2) if there

exists a ptt-functionf : TΣ1 → TΣ2 such that for allt ∈ TΣ1 ,

β(t) ∈ L1 ↔ β(f(t)) ∈ L2.

Proposition 3.3 ≤ptt
m is reflexive and transitive.

We describe how parts of the characteristic sequence of a setO can be interpreted as trees: For any
x ∈ {0, 1}∗ and anyO ⊆ {0, 1}∗, let

O − x =def {y ∣∣ y + x ∈ O} and

O + x =def {y ∣∣ y − x ∈ O}.
Observe thatO− x + x = {y ∈ O

∣∣ y ≥ x} andO + x− x = O. Moreover, note that the characteristic
sequence ofO − x is exactlycO(x)cO(x + 1)cO(x + 2) · · · . ForL ⊆ Σ∗ andO ⊆ {0, 1}∗ we define

LO =def {x ∣∣x ∈ {0, 1}∗ andβ(tO−x,|x|) ∈ L} and

L◦ =def {(O, x)
∣∣ x ∈ {0, 1}∗ andβ(tO−x,|x|) ∈ L}.

7

Proposition 3.4 LetL ∈ Σ∗, O1, O2 ⊆ {0, 1}∗, andx, u, v ∈ {0, 1}∗.

1. If |u| = |v| ≤ x, thenx ∈ LuO1 ↔ x ∈ LvO1 .

2. If |u| > 2r+3 · x, thenx ∈ LuO1 ↔ x ∈ LuO2 . (Note thatr is the constant that was chosen at the
beginning of this section such that|Σ| ≤ 2r.

Proof Assume we want to checkx ∈ LO1 . So we have to consider the treetO1−x,|x| which consists of
paths of length≤ |x|. The latter are described by the words inO1−x that are of length≤ |x|+r. There
are less than2|x|+r+1 ≤ x · 2r+2 such words. So in order to figure out whetherx ∈ LO1 , we only need
to knowi ∈ O1 for i ∈ {x, x + 1, . . . , x + x · 2r+2}. 2

Some more notations are needed for the proof of the unbalanced BCSV-theorem in section 4. LetM be a
nondeterministic polynomial-time Turing machine (NPTM, for short) such that on inputx, M produces
on every computation pathz a symbolM(x, z) from a finite alphabetΣ. Let k be the smallest natural
number such thatnk + k bounds the running time ofM . For every computation pathz of M on input
x, let

TM (x) =def {u ∣∣ ∃z(z computation path ofM onx andu v z)} and

hM (x)(z) =def M(x, z).

For the otherz ∈ TM (x) the value ofhM (x)(z) is chosen arbitrarily fromΣ. The computation tree of
M onx is

tM (x) =def (TM (x), hM (x), |x|k + k).

Note thattM (x) is aΣ-tree. For a nondeterministic polynomial-time oracle Turing machine (NPTOM,
for short)M , we define the computation tree ofM onx with oracleO as

tOM (x) =def (TO
M (x), hO

M (x), |x|k + k).

For a languageL ⊆ Σ∗, defineLeafpu(L) as the class of all languagesB for which there exists an NPTM
M such that for allx,

x ∈ B ⇔ β(tM (x)) ∈ L.

For a fixed oracleO ⊆ {0, 1}∗, let Leafpu
O(L) be the class of all languagesB for which there exists an

NPTOMM such that for allx,
x ∈ B ⇔ β(tOM (x)) ∈ L.

Finally, letLeafpu
◦(L) be the class of all setsB for which there exists an NPTOMM such that for allx

and all oraclesO,
(O, x) ∈ B ⇔ β(tOM (x)) ∈ L.

Proposition 3.5 LetL be a language.

1. LO ∈ Leafpu
O(L) for every oracleO.

2. L◦ ∈ Leafpu
◦(L).

A languageL ⊆ Σ∗ is callednontrivial if L 6= ∅ andL 6= Σ∗.

8

4 The BCSV-Theorem for Unbalanced Leaf Languages

Let B andC be languages. Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] proved
that B polylog-time reduces toC if and only if for all oraclesO, Leafpb

O(B) ⊆ Leafpb
O(C). So

plt-reducibility corresponds to robust inclusions of balanced leaf-language classes. We show that ptt-
reducibility and unbalanced leaf-language classes share the same connection.

Theorem 4.1 For nontrivial L1 ⊆ Σ∗1 andL2 ⊆ Σ∗2 the following are equivalent:

(1) L1≤ptt
m L2

(2) Leafpu
◦(L1) ⊆ Leafpu

◦(L2)

(3) L◦1 ∈ Leafpu
◦(L2)

Proof (1)⇒ (2). Let L1≤ptt
m L2 via ptt-functionf . For B ∈ Leafpu

◦(L1) there exists an NPTOMM
such that(O, x) ∈ B ⇔ β(tOM (x)) ∈ L1 for all x ∈ Σ∗ and oraclesO. It is easy to construct an
NPTOMM ′ such thatβ(tOM ′(x)) = β(f(tOM (x))) for all x andO.1 Consequently,

(O, x) ∈ B ⇔ β(tOM (x)) ∈ L1 ⇔ β(f(tOM (x))) ∈ L2 ⇔ β(tOM ′(x)) ∈ L2,

and henceB ∈ Leafpu
◦(L2).

(2)⇒ (3) is obvious because of Proposition 3.5.2

(3)⇒ (1). LetL◦1 ∈ Leafpu
◦(L2). There exists an NPTOMM such that(O, x) ∈ L◦1 ⇔ β(tOM (x)) ∈ L2.

Let k be the smallest natural number such thatnk + k bounds the running time ofM . For aΣ-treet we
obtainOt = Ot + 0mt − 0mt and therefore,

β(t) ∈ L1 ⇔ β(tOt,mt) ∈ L1 ⇔ (Ot + 0mt , 0mt) ∈ L◦1 ⇔ β(tOt+0mt

M (0mt)) ∈ L2.

Definef(t) =def tOt+0mt

M (0mt) = (TOt+0mt

M (0mt), hOt+0mt

M (0mt),mk
t + k). Observe that there ex-

ist polynomial-time computable functionsg1, g2 such thatTOt+x
M (0mt) = {z ∣∣ gt

1(z,mt) = 1} and
hOt+x

M (0mt) = gt
2(z, mt). HenceL1≤ptt

m L2. 2

Theorem 4.2 For nontrivial L1 ⊆ Σ∗1 andL2 ⊆ Σ∗2 the following are equivalent:

(1) L1≤ptt
m L2

(2) ∀O(Leafpu
O(L1) ⊆ Leafpu

O(L2))

(3) ∀O(LO
1 ∈ Leafpu

O(L2))

1Note that we cannot guaranteetO
M′(x) = f(tO

M (x)). Every inner node oftO
M′(x) has exactly two children, sincetO

M′(x)
is a computation tree. In contrast,f(tO

M (x)) is an arbitrary tree which by our definition can contain inner nodes that have only
one child. However,β(tO

M′(x)) = β(f(tO
M (x))) is possible, since fromf(tO

M (x)) we obtain a computation tree by deleting
such nodes.

9

Proof (1)⇒ (2) follows from (1)⇒ (2) in Theorem 4.1, and (2)⇒ (3) is obvious because of Proposition
3.5.1.

(3)⇒ (1). Because of Theorem 4.1 it suffices to proveL◦1 ∈ Leafpu
◦(L2). Let M0, M1,M2, . . . be an

enumeration of all NPTOMs. AssumeL◦1 6∈ Leafpu
◦(L2), i.e., for everyk there exist an oracleOk and a

wordxk such that
xk ∈ LOk

1 ↔ β(tOk
Mk

(xk)) 6∈ L2. (9)

Claim 4.3 There existu0, u1, u2, . . . ∈ {0, 1}∗ and anz0, z1, z2, . . . ∈ N such that

• uk−1 is a proper initial word ofuk, and

• zk ∈ LO
1 ↔ β(tOMk

(zk)) 6∈ L2 for all O ∈ uk · {0, 1}ω.

Proof of Claim 4.3.By induction onk. Fork = 0, let z0 = x0, and letu0 be the shortest initial word of
O0 ∈ {0, 1}ω such that|u0| > 2r+3 · x0 and{0, 1, . . . , |u0|} contains every query ofM0 to the oracle
O0 during its work onx0. For everyO ∈ u0 · {0, 1}ω we obtain using Proposition 3.4.2 and (9)

z0 ∈ LO
1 ⇔ x0 ∈ LO

1 ⇔ x0 ∈ LO0
1 ⇔ β(tO0

M0
(x0)) 6∈ L2

⇔ β(tOM0
(x0)) 6∈ L2 ⇔ β(tOM0

(z0)) 6∈ L2.

Now assume that we have already constructedu0, u1, . . . , uk ∈ {0, 1}∗ andz0, x1, . . . , xk ∈ N that
satisfy the claim. We constructuk+1 andzk+1 as follows. Consider an NPTOMM such that for every
input x and every oracleO the following holds. Ifx ≥ |uk|, thenM works asMk+1 on x with oracle
uk|O. If x < |uk|, thenM works in such a way thatx ∈ LO

1 ↔ β(tOMr
(x)) ∈ L2. Chooser such that

M = Mr.

If xr < |uk|, thenxr ∈ LOr
1 ↔ β(tOr

Mr
(xr)) ∈ L2 which contradicts (9). Therefore,xr ≥ |uk|, and

consequently, using Proposition 3.4.1 and (9),

xr ∈ L
uk|Or

1 ⇔ xr ∈ LOr
1 ⇔ β(tOr

Mr
(xr)) 6∈ L2 ⇔ β(tuk|Or

Mk+1
(xr)) 6∈ L2. (10)

Now definezk+1 =def xr and letuk+1 be the shortest initial word ofuk|Or such that|uk+1| > |uk|,
|uk+1| > 2r+3 · xr, and{0, 1, . . . , |uk+1|} contains every query ofMk+1 to the oracleuk|Or during
its work on inputxr. Henceuk is a proper initial word ofuk+1, and by Proposition 3.4.2 and (10) we
obtain for allO ∈ uk+1 · {0, 1}ω

zk+1 ∈ LO
1 ⇔ xr ∈ LO

1 ⇔ xr ∈ L
uk|Or

1 ⇔ β(tuk|Or

Mk+1
(xr)) 6∈ L2

⇔ β(tOMk+1
(xr)) 6∈ L2 ⇔ β(tOMk+1

(zk+1)) 6∈ L2.

This completes the induction and proves Claim 4.3.

Now defineO′ =def limk→∞ uk ·0ω, from which we obtainO′ ∈ uk ·{0, 1}ω for all k ≥ 0. By the claim,
zk ∈ LO′

1 ↔ β(tO
′

Mk
(zk)) 6∈ L2 for everyk ≥ 0. This meansLO′

1 6∈ Leafpu
O′(L2) which contradicts the

assumption of (3). 2

10

5 ptt-Reducibility and the Dot-Depth Hierarchy

By Theorem 2.1 the levels of the dot-depth hierarchy and the levels of the polynomial-time hierarchy
are closely related. Note that this connection exists for both models, balanced and unbalanced leaf-
languages. In this section we discuss evidence that for the unbalanced model this connection is even
closer than that stated in Theorem 2.1.

Definition 5.1 A class of regular languagesC and a complexity classD perfectly correspondwith re-
spect to balanced leaf-languages if (restricted to regular languages)C is closed under plt-reducibility
and Leafpb(C) = D. A class of regular languagesC and a complexity classD perfectly correspond
with respect to unbalanced leaf-languages if (restricted to regular languages)C is closed under ptt-
reducibility andLeafpu(C) = D.

Perfect correspondences are connections closer than those stated in Theorem 2.1.

Proposition 5.2 If C perfectly corresponds toD with respect to balanced leaf-languages, then for every
regular L /∈ C there exists an oracle relative to whichLeafpb(C) 6⊆ D. The similar statement holds for
unbalanced leaf-languages.

Proof Follows from Theorems 2.3 and 4.2. 2

The levels of the dot-depth hierarchy and the levels of the polynomial-time hierarchy do not perfectly
correspond with respect to balanced leaf-languages. In particular, forn ≥ 1, Bn/2 is not closed under
plt-reducibility even if we restrict ourselves to starfree regular languages.

Theorem 5.3 For everyn ≥ 1, Bn−1/2 does not perfectly correspond toΣP
n with respect to balanced

leaf-languages.

Proof For everyn ≥ 1, there existsLn ∈ SF− Bn−1/2 such thatLn plt-reduces to a language inB1/2

[Gla05]. 2

In contrast, we will see that restricted to regular languages, the classesB0, B1/2, B1, andB3/2 are closed
under ptt-reducibility. In particular, these classes perfectly correspond to the classes of the polynomial-
time hierarchy. While forB0, B1/2, andB3/2 the latter is easily obtained from known results [Bor95,
BKS99, Sch01], this is a new result forB1. We consider these results as evidence that restricted to regular
languages, all levels of the dot-depth hierarchy might be closed under ptt-reducibility and therefore,
perfectly correspond to the levels of the polynomial-time hierarchy.

Unlike all classesBn/2 for n ≥ 1 (see Theorem 5.12), the classB0 is closed under ptt-reducibility even
without the restriction to regular languages.

Theorem 5.4Rptt
m (B0) = B0.

11

Proof Let L ⊆ Σ∗ be≤ptt
m -reducible to a language inB0. HenceL≤ptt

m {1}, i.e., there exists a ptt-
functionf such that for allΣ-treest,

β(t) ∈ L ⇔ β(f(t)) = 1.

Without loss of generality we can assume thatβ(t) 6∈ L implies β(f(t)) = 0. Let g1 andg2 be the
polynomial-time computable functions that definef . Let M1 andM2 be polynomial-time machines
computingg1 andg2, resp., in timenk for suitablek ≥ 1.

Claim 5.5 For every wxv ∈ L with |x| > max((3 log2 |wxv|)k+1, 1) there existr > 1 and
v1, v2, . . . , vr such that

1. |v1v2 · · · vr| ≤ (3 log2 |wxv|)k+1,

2. wxv ∈ wv1Σ∗v2Σ∗ · · ·Σ∗vrv, and

3. wv1Σ∗v2Σ∗ · · ·Σ∗vrv ∩ Σ≤2|wxv| ⊆ L.

The same holds true forL.

Proof of Claim 5.5. Considerwxv such that|x| > max((3 log2 |wxv|)k+1, 1), and letm =def

3 log2 |wxv|. From |x| ≥ 2 we obtainm ≥ 3. Let t = (T, h,m) be a balancedΣ-tree such that
β(t) = wxv. Sinceβ(f(t)) ∈ {0, 1}, the treef(t) has only one path. To compute this path, at most
2mk ≤ mk+1 − 2 paths oft are queried byM1 or M2. So we can factorizewxv as

wxv = wv1u1v2u2 · · ·ur−1vrv

such that allui andvi are nonempty,|v1v2 · · · vr| ≤ mk+1, and no queried path goes through a symbol
in ui. Since|x| > mk+1 we haver ≥ 2. Also note thatr ≤ mk+1, since thevi are nonempty. Now we
cut all paths that correspond to symbols inui. This results in a newΣ-treet1 = (T1, h1,m) such that
β(t1) = wv1v2 · · · vrv. Clearly,

wxv ∈ wv1Σ∗v2Σ∗ · · ·Σ∗vr−1Σ∗vrv.

Now consider arbitraryz1, z2, . . . , zr−1 such that|wv1z1v2z2 · · · zr−1vrv| ≤ 2|wxv|. If πi is the path
corresponding to the first symbol ofui, then we addπi to the tree, and additionally, we attach a tree with
leaf wordzi to πi. This results in aΣ-treet2 = (T2, h2,m) such that

β(t2) = wv1z1v2z2v3 · · · vr−1zr−1vrv.

Note that heightm still suffices, since the length ofπi is less than or equal todlog2 |wxv|e and since
|zi| ≤ 2|wxv|. M1 andM2 do not query paths that go through symbols inui. Therefore, these machines
cannot distinguish between theΣ-treest andt2. Consequently,

wxv ∈ L ⇔ wv1z1v2z2v3 · · · vr−1zr−1vrv ∈ L.

This proves Claim 5.5.

Define N0 as a natural number such thatN0 > max(2(3 log2 N0)k+1, 1), and consequentlyN >
2(3 log2 N)k+1 for everyN ≥ N0.

12

Claim 5.6 For everyx ∈ L with |x| ≥ 2N0 there existw, v such that|w| = |v| = (3 log2 |x|)k+1,
x ∈ wΣ∗v, andwΣ∗v ⊆ L.

Proof of Claim 5.6.Let x ∈ L such that|x| ≥ 2N0 ≥ N0 > 1, and letm =def 3 log2 |x|. Hence|x| >
2mk+1 ≥ mk+1. By Claim 5.5, there existr > 1 andw1, w2, · · · , wr such that|w1w2 · · ·wr| ≤ mk+1

and
x ∈ w1Σ∗w2Σ∗ · · ·Σ∗wr ∩ Σ≤|x| ⊆ L.

Because of|x| ≥ 2mk+1 and |w1wr| ≤ mk+1, we can choose wordsu1, u2, u3 such thatx =
w1u1u2u3wr and |w1u1| = |u3wr| = mk+1. Assume there exists az′ such thatw1u1z

′u3wr ∈ L.
Let z =def u1z

′u3. Sow1zwr ∈ L and

|z| ≥ |u1u3| = |w1u1|+ |u3wr| − |w1wr| ≥ 2mk+1 −mk+1 = mk+1.

Thus there exists az such thatw1zwr ∈ L and|z| ≥ mk+1 (and hence|z| ≥ N0). Let z be of minimum
length with this property. Observe|z| ≥ mk+1 ≥ |w1wr| and|z| ≥ 3 log2 |x| ≥ 3. Since2|z| ≥ N0 we
obtain2|z| > 2(3 log2 2|z|)k+1 and hence

|z| > (3 log2 2|z|)k+1 ≥ (3 log2 |w1zwr|)k+1.

From Claim 5.5 we obtains > 1 andv1, v2, · · · , vs such that

w1v1Σ∗v2Σ∗ · · ·Σ∗vswr ∩ Σ≤2|w1zwr| ⊆ L

and
|v1v2 · · · vs| ≤ (3 log2 |w1zwr|)k+1 < |z|.

Fromw1v1v2 · · · vswr ∈ L and from the minimality ofz we obtain|v1v2 · · · vs| < mk+1.

So far we have seen
w1Σ∗w2Σ∗ · · ·Σ∗wr ∩ Σ≤|x| ⊆ L (11)

and
w1v1Σ∗v2Σ∗ · · ·Σ∗vswr ∩ Σ≤2|z| ⊆ L. (12)

Now observe that

|w1v1w2w3 · · ·wr−1v2v3 · · · vswr| = |w1w2 · · ·wr|+ |v1v2 · · · vs| ≤ 2mk+1

≤ min{|x|, 2|z|}.

Together with (11) and (12) this impliesw1v1w2w3 · · ·wr−1v2v3 · · · vswr ∈ L ∩ L which is a contra-
diction. This means that there is noz′ such thatw1u1z

′u3wr ∈ L. Consequently, the statement of the
claim is fulfilled byw =def w1u1 andv =def u3wr. This proves Claim 5.6.

By Claim 5.6, for everyx ∈ L with |x| ≥ 2N0 there exist wordsw, v such that|w| = |v| =
(3 log2 |x|)k+1 andx ∈ wΣ∗v ⊆ L. Sincewv ∈ L and |wv| = 2(3 log2 |x|)k+1 < |x| we can ap-
ply Claim 5.6 repeatedly until we obtainw′, v′ such that|w′| = |v′| = 2N0 andx ∈ wΣ∗vwΣ∗v ⊆ L.
Hence

L =
⋃

x∈L,

|x|<2N0

{x} ∪
⋃

wv∈L,

|w|=|v|=2N0

wΣ∗v.

This showsL ∈ B0. 2

13

s0

vu y′

w′

y

w

s2s1

v

w′

u

w

s3s5

z
v

w′

u

w

s6s4

x

z

s7 : +/− s8 : −/+

Figure 1: PatternP1 wherew,w′ are nonempty - Nonexistence of this pattern characterizesB1.

Theorem 5.7Rptt
m (B1/2) ∩ REG = B1/2.

Proof It suffices to argue for the inclusion from left to right. Assume there existsL ∈ Rptt
m (B1/2)∩REG

such thatL /∈ B1/2. So there existsL′ ∈ B1/2 such thatL≤ptt
m L′. Hence for all oraclesO, Leafpu

O(L′) ⊆
NPO. By Borchert, Kuske, and Stephan [BKS99], for all oraclesO, coUPO ⊆ Leafpu

O(L). By Theo-
rem 4.2, for all oraclesO, Leafpu

O(L) ⊆ Leafpu
O(L′) and therefore,coUPO ⊆ NPO. This contradicts

an oracle construction by Eppstein et al. [EHTY92]. 2

Lemma 5.8 Let L ∈ REG r B1. Then there exists an oracleB such thatLeafpu
B(L) 6⊆ PNP[ε·log n]B

for all ε < 1.

Proof Let A be an alphabet with|A| ≥ 2 andL ⊆ A∗ such thatL ∈ REG r B1. Hence, the minimal
automaton ofL contains patternP1 (see Figure 1) and there existu, v, x, y, y′, z ∈ A∗ andw,w′ ∈ A+

as apparent in Figure 1. Without loss of generality, we assume that the minimal automaton contains the
first version of the pattern, i.e., states7 is accepting and states8 is rejecting. LetLP1 be the language
of all words inx{u, v, w,w′, y, y′}∗z such that the minimal automaton ofL moves along the paths
drawn in Figure 1 and finally reachess7. Let L′P1

be the similar set of words leading tos8. Clearly,
Leafpu(LP1 , L

′
P1

) ⊆ Leafpu(L).2 We constructB such that for allε < 1,

Leafpu
B(LP1 , L

′
P1

) 6⊆ PNP[nε]
‖

B
.

This implies that for allε < 1,

Leafpu
B(LP1 , L

′
P1

) 6⊆ PNP[ε·log(n)]B.

Let e /∈ A be a new letter. Forn ∈ N let α0,n ≺ α1,n ≺ . . . ≺ α2n−1,n be the
words of {0, 1}n in lexicographical order. For any setD ⊆ {0, 1}∗ with characteristic function
cD, the characteristic sequence ofD restricted to words of lengthn is defined asCD(n) =def

cD(α0,n)cD(α1,n) . . . cD(α2n−2,n)cD(α2n−1,n). Such a characteristic sequence can be considered as

2Note that here a pair of languages(LP1 , L′P1) defines a leaf-language class. A language belongs toLeafpu(LP1 , L′P1) if
and only if there exists a nondeterministic polynomial-time-bounded Turing machineM such that for allx: If x ∈ L then
βM (x) ∈ LP1 ; if x /∈ L thenβM (x) ∈ L′P1 . This can be used to define promise classes, as in this case.

14

a sequence of letters fromA ∪ {e} wheredlog(|A| + 1)e bits of CD(n) encode a letter fromA ∪ {e}.
Denote this new sequence byC ′

D(n) and observe that its length is greater than2n−|A|. Let C ′
D(n)|A be

the sequence obtained by removing alle’s from C ′
D(n). We say that the sequenceCD(n) is valid for

patternP1 if the following holds:

• C ′
D(n) does not contain a factoren+1, and

• C ′
D(n)|A ∈ LP1 ∪ L′P1

.

We call a valid sequenceaccepted (resp., rejected) by patternP1 if it belongs toLP1 (resp.,L′P1
). Hence,

a valid sequenceCD(n) encodes a sequenceC ′
D(n) overA∪{e}which may contain only shorte-blocks.

We will define a fast-growing tower functiont : N → N such thatt(n + 1) = 2t(n) for n ≥ 0. For an
arbitrary oracleO, we define our witness languageWO as follows:

WO =def {0t(n)
∣∣ n ≥ 0 andCO(t(n)) is accepted by patternP1}

Throughout the construction we will ensure that for alln, the sequenceCB(t(n)) is valid for pattern
P1. This impliesWB ∈ Leafpu

B(LP1 , L
′
P1

): On input0m, an unbalanced machine first verifies that
m = t(n) for somen, and then produces a computation tree with leaf stringC ′

O(m). SinceC ′
O(m)

only contains short blocks ofe’s, this machine can reorganize its computation tree such that alle’s are

removed from the leaf string. So it remains to show thatWB /∈ PNP[ε·log(n)]B.

Our oracleB will be defined as the union of (finite) oracle stagesBi, i ≥ 1, which are constructed
iteratively. Each stageBn is characterized by oracle words of lengtht(n) and therefore by the sequence
CB(t(n)). Let B[k, j] =def

⋃
k≤i≤j Bi denote an interval of oracle stages.

We enumeratePNP[mε]
‖ -machines as follows. Consider an enumeration of all tuples(M, N, p, ε) such

thatM is a deterministic polynomial-time oracle Turing machine,N is a nondeterministic polynomial-
time oracle Turing machine,p is a polynomial andε < 1. We interpretM as the base machine andN as
the oracle machine.

By defining the first valuet(0) of the tower function sufficiently large andt(n + 1) =def 2t(n), we can
ensure that the enumeration satisfies the following technical requirements. For then-th tuple of the
enumeration,(M, N, p, ε), all of the following holds:

1. p(t(n)) ≤ 2log2 t(n)

2. 3 log2 t(n) ≤ t(n)(1−ε)/2

3. 2t(n)/2t(n)(1+ε)/2 ≥ 2 · |A| · |ww′yy′uv|
4. Let the running times ofM andN be bounded by polynomialsq andr, respectively. Then it holds

thatr(q(n)) ≤ p(n).

5. M on inputx asks at most|x|ε nonadaptive queries to the oracleL(N).

Let (M, N, p, ε) be then-th tuple in our enumeration and letm = t(n). We diagonalize against
(M, N, p, ε) through ensuring

L(MB[1,n],L(NB[1,n])) 6= WB[1,n]. (13)

15

Notice thatM can access both oracles,B[1, n] andL(NB[1,n]).

We describe the main idea behind the diagonalization against(M, N, p, ε): We start with an oracle
Bn such thatCB(m) is accepted byP1. After that we simulateM with the so-far constructed oracle
(B[1, n]) on input0m and determine segments inBn that have to be reserved. IfM rejects0m we are
done for this stage. Otherwise we changeBn on non-reserved positions, such thatCB(m) is still valid
but now rejected byP1 (here thee’s compensate length differences). We then repeat the simulation of
M on input0m with the modified oracle and update the list of reserved segments. IfM still accepts we
are done, otherwise we modify non-reserved positions such thatCB(m) remains valid but accepted by
P1 again. We will show that afterε · log m such rounds,M on input0m will err in its decision.

The detailed construction of the diagonalization against(M, N, p, ε) follows.

We define
β =def xwγwuz,

such thatγ ∈ {w, e}∗, γ does not contain a factorem+1, and|β| = 2m−|A|. We start withBn ⊆ {0, 1}m

such thatC ′
Bn

(m) = β. Clearly, CBn(m) is accepted by patternP1: Whether a valid sequence is
accepted or rejected is determined by the first occurrence of a word from{u, v} in the encoded sequence;
for u the sequence is accepted, forv it is rejected.

Let F denote the set of reserved segments;F = ∅ at the beginning.F is supposed to contain words
of lengthm that we will not modify in the further construction. SimulateMB[1,n] on input0m. If M
rejects, (13) is fulfilled and the construction of stageBn is complete. So assumeM accepts. LetQ1

be the set ofM ’s queries toBn on input0m. Thus,|Q1| ≤ p(m). Let q1, . . . , qk beM ’s nonadaptive
queries toN wherek ≤ mε. Let Q+ ⊆ {q1, . . . , qk} be the set of positively answered queries. Hence,
for q ∈ Q+, the nondeterministic machineN on input q produces at least one accepting path. We
defineQ2 =def {q

∣∣∃q′ ∈ Q+(N on inputq′ queriesq on its leftmost accepting path)}. Observe that
|Q2| ≤ p(m)2. We now setF = F ∪ Q1 ∪ Q2. Since|F | ≤ p(m)3 and|CBn(m)| = 2m, there exist
2m/p(m)3 consecutive words of lengthm that are not inF . These words represent a segments in β.
By the construction ofβ, s ∈ {w, e}∗. In the next step,s is replaced by a segments′ ∈ y{w′, e}∗v such
that|s′| = |s| ands does not contain a factorem+1. Observe that the purpose ofe in this construction is
to compensate differences in the lengths ofy, w, w′ andv. After this modification,CBn(m) is still valid
but now rejected byP1. Since all further modifications in later rounds will be restricted to the segment
s′, we reserve all the rest of the oracle at this stage, i.e.,F now contains all words from{0, 1}m except
those encodings′.

Again, we simulateMB[1,n] on input0m and now assume that it has noticed the deception and thus
rejects. LetQ3 be the set of queries toBn during this simulation. SinceQ2 ⊆ F , no query inQ+ can
have flipped from positive to negative. Consequently, there have to be queries in{q1, . . . , qk} r Q+

which have been answered positively byN during the second simulation ofM . Let Q′
+ be the

set of these queries. We repeat the above construction by defining the setQ4 =def {q
∣∣ ∃q′ ∈

Q′
+(N on inputq′ queriesq on its leftmost accepting path)}. We have|Q3| ≤ p(m) and|Q4| ≤ p(m)2.

SetF = F ∪Q3 ∪Q4. Hence, we still find

2m

p(m)3 · p(m)3

consecutive words of lengthm that are not inF . These correspond to a segments1 ∈ {w′, e}∗ which
has not been reserved yet. This segment is replaced by a segments′1 ∈ y′{w, e}∗u with |s1| = |s′1|. This
modification causesCBn(m) to be accepted byP1.

16

We can deceiveM again by repeating the above procedure. After at mostk rounds, no more ofM ’s
queries toN can flip from negative to positive. At that point,M cannot change its behavior any longer.
Each round the size of the non-reserved area of{0, 1}m is divided by at mostp(m)3. Hence afterk
rounds we still have a segment of size

2m

p(m)3k
≥ 2m

p(m)3mε ≥
2m

23mε(log2 m)
≥ 2m

2m(1−ε)/2mε
=

2m

2m(1+ε)/2
≥2 · |A| · |ww′yy′uv|.

Therefore, afterk rounds we can still find a sufficiently large non-reserved area. We can then modify
this segment to deceiveM one final time. 2

Utilizing Theorem 4.2, we can translate this oracle separation into a statement about the ptt-closure of
B1.

Theorem 5.9Rptt
m (B1) ∩ REG = B1.

Proof It suffices to argue for the inclusion from left to right. Assume there existsL ∈ Rptt
m (B1)∩REG

such thatL /∈ B1. So there existsL′ ∈ B1 such thatL≤ptt
m L′. By Theorem 4.2, for all oraclesO,

we then haveLeafpu
O(L) ⊆ Leafpu

O(L′). Theorem 2.1 holds relative to all oracles. Therefore, for all
oraclesO, it holds thatLeafpu

O(L′) ⊆ BC(NP)O. This contradicts Lemma 5.8. 2

As a consequence, we obtain the first gap theorem of leaf-language definability above the Boolean
closure ofNP.

Corollary 5.10 LetD = Leafpu(C) for someC ⊆ REG. ThenD ⊆ BC(NP) or there exists an oracle
O such thatDO 6⊆ PNP[ε·log n]O for all ε < 1.

Theorem 5.11Rptt
m (B3/2) ∩ REG = B3/2.

Proof It suffices to argue for the inclusion from left to right. Assume there existsL ∈ Rptt
m (B3/2)∩REG

such thatL /∈ B3/2. So there existsL′ ∈ B3/2 such thatL≤ptt
m L′. Hence for all oraclesO, Leafpu

O(L′) ⊆
Σp

2
O. By Schmitz [Sch01], for all oraclesO, ∀u·∃u·PO ⊆ Leafpu

O(L). By Theorem 4.2, for all oracles
O, Leafpu

O(L) ⊆ Leafpu
O(L′) and therefore,∀u·∃u·PO ⊆ Σp

2
O. This contradicts an oracle construction

by Spakowski and Tripathi [ST04]. 2

By Theorem 5.4,B0 is closed under ptt-reducibility. As stated in the Theorems 5.7, 5.9, and 5.11, the
classesB1/2, B1, andB3/2 are closed under ptt-reducibility if we restrict ourselves to regular languages.
We explain this difference and show that the restriction to regular languages is crucial: Fork ≥ 1, Bk/2

is not closed under ptt-reducibility.

Theorem 5.12 There existsB ∈ NPr REG such thatLeafpu(B) ⊆ NP.

17

Proof We use the pairing function〈·, ·〉 that is defined as follows for lettersai andbi.

〈a1a2 · · · ak, b1b2 · · · bl〉 =def 0a10a2 · · · 0ak1b11b2 · · · 1bl

Let N1, N2, . . . be an enumeration of nondeterministic polynomial-time-bounded Turing machines such
thatNi on inputs of lengthn has running timeni + i. We may assume that giveni, one can determine
the machineNi in polynomial-time in|i|.
Every word appears as leaf string of a suitable computation. This changes if we demand that the leaf
string is generated by a short input. A wordw is calledhonestly generatedif it is generated by a machine
Ni on input of a sufficiently small wordx. We make this precise with the definition ofB which consists
of all honestly generated words.

B =def {w
∣∣ (∃i ≤ |w|/2)(∃x ∈ A∗, |x|i + i < |w|)[βNi(x) = w]}

Assume we are givenw, i, andx as above. The running time ofNi onx is |x|i + i < |w|. Therefore, in
time O(|w|2) we can determine the machineNi, can simulate the first|w| computation paths ofNi(x),
and can test whetherβNi(x) = w. This showsB ∈ NP.

Let n ≥ 2 and1 ≤ i ≤ n/2. We estimate|B ∩An| as follows.

|B ∩An| ≤
n/2∑

i=1

|{x ∈ A∗
∣∣ |x| ≤ (n− i− 1)1/i}| ≤

n/2∑

i=1

2n−i = 2n

n/2∑

i=1

2−i < 2n

This shows that at least one word of any length belongs toB. In particular,B is infinite.

We argue thatB /∈ REG. For this we start with the description of a nondeterministic machineN
on input 〈M, k〉 wherek is a natural number andM is a deterministic finite automaton. First,N
deterministically computes nonempty wordsu, v, z such that for alli ≥ 0, uviz /∈ L(M). If such words
do not exist, thenN generates the leaf string0. Otherwise, in a nondeterministic wayN generates the
leaf stringuvkz. Observe that the wordsu, v, z, if they exist, can be computed in polynomial-time which
shows thatN is polynomial-time bounded. Therefore,N = Nj for somej ≥ 1.

AssumeB ∈ REG, i.e., B = L(M) for some finite automatonM. Choosel sufficiently large such
that l ≥ 2j andl > |〈M, l〉|j + j. Let x =def 〈M, l〉 andw =def βNj (x). SinceB is infinite, there
exist nonempty wordsu, v, z such that for alli ≥ 0, uviz /∈ L(M). Therefore, for suitable such words
it holds thatw = uvlz /∈ L(M). Soj ≤ |w|/2 and|w| > |x|j + j. It follows thatw ∈ B − L(M)
which contradicts the assumptionB = L(M) and which showsB /∈ REG.

Finally we showLeafpu(B) ⊆ NP. Fix anyj ≥ 1 and letL = {x ∣∣βNj (x) ∈ B}. It suffices to show
L ∈ NP. Let x be an arbitrary word of length≥ 2. Definew =def βNj (x) and observe

x ∈ L ⇔ w ∈ B

⇔ (|x|j + j < |w|) ∨ (|x|j + j ≥ |w| ∧ w ∈ B).

The first|x|j +j letters of the leaf stringw can be determined in polynomial-time in|x|. So the condition
|x|j + j < |w| is decidable in polynomial-time in|x|. If |x|j + j ≥ |w|, thenw ∈ B can be decided in
nondeterministic polynomial-time in|x|. Hence the condition on the right-hand side is decidable inNP
which showsL ∈ NP. 2

Corollary 5.13 1. There existsB ∈ NPr REG such thatB ∈ Rptt
m (B1/2).

18

2. For everyk ≥ 1, Bk/2 is not closed under≤ptt
m -reducibility.

Proof Let C =def {0, 1}∗1{0, 1}∗ and defineB as in Theorem 5.12. There we showB ∈ NPr REG
andLeafpu(B) ⊆ NP. The argument for the latter inclusion is relativizable. Therefore, for all oraclesO,
Leafpu

O(B) ⊆ NPO = Leafpu
O(C). By Theorem 4.2,B≤ptt

m C and henceB ∈ Rptt
m (B1/2). This shows

the first statement and the second one follows immediately. 2

We state an upper bound for the complexity of the≤ptt
m -closure of regular languages.

Theorem 5.14Rptt
m (REG) ⊆ ⋃

k≥1 DSPACE(logk n).

Proof Let L ∈ Rptt
m (REG), i.e., there existsL′ ∈ REG such thatL≤ptt

m L′ via ptt-functionf . So there
existk > 0 and functionsg1 andg2 as in Definition 3.1. Both functions are polynomial-time computable
when the tree is accessed as an oracle. For a wordx, let tx denote the balanced binary tree that has leaf
stringx.

Let m = dlog |x|ek + k. We describe an algorithm that computesβ(f(tx)): Consider all stringsz
of length≤ m in lexicographical order. Ifg1(tx, z, dlog |x|e) = 1, then outputg2(tx, z, dlog |x|e).
Consider the next stringz.

This algorithm computesβ(f(tx)), since it exactly simulatesf . If tx is accessed as oracle, then
g1(tx, z, dlog |x|e) andg1(tx, z, dlog |x|e) are computable in polynomial time inlog |x|. Givenx, an or-
acle access totx can be simulated in logarithmic space. Therefore, the algorithm above can be simulated
in polylogarithmic space in|x|. Givenβ(f(tx)), we can test in constant space whetherβ(f(tx)) ∈ L′.
The theorem follows, since

x ∈ L ⇔ β(tx) ∈ L ⇔ β(f(tx)) ∈ L′.

2

Due to this theorem, we can now specify the complexity of nonregular setsC such thatLeafpu(C) ⊆
NP.3 Accordingly it is unlikely that such sets areNP-complete. In particular, this applies to the setB
that was used in Theorem 5.12 and Corollary 5.13.

Corollary 5.15 LetC be a set. Then the following holds: IfLeafpu
O(C) ⊆ NPO for all oraclesO, then

C ∈ ⋃
k≥1 DSPACE(logk n).

Proof For all oraclesO, Leafpu
O(C) ⊆ NPO = Leafpu

O(0∗1{0, 1}∗). SoC≤ptt
m 0∗1{0, 1}∗ and hence

C ∈ Rptt
m (REG) ⊆ ⋃

k≥1 DSPACE(logk n). 2

SincePSPACE = Leafpu(REG) [HLS+93], the last corollary remains valid if we replaceNP by
PSPACE.

3Recall that for regular sets, we already know by Theorem 5.7 that only languages inB1/2 come into question.

19

Acknowledgments

We thank Bernd Borchert, Heinz Schmitz, Victor Selivanov, and Pascal Tesson for helpful discussions
about leaf languages.

References

[Arf91] M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical Computer
Science, 91:71–84, 1991.

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Science, 104:263–283, 1992.

[BK78] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite.
Journal of Computer and System Sciences, 16:37–55, 1978.

[BKS99] B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable languages and
their relation to NP.Theoretical Informatics and Applications, 33:259–269, 1999.

[Bor95] B. Borchert. On the acceptance power of regular languages.Theoretical Computer Science,
148:207–225, 1995.

[Brz76] J. A. Brzozowski. Hierarchies of aperiodic languages.RAIRO Inform. Theor., 10:33–49,
1976.

[BS97] B. Borchert and R. Silvestri. A characterization of the leaf language classes.Information
Processing Letters, 63(3):153–158, 1997.

[BV98] H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language definability.In-
ternational Journal of Foundations of Computer Science, 9:277–294, 1998.

[CB71] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events.Journal of Computer and
System Sciences, 5:1–16, 1971.

[EHTY92] D. Eppstein, L. A. Hemachandra, J. Tisdall, and B. Yener. Simultaneous strong separations
of probabilistic and unambiguous complexity classes.Mathematical Systems Theory, 25:23–
36, 1992.

[Eil76] S. Eilenberg.Automata, languages and machines, volume B. Academic Press, New York,
1976.

[Gin66] A. Ginzburg. About some properties of definite, reverse-definite and related automata.IEEE
Transactions on Electronic Computers EC-15, pages 806–810, 1966.

[Gla05] C. Glaßer. Polylog-time reductions decrease dot-depth. InProceedings 22nd Symposium
on Theoretical Aspects of Computer Science, volume 3404 ofLecture Notes in Computer
Science. Springer Verlag, 2005.

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power
of polynomial time bit-reductions. InProceedings 8th Structure in Complexity Theory,
pages 200–207, 1993.

20

[PP86] D. Perrin and J. E. Pin. First-order logic and star-free sets.Journal of Computer and System
Sciences, 32:393–406, 1986.

[PW97] J. E. Pin and P. Weil. Polynomial closure and unambiguous product.Theory of computing
systems, 30:383–422, 1997.

[Sch01] H. Schmitz.The Forbidden-Pattern Approach to Concatenation Hierarchies. PhD thesis,
Fakulẗat für Mathematik und Informatik, Universität Würzburg, 2001.

[ST04] H. Spakowski and R. Tripathi. On the power of unambiguity in alternating machines. Tech-
nical Report 851, University of Rochester, 2004.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy.Theoretical Computer Science, 3:1–22,
1977.

[Tho84] W. Thomas. An application of the Ehrenfeucht–Fraı̈sśe game in formal language theory.
Socíet́e Math́ematique de France, ḿemoire 16, 2:11–21, 1984.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory
of algorithms.Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.

[Wag04] K. W. Wagner. Leaf language classes. InProceedings International Conference on Ma-
chines, Computations, and Universality, volume 3354 ofLecture Notes in Computer Sci-
ence. Springer Verlag, 2004.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy.Theoretical Computer Sci-
ence, 3:23–33, 1977.

21

