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Abstract

We introduce the polynomial-time tree reducibility (ptt-reducibility). Our main result states that
for languages3 andC' it holds thatB ptt-reduces ta if and only if the unbalanced leaf-language
class ofB is robustly contained in the unbalanced leaf-language claés dhis is theunbalanced
analogue of the well-known result by Bovet, Crescenzi, Silvestri, and Vereshchagin which connects
polylog-time reducibility withbalancedeaf-languages.

We show that restricted to regular languages, the léyelg2, 1, and3/2 of the dot-depth hier-
archy (DDH) are closed under ptt-reducibility. This gives evidence that with respect to unbalanced
leaf-languages, the dot-depth hierarchy and the polynomial-time hierarchy perfectly correspond.
Level0 of the DDH is closed under ptt-reducibility even without the restriction to regular languages.
We show that this does not hold for higher levels.

As a consequence of our study of ptt-reducibility, we obtain the first gap theorem of leaf-language
definability above the Boolean closure §P: If D = Leaf?(C) for someC C REG, thenD C

BC(NP) or there exists an oracte such thatD® ¢ PNPlelosnl” for everye < 1.

1 Introduction

In their pioneering work for the leaf-language approach, Bovet, Crescenzi, and Silvestri [BCS92] and
Vereshchagin [Ver93] independently introduced the notion of polylog-time reducibility (plt-reducibility
for short). This reducibility allows an amazing translation between two seemingly independent ques-
tions.

1. Are given complexity classes separable by oracles?

2. Are given languages plt-reducible?
Leaf Languages. The translation mentioned above uses the concefdadflanguages Let M be a
nondeterministic polynomial-time bounded Turing machine such that every computation path outputs

one letter from a fixed alphabet. L&f(z) denote the computation tree df on inputz. Let 5y, (z) be
the concatenation of all leaf-symbolsif(x). For alanguag®, letLeaf? (B) be the class of languages



L such that there exists a nondeterministic polynomial-time-bounded Turing maghaseabove such
that for allz,
r €L < pBy(x) € B.

We refer toLeaf? (B) as theunbalanced leaf-language clasg B. Call a nondeterministic polynomial-
time-bounded Turing machink&/ balancedif there exists a polynomial-time computable function that
on input(x, n) computes the-th path ofM (x). If we assumé\/ to be balanced in the definition above,
then this defines the classaf} (B) which we call thebalanced leaf-language clas$ B. For any class
of language¥’ let Leaf?(C) = (Jpzce Leaf?(B) andLeaf} (C) = (Jpgee Leafy (B). Call a complexity
classD unbalanced leaf-language definabfehere existsC such thatD = Leaf?(C). Analogously
definebalanced leaf-language definabilitifor a survey on leaf-languages we refer to [Wag04].

BCSV-Theorem. Suppose for given complexity classPs andD-, there exist languagels; and L,
such thatD; = Leaf{(L;) andD, = Leaf}(L2). The theorem by Bovet, Crescenzi, Silvestri, and
Vereshchagin states the following.

nggitL2 RN VO(LeafﬁO(Ll) C LeafEO(Lz)) (1)

Here <R denotes polylog-time reducibility (Definition 2.2). For this equivalence it is crucial that bal-
anced leaf-language classes are used. The theorem does not hold for the unbalanced model: Observe that
languaged., L' C {0, 1}* with L =gef {w | |w| is odd}, L’ =gef 0{0, 1}* form a counterexample, since
Leaf?(L) = &P is not robustly contained iheaf?(L’) = P thoughL plt-reduces td’’. In this paper
we introduce a new reducibility (ptt-reducibility) which allows us to prove the following unbalanced
analogue.

Li<P'Ly o VO(Leaff?(Li) C Leaff?(Ly)) 2)

Beside the pure academic interest of a Bovet-Crescenzi-Silvestri-Vereshchagin-like theorem (BCSV-
theorem for short) for the unbalanced case, further motivation comes from a connection between com-
plexity theory and the theory of finite automata: On the lower levels, the dot-depth hierarchy perfectly
corresponds to the polynomial-time hierarchy when we considbalancedeaf-languages. Below,

after the introduction of both hierarchies, we will emphasize that equivalence (2) can be very useful in
this respect.

Dot-Depth Hierarchy. Starfree regular languageStarfree languages for short) are regular languages

that can be built up from single letters by using Boolean operations and concatenation (so iteration
is not allowed). SF denotes the class of starfree languages. Brzozowski and Cohen [CB71, Brz76]
introduced thealot-depth hierarchyDDH for short) which is a parameterization of the class of starfree
languages. The dot-depth counts the minimal number of nested alternations between Boolean operations
and concatenation that is needed to define a language. The classes of the dot-depth hierarchy consist of
languages that have the same dot-depth. For a class of langlidgeBol(C) denoteC’s closure under

finite union and finite concatenation. LIBEC(C) denote the Boolean closure©f The classes (or levels)

of the dot-depth hierarchy are defined as:

By =det {L C A" \ A is a finite alphabet with at least two letters ahd
is a finite union of terms A*w wherev, w € A*}
B, 11 =def Pol(B,,)
Bnt1 =det BC(B, 1)
The dot-depth of a languadeis defined as the minimak such thatl, € B,, wherem = n/2 for some
integern. All levels of the dot-depth hierarchy are closed under union, under intersection, under taking

inverse morphisms, and under taking residuals [PP86, Arf91, PW97]. The dot-depth hierarchy is strict
[BK78, Tho84] and exhausts the class of starfree languages [Eil76].
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Polynomial-Time Hierarchy. For a complexity clas® let coD = {L \ L € D}. Let3-D denote the
class of languages such that there exists a polynomjabnd B € D such thatr € L < Jy, |y| <
p(|z]), (z,y) € B. LetV-D = co3-coD. Define3!-D andV!-D similarly by using3! andV! instead of]

andv. Stockmeyer [Sto77] introduced the polynomial-time hierarchy (PH for short). We use a definition
which is due to Wrathall [Wra77].

YU =1} =g P
Egﬂ —def EI-HE
HEH —def V‘ZS

Connection between DDH and PHWe continue reasoning the better suitability of the unbalanced
model for the connection between dot-depth hierarchy and polynomial-time hierarchy. Hertrampf et al.
[HLS'93], and Burtschick and Vollmer [BV98] proved that the levels of the polynomial-time hierarchy
are connected with the levels of the dot-depth hierarchynFarl,

LeB, 1 = VYO(Leaf??(L)CxP?), 3)
LeB, i = VYO(Leaf?O(L)CxPY). &)

In particular, the attraction of this connection comes from the fact that both hierarchies are prominent
and well-studied objects. Even more, with the P-NP problem and the dot-depth problem, they represent
two of the most fundamental problems in theoretical computer science.

Can we turn the implications (3) and (4) into equivalences?

The reverse of (3) does not hold, even if we demang be starfree: For every > 1, there exists a
starfree regular languade, ¢ B,/ such thatl,, plt-reduces to a language B /, [Gla05]. So by

(Q), VO,LeafEO(Ln) - ZEO, butL, ¢ B,,_1/,. This shows that the levels of the dot-depth hierarchy
are not closed under plt-reducibility even if we restrict ourselves to starfree regular languages. Contrary
to that, we will prove that things are different for ptt-reducibility. We can show that restricted to regular
languages, the class&s, B, /», Bi, and B3/, are closed under ptt-reducibility. (Here and in the fol-
lowing, this formulation means that for instari®&:’ (8,) N REG = B; whereR4 (1) denotes3;’s

closure under ptt-reducibility.) It follows that for every regular languégie following holds:

LeBy < VYO(Leaf?(L) C P9) (5)
LeByy <+ VYO(Leaf??(L) C NP©) (6)
LeB < VO(Leaf??(L) C BC(NP)?) (7)
LeBsy, < VO(Leaf?O(L) C x5°) 8)

We consider this observation as evidence that restricted to regular languages, all levels of the dot-depth
hierarchy might be closed under ptt-reducibility. This would turn (4) into an equivalence.

By (5)—(8), at least on the lower levels, the dot-depth hierarchy exactly corresponds to robust inclu-
sions of unbalanced leaf-language classes in the polynomial-time hierarchy. This correspondence does
not hold for balanced leaf-language classes. So this shows that unbalanced leaf-language classes are
indeed well-worth being considered. This motivates the study of ptt-reducibility which is the suitable
reducibility for the unbalanced model.



Note that Borchert and Silvestri [BS97] showed that for every dass? (L), there exists ail’ such
thatLeaf!(L) = Leaf}(L'). So from the plain definability point of view, we can restrict ourselves to
balanced leaf-languages. However, a shortcoming of this point of view is that it obliterates the inherent
connection of a leaf-language and the complexity class defined by it. Naturally, the leaf-language for

a complexity class should be as simple as possible, i.e., the language should capture the properties of
the class it describes as close as possilifecan be much more complex thdn and this brings the
unbalanced model into play again. In some cases, the unbalanced model can describe a complexity class
by a simpler language than the balanced model can do.

Perfect Correspondence.We describe another aspect of ptt-reducibility. The perfect correspondence
between the dot-depth hierarchy and the polynomial-time hierarchy allows to prove statements like the
following which are due to Borchert, Kuske, Stephan, and Schmitz.

Theorem 1.1 ([Bor95, BKS99, SchO1])Let L be a regular language.

1. [Bor95] If L € By, thenLeaf? (L) C P. If L ¢ By, thenLeaf? (L) D NP or Leaff (L) D coNP
or Leaft (L) © MOD,P for a primep.

2. [BKS9Q9JIfL € By /o, thenLeaff (L) C NP. If L ¢ B, /5, thenLeaf} (L) 2 coNP or Leaff (L) 2
colNP or Leaft (L) D MOD,P for a primep.

3. [SchO1] IfL € Bs)s, thenLeaf?(L) C X5 If L ¢ By, thenLeaf?(L) O V-UP or Leaff(L) 2
co3!-UP or Leaft (L) 2 MOD,P for a primep.

In view of this theorem we say th#, andP (resp.,3, , andNP, Bs/, and »¥) perfectly correspond
For instance, considés; , and NP. By Burtschick and Volimer [BV98] Leaf}(B;,2) = NP. In
addition, Theorem 1.1 states that the languages,;in are the only regular languagdssuch that
Leaffi(L) is robustly contained ilNP. Hence,B;,, andNP perfectly correspond. With help of plt-
reducibility and the new ptt-reducibility, we can make the notion of perfect correspondence precise.

1. A class of regular languag€sand a complexity clas® perfectly correspondvith respect to
balanced leaf-languages if (restricted to regular languagesglosed under plt-reducibility and
Leaf} (C) = D.

2. A class of regular languagé€sand a complexity clas® perfectly corresponavith respect to
unbalanced leaf-languages if (restricted to regular languayesklosed under ptt-reducibility
andLeaf? (C) = D.

The following perfect correspondences with respect to unbalanced leaf-languages are easily obtained
from known results [Bor95, BKS99, Sch01].

e 3y perfectly corresponds tB.
e 13/, perfectly corresponds t§P.

e 3/, perfectly corresponds ia]

We show that restricted to regular languadesis closed under ptt-reducibility. From this we obtain a
new perfect correspondence with respect to unbalanced leaf-languages:
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e 13; perfectly corresponds to the Boolean closur&of

It follows that above the Boolean hierarchy owéP there is a gap in unbalanced leaf-language defin-
ability: If D = Leaf®(C) for some clasg of regular languages, théh C BC(NP) or there exists an
oracleO such thatb® ¢ PNPleloen® for gl ¢ < 1.

Our investigations of the ptt-reducibility show the following phenomenon: While we can (uncondi-
tionally) prove that leveD of the dot-depth hierarchy is closed under ptt-reducibility, we can show the
similar property for higher levels only if we restrict ourselves to regular languages. We can construct a
languageB € NP ~\ REG that is ptt-reducible to a language Hy ,. The exception of leve) allows

to improve the correspondence betwégmandP: Not only that3, andP perfectly correspond, but in

fact it even holds that for any languade¢ 5 (this includes all nonregular languages) there exists an
oracleO such thatLeaf?? (L) ¢ P©.

Organization of the Paper. Section 3 defines ptt-reducibility. In section 4 we formulate and prove

the central result of this paper, the unbalanced analogue of the BCSV-theorem. Section 5 studies the
ptt-closure of classes of the dot-depth hierarchy, and it shows that on some lower levels, the dot-depth
hierarchy perfectly corresponds to the polynomial-time hierarchy.

2 Preliminaries

For a machine or automatai, let L(M) denote the accepted language. For a finite alphabéte
initial word relation C on ¥* is defined by

ulw <d:f>3w(w€E*Auw:v).
We writeuw C v if and only if u C v andu # v. The lexicographical order of0, 1}* is defined by

xjy(d—é)xgy\/ﬂu(uogm/\ulgy).

The quasi-lexicographical order ¢f, 1}* is defined by

x§y<d——f>]:c|<\y|\/(|x\:|y|/\5|u(uOEx/\u1Ey))\/:c:y.

In what follows we identify the sef0, 1}* with the setN of natural numbers according to the quasi-
lexicographical order. S0, 1}* inherits operations like- from the natural numbers. Furthermore, we
identify a setO C N with the characteristic sequeneg(0)co(1)co(2)--- € {0,1}* whereco is the
characteristic function ap. For a seO C {0,1}* andu € {0, 1}* we define the following sets.

u|O  =get uco(|u|)co(Jul + 1)co(Ju| +2) - -
uO  =get uco(0)co(1l)co(2)---

The following theorem shows the close relation between the dot-depth hierarchy and the polynomial-
time hierarchy. Her&P(n) denotes leveh of the Boolean hierarchy oveé¥P. PLT is the class of
languages that have polylog-time computable characteristic functions where the input is accessed as an
oracle.

Theorem 2.1 ([HLS"93, BV98, BKS99]) The following holds for > 1 and relative to all oracles.
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1. P = Leaf} (PLT) = Leaf}(By) = Leafk(By)
2. ) = Leaf}(B,,_1/5) = Leaf®(B,,_1 5)

3. 110 = Leaf} (coBB,,_1 2) = Leaf?(coB,_1/2)
4. BC(XF) = Leaf}(B,,) = Leaf?(B,)

5. NP(n) = Leaf} (B;2(n)) = Leaf} (B 2(n))

Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] showed that polylog-time reducibil-
ity exactly corresponds to balanced leaf-language definable classes.

Definition 2.2 A functionf : A* — A* is polylog-time computabléd there exist two polynomial-time-
bounded oracle transducefs: A* x N — A and! : A* — N such that for allz,

f(@) = R*(J=], R ([, 2) - - - RE([x], 1 (| x]))

whereR and! access the input as an oracle. A languags is polylog-time reducibldplt-reducible)
to a languageC, B<EC for short, if there exists a polylog-time computalflesuch that for allz,
r€B & f(x) el

Theorem 2.3 ([BCS92, Ver93])For all languagesB and C,

B<PC & VO( Leaf??(B) C Leaf??(0)).

Let D be a complexity class. A languadebelongs to the class"-D if there exist a polynomigb and
B € D such that:

el = (3ylyl <p(z))(z,y) € B
¢ L = (Vylyl <p(z])[(z,y) ¢ Bl

Analogously,L belongs tov"-D if there exist a polynomigh and B € D such that:

zel = (Y lyl <p(z]))(z,y) € Bl
v¢ L = (Al lyl <p(z))(z,y) ¢ Bl

3 Polynomial-Time Tree Reducibility

With polynomial-time tree reducibility (ptt-reducibility for short) we introduce the unbalanced analog

of polylog-time reducibility (plt-reducibility). For the representation of a balanced computation tree it
suffices to think of a leaf string such that each symbol is accessible in polylog-time in the length of the
leaf string. Representations of unbalanced computation trees are more complicated. Here the particular
structure of the tree must be taken into account. This makes it necessary to define suitable representations
of trees. Intuitively, a languagB ptt-reduces to a language if there exists a polynomial-time (in the

height of the tree) computable function that transforms trees such that for evetyttreéeafstring of

belongs taB if and only if the leafstring off () belongs taC.



We start with representations of trees. Bebe a finite alphabet. A triple = (T, h,m) is called a
Y-treeif T C {0,1}* is finite,h : T — X, andm € N such that'zVu((u C 2 Az € T) - u e T) and
Vz(z € T — |z] < m). LetTy, be the set of alE-trees. Aleafoftisaz € T suchthatthereisne e T

with z C u. For aX-treet = (T, h,m), we define thdéeaf wordof t as3(t) =gef h(2z1)h(22) - - - h(zs)

where{z1, z2, ..., 25} is the set of all leaves dfandz; < zo < -+ < z,.

Chooser > 1 such thafX| < 27, and lete : ¥ — {0,1}" be an injective mapping. A-treet =
(T, h,m) is encoded by the s€; =qef {ze(h(2)) |z € T} and the numbeimn; =ger m. On the other
hand, an arbitrary se&? C {0,1}* and a numberm € N define aX-treeto ,, =deft (10,m:ho,m,m)
where

Tom =def {z|]z] <mAVu(uC 2z — Jo(v € e(E) Auww € 0))}  and
hom(z) =det e '(lexicographically firsv € e(X) such thatv € O).

Itis easy to see thap, ,,, = t for everyX-treet. Now let us define functions that transform unbalanced
computation trees.

Definition 3.1 LetX; and>l; be finite alphabets. A functiofi: 7x;, — Tx, is called apolynomial-time
tree function(ptt-function for short) if there exigt > 0 and functiongy; : Tx, x {0,1}* x N — {0, 1}
andg, : Tx,, x {0,1}* x N — ¥, such that:

e There exists a polynomial(-,-) such thatg, (¢, z, m) and gs(t, z, m) are computable in time
p(|z], m) where the tree is accessed as the oradl®.

e It holds that f(t) = (T',h/,m} + k) whereT" =ger {2|g1(t,z,m;) = 1} and W' (2) =ger
g2 (ta 2, mt)-

We will also writeg?" (z, m) andgY* (z,m) instead ofy; (t, z,m) andgs(t, z, m), respectively. Finally
we define polynomial-time tree reducibility.

Definition 3.2 For L; C X3 and Ly C %3, we defineL; <N'L, (L; is ptt-reducibleto L) if there
exists a ptt-functiorf : Ty, — 7%, such that for allt € Ty,

B(t) € Ly < B(f(t)) € Lo.
Proposition 3.3 <" is reflexive and transitive.
We describe how parts of the characteristic sequence of @ sain be interpreted as trees: For any
xz € {0,1}* and anyO C {0, 1}*, let

O — T =gef {y\y%—meO} and
O+ x =gef {y‘y—xEO}.

Observe tha® —z +x ={y € O | y >z} andO + = — z = O. Moreover, note that the characteristic
sequence of) — z is exactlyco(z)co(z + 1)co(z +2)---. ForL C ¥* andO C {0, 1}* we define

L° =gt {z|z€{0,1}* andB(to_,4) € L} and

L° =get {(0,2) |z €{0,1}* andB(to_yz)) € L}



Proposition 3.4 LetL € ¥*, 01,05 C {0,1}*, andz, u,v € {0,1}*.

1. If [u| = |v] < z, thenz € L¥O1 « x € LYO1,

2. Ifju| > 23 .z, thenz € L¥O1 « z € L*O2. (Note thatr is the constant that was chosen at the
beginning of this section such thiat| < 2.

Proof Assume we want to check € L°'. So we have to consider the tr&s, . Which consists of
paths of length< |z|. The latter are described by the wordsn— = that are of length< |z| + . There
are less thagl**7+1 < 4. 27+2 such words. So in order to figure out whethee L1, we only need
to knowi € O fori € {z,xz +1,..., 0 +z-2" 2}, O

Some more notations are needed for the proof of the unbalanced BCSV-theorem in sectialW4d at
nondeterministic polynomial-time Turing machine (NPTM, for short) such that on input produces
on every computation patha symbolM (z, z) from a finite alphabek. Let k£ be the smallest natural
number such that* + k& bounds the running time d¥/. For every computation pathof M on input
z, let

Tr(z) =det {u|3z(z computation path o/ onz andu C z)} and
hy(x)(2) =det M(z,z).

For the other: € T)/(x) the value ofh,/(z)(z) is chosen arbitrarily fron.. The computation tree of
Monzis
tar(w) =ger (Tnr(@), has (), |]* + k).

Note thatt;(x) is aX-tree. For a nondeterministic polynomial-time oracle Turing machine (NPTOM,
for short) M, we define the computation tree bf onz with oracleO as

151 (x) =ger (Th1 (@), Ay (), |2|* + k).

For alanguagé C >*, defineLeaf? (L) as the class of all languag&sfor which there exists an NPTM
M such that for alk,
x € B < B(ty(z)) € L.

For a fixed oracle® C {0,1}*, letLeaf?® (L) be the class of all languagésfor which there exists an
NPTOM M such that for allz,
z € B e Bt (x) e L.

Finally, letLeaf?°(L) be the class of all set8 for which there exists an NPTOM/ such that for alk
and all oracle®),
(0,z) € B < 3(t%(x)) € L.

Proposition 3.5 Let L be a language.

1. LO € Leaf??(L) for every oracleD.

2. L° € Leaf®°(L).

A languagel. C X* is callednontrivial if L # () andL # X*.
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4 The BCSV-Theorem for Unbalanced Leaf Languages

Let B andC be languages. Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] proved
that B polylog-time reduces t@' if and only if for all oraclesO, LeafEO(B) C LeafEO(C). So
plt-reducibility corresponds to robust inclusions of balanced leaf-language classes. We show that ptt-
reducibility and unbalanced leaf-language classes share the same connection.

Theorem 4.1 For nontrivial L; C ¥} and Ly C X3 the following are equivalent:

1) Li<h'Ly
(2) LeafP°(Ly) C Leaf®?(Lo)
(3) LS € Leath?(Lo)
Proof (1) = (2). Let L <h*L, via ptt-functionf. For B Leaf??(L;) there exists an NPTOM/

such that(O,z) € B < B(t{;(z)) € Ly for all z € ¥* and oracle®). It is easy to construct an
NPTOM M’ such thaBd (¢, (x)) = B(f(t{;(z))) for all z andO.! Consequently,

(0,2) € B & B(t§;(x)) € L1 & B(f(t51(x))) € L2 & B(tFp(x)) € Lo,
and hence3 € Leaf?’(Ls).
(2) = (3) is obvious because of Proposition 3.5.2

(3)= (1). LetL$ € Leaf®°(Ls). There exists an NPTOM/ such tha{O, z) € LS < B(t$,(z)) € Lo.
Let k be the smallest natural number such théat- & bounds the running time dff. For aX-treet we
obtainO; = O; + 0™ — 0™t and therefore,

B(t) € Ly & B(toym) € L1 < (O +0™,0™) € LS < B30 (0™)) € L.

Define f(t) =ger t5r 0 (07) = (T (0me), AQEHO™ (0m¢), mF + k). Observe that there ex-
ist polynomial-time computable functiong, g» such thatZy ™ (0™) = {z]|g{(z,m:) = 1} and
R (0me) = gh(z,my). HenceL; <Ry Lo. O

Theorem 4.2 For nontrivial L; C ¥} and L, C 33 the following are equivalent:

(1) Li<h'Lo
(2) YO(Leaf??(L;) C LeafP?(Ly))
(3) YO(LY € LeafP9(Ly))

'Note that we cannot guarantegy, (z) = f(t$(z)). Every inner node ofy,, () has exactly two children, sina§}, ()
is a computation tree. In contragit$; (x)) is an arbitrary tree which by our definition can contain inner nodes that have only
one child. Howevers(t$, (z)) = B(f(t$ (z))) is possible, since fronf (t$; (x)) we obtain a computation tree by deleting
such nodes.



Proof (1) = (2) follows from (1)=- (2) in Theorem 4.1, and (2} (3) is obvious because of Proposition
3.5.1.

(3) = (1). Because of Theorem 4.1 it suffices to prdee LeafP®(Lg). Let My, My, Mo, ... be an
enumeration of all NPTOMs. Assunig ¢ LeafP°(Ls), i.e., for everyk there exist an oracl®; and a
word z;, such that

x € L% o B(SF (z1)) € Lo (9)
Claim 4.3 There exist, u1, us, ... € {0,1}* and anzy, 21, 22, . .. € N such that

e uy_1 iS a proper initial word ofu, and

® 21 € Llo — ﬁ(tj\o/[k (zx)) & Lo forall O € uy - {0,1}~.

Proof of Claim 4.3 By induction onk. Fork = 0, let zg = x, and letug be the shortest initial word of
Op € {0,1}¥ such thatug| > 2"+3 . 2o and{0, 1,. .., Jug|} contains every query af/, to the oracle
Oy during its work onzg. For everyO € ug - {0, 1}* we obtain using Proposition 3.4.2 and (9)

20 € Llo < X € Llo < I € L?O =4 ﬂ(t?fo(l'o)) € Lo
& BtF, (x0)) & L & B(tF, (20)) & La.

Now assume that we have already construeted., ..., u; € {0,1}* andzg, z1,...,z; € N that

satisfy the claim. We construaf,,; andz; as follows. Consider an NPTOMY/ such that for every
input z and every oracl® the following holds. Ifx > |ug|, thenM works asMj, onz with oracle

ug|O. If © < |uy|, thenM works in such a way that € LY « ﬁ(t% (x)) € Ly. Chooser such that
M = M,.

If 2, < |ug|, thenz, € LY — B(t5F (,)) € Lz which contradicts (9). Therefore, > |uy|, and
consequently, using Proposition 3.4.1 and (9),
1 € LM @ € L9 & B(tG (2,)) & Lo & B35 (1)) € Lo (10)

Now definez, 1 =qef x and letuy 1 be the shortest initial word af;|O, such thatuy 1| > |uk,
lug1| > 273 - 2,, and{0,1,...,|ux 1|} contains every query af/, to the oracleu,|O, during
its work on inputz,.. Henceuy, is a proper initial word ot 1, and by Proposition 3.4.2 and (10) we
obtain for allO € ug4q - {0,1}*
O O
s €LY o 2,eI9 o, el o ﬂ(tﬁle(xr)) ¢ Ly

s Bt%,,, (@) & La & B(tF), ., (2k4+1)) & Lo
This completes the induction and proves Claim 4.3.

Now define0’ =gef limy_ o ug - 0“, from which we obtair)’ € wy-{0,1}* for all £ > 0. By the claim,
2 € LY B(tS) (2k)) & Lo for everyk > 0. This meand.{" ¢ Leaff” (L2) which contradicts the
assumption of (3). a
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5 ptt-Reducibility and the Dot-Depth Hierarchy

By Theorem 2.1 the levels of the dot-depth hierarchy and the levels of the polynomial-time hierarchy
are closely related. Note that this connection exists for both models, balanced and unbalanced leaf-
languages. In this section we discuss evidence that for the unbalanced model this connection is even
closer than that stated in Theorem 2.1.

Definition 5.1 A class of regular languages and a complexity clas® perfectly corresponaith re-
spect to balanced leaf-languages if (restricted to regular languagés)closed under plt-reducibility
and Leaf} (C) = D. A class of regular languages and a complexity clas® perfectly correspond
with respect to unbalanced leaf-languages if (restricted to regular languagés)closed under ptt-
reducibility andLeaf® (C) = D.

Perfect correspondences are connections closer than those stated in Theorem 2.1.

Proposition 5.2 If C perfectly corresponds tB with respect to balanced leaf-languages, then for every
regular L ¢ C there exists an oracle relative to whidkaf} (C) ¢ D. The similar statement holds for
unbalanced leaf-languages.

Proof Follows from Theorems 2.3 and 4.2. O

The levels of the dot-depth hierarchy and the levels of the polynomial-time hierarchy do not perfectly
correspond with respect to balanced leaf-languages. In particular, ¥ot, B, /, is not closed under
plt-reducibility even if we restrict ourselves to starfree regular languages.

Theorem 5.3 For everyn > 1, B,,_;/, does not perfectly correspond ), with respect to balanced
leaf-languages.

Proof For everyn > 1, there existd.,, € SF — B,,_; ), such that_,, plt-reduces to a language B /,
[Gla05]. O

In contrast, we will see that restricted to regular languages, the cléssBs,,, B1, andBs , are closed

under ptt-reducibility. In particular, these classes perfectly correspond to the classes of the polynomial-
time hierarchy. While fo3y, B, /,, and B3, the latter is easily obtained from known results [Bor95,
BKS99, Sch01], this is a new result fB;. We consider these results as evidence that restricted to regular
languages, all levels of the dot-depth hierarchy might be closed under ptt-reducibility and therefore,
perfectly correspond to the levels of the polynomial-time hierarchy.

Unlike all classe®,, /, for n > 1 (see Theorem 5.12), the claSg is closed under ptt-reducibility even
without the restriction to regular languages.

Theorem 5.4 REY (By) = Bo.
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Proof Let L C X* be <&'-reducible to a language i,. HenceL<B*{1}, i.e., there exists a ptt-
function f such that for alb-treest,

B(t) e L < B(f(t) = 1.

Without loss of generality we can assume thé&t) ¢ L implies3(f(t)) = 0. Letg; andgs be the
polynomial-time computable functions that defifie Let M; and M- be polynomial-time machines
computingg; andgs, resp., in timen* for suitablek > 1.

Claim 5.5 For everywzv € L with || > max((3log, [wzv|)**1 1) there existr > 1 and
v1, V9, . .., U Such that

L. |vrvg - vp] < (3logy lwav|)FHE,

2. wrv € wur X*veX* -+ - X, and

3. wu SN - - - Do N RS2wenl C

The same holds true fdr.

Proof of Claim 5.5. Considerwzv such that|z| > max((3log, |wzv|)**1 1), and letm =ge
3logy |wxv|. From|z| > 2 we obtainm > 3. Lett = (T,h,m) be a balanced-tree such that
B(t) = wzv. SinceB(f(t)) € {0,1}, the treef(¢) has only one path. To compute this path, at most
2mF < m*+1 — 2 paths oft are queried by\/; or M,. So we can factorizerzv as

WLV = Wo1ULV2UQ * * * Upr—1UVpU

such that alk; andv; are nonemptylv vz - - - v,,| < m*+1, and no queried path goes through a symbol
in u;. Since|x| > m**1 we haver > 2. Also note that- < m**!, since they; are nonempty. Now we
cut all paths that correspond to symbolsuin This results in a nevit-treet; = (74, h1, m) such that
B(t1) = wvyvg - - - vyv. Clearly,

wrv € wur X X’ - X1 X v,

Now consider arbitrary,, za, . . ., z,—1 such thatwuv; zyvezs - - - z,_1v,v| < 2|wzv|. If 7; is the path
corresponding to the first symbol of, then we addr; to the tree, and additionally, we attach a tree with
leaf wordz; to 7;. This results in &-treets = (73, ha, m) such that

B(t2) = w1 21022203 -+ - Vp_ 12,10,V

Note that heighin still suffices, since the length af; is less than or equal tlog, |wzv|] and since
|zi| < 2|wzv|. M; andM; do not query paths that go through symbolsjnTherefore, these machines
cannot distinguish between thetreest andt,. Consequently,

wxv € L & WV121V222V3 * * * Up_12p—1UpU € L.
This proves Claim 5.5.
Define Ny as a natural number such thah > max(2(3log, No)**1,1), and consequentlyv >

2(31log, N)*+1 for everyN > Nj.

12



Claim 5.6 For everyz € L with |z| > 2™0 there existw, v such thatjw| = |v| = (3log, |z|)**1,
z € wX*v, andwX*v C L.

Proof of Claim 5.6.Letz € L such thafz| > 2V > Ny > 1, and letm =qer 3 log, |z|. Hencel|z| >
2mF+1l > mk+1 By Claim 5.5, there exist > 1 andwy, wo, - - - ,w, such thafwws - - - w,| < m*+!
and

T € w1 N we X - - T, N DS C L

Because ofiz| > 2m**! and |wiw,| < mF*!, we can choose words;,us,us such thatz =
wiuruguzw, and|wiui| = |uzw,| = m**1. Assume there exists d such thatw;u;z'uzw, € L.
Let 2 =qgef u12'u3. SOwy2zw, € L and

E+1 _  k+1 k+1

|z| > |uius] = |wiui| + Jusw,| — |wiw,| > 2m mT =m

Thus there exists asuch thatw, zw, € L and|z| > mF*! (and hencéz| > Ny). Let z be of minimum
length with this property. Obserye| > m**! > |wiw,| and|z| > 3log, |z| > 3. Since2|z| > Ny we
obtain2|z| > 2(3log, 2|z|)¥*! and hence

|z| > (3logy 2\z|)kJr1 > (3log, \wlzwr|)k+1.
From Claim 5.5 we obtain > 1 andwvq, v9, - - - , vs Such that
w1 S e X - - Do, N DS2wzerl ¢ T

and
|v1vg - - - vs| < (3logy \wlzw,«|)k+1 < |z|.

Fromwvivs - - - vsw, € L and from the minimality of we obtainjvyvs - - - vs| < mF+1,

So far we have seen

wi S we X - S, NS C L (11)
and B
wiv DX - - S ogw, N NS C T (12)
Now observe that
W1V Waws - - - Wy Vo3 - - - Vswy| = |wiwa - - - wy| + |vive vy < 2mFHE
< min{|z|,2z}.

Together with (11) and (12) this implies, vy wows - - “Wp_102V3 - VsWr € LN L which is a contra-
diction. This means that there is nbsuch thatw,u;z’'usw, € L. Consequently, the statement of the
claim is fulfilled byw =gef wiu; andv =gef uzw,. This proves Claim 5.6.

By Claim 5.6, for everyz € L with |z| > 2o there exist wordaw, v such thatjw| = |v| =
(3log, |z|)**! andz € wX*v C L. Sincewv € L and|wv| = 2(3log, |z|)**' < |z| we can ap-
ply Claim 5.6 repeatedly until we obtair’, v’ such thatw’| = |[v/| = 2™ andz € wX*vw¥*v C L.
Hence
L= U {z} U U wX*v.

xzel, wveL,

|| <20 w|=|v|=2N0
This showsL € By. O
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Figure 1: Patterd®, wherew, w’ are nonempty - Nonexistence of this pattern charactefizes

Theorem 5.7 RY; (B 2) N REG = B, o

Proof It suffices to argue for the inclusion from left to right. Assume there eXisis?%%t(Blm)ﬂREG
suchthatl ¢ B, . Sothere exists’ € B, such thatL.<hi*L’. Hence for all oracles), LeafP? (L) C
NPO. By Borchert, Kuske, and Stephan [BKS99], for all oradlgs:oUP® C Leaf2?(L). By Theo-
rem 4.2, for all oracle®), Leaf?? (L) C LeafP? (L) and thereforecoUP? C NPC. This contradicts
an oracle construction by Eppstein et al. [EHTY92]. O

Lemma 5.8 Let L € REG ~ B;. Then there exists an oracl such thatLeaf??(L) ¢ pNPlelogn]”
forall e < 1.

Proof Let A be an alphabet with4| > 2 andL C A* such thatL € REG \ B;. Hence, the minimal
automaton of.. contains patterd; (see Figure 1) and there existv, z,y,v', z € A* andw,w’ € AT

as apparent in Figure 1. Without loss of generality, we assume that the minimal automaton contains the
first version of the pattern, i.e., statg is accepting and statg is rejecting. LetLp, be the language

of all words inz{u,v,w,w’,y,y'}*z such that the minimal automaton &f moves along the paths
drawn in Figure 1 and finally reaches. Let L’Pl be the similar set of words leading tg. Clearly,
Leaf?(Lp,, L) C LeafR(L).? We constructB such that for alk < 1,

NP[ne]B

Leang(LPn /Pl) Z P||

This implies that for alk < 1,

LeafﬁB(Lpl, /Pl) ,@ PNP[E-log(n)]B.

Let e ¢ A be a new letter. Fom € N let ag,, < a1, < ... < agn_1, be the
words of {0,1}" in lexicographical order. For any sé? C {0,1}* with characteristic function

¢p, the characteristic sequence adb restricted to words of length is defined asCp(n) =ger
cp(agn)ep(@iy) ... ep(aan_2pn)ep(azn_1,). Such a characteristic sequence can be considered as

2Note that here a pair of languag€hp, , L'p,) defines a leaf-language class. A language belongs4f} (Lp, , Ly, ) if
and only if there exists a nondeterministic polynomial-time-bounded Turing madHiseich that for alke: If x € L then
Bu(z) € Lp,; if x ¢ LthenpBa(z) € L’p,. This can be used to define promise classes, as in this case.
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a sequence of letters from U {e} where[log(|A| + 1)] bits of Cp(n) encode a letter froml U {e}.
Denote this new sequence 6Y,(n) and observe that its length is greater th&n!4l. Let Ch(n)a be
the sequence obtained by removingedl from C7,(n). We say that the sequenc#,(n) is valid for
pattern P if the following holds:

e C,(n) does not contain a factef™!, and
o Cb(n)‘A € Lp U L,Pl'
We call a valid sequenacepted (resp., rejected) by patternif it belongs toL p, (resp.,L ). Hence,

avalid sequencé€'p(n) encodes a sequen€g, (n) over AU{e} which may contain only shoetblocks.

We will define a fast-growing tower function: N — N such that(n + 1) = 2/) for n. > 0. For an
arbitrary oracleD, we define our witness languagé® as follows:

WO =ger {0' | n > 0 andCo (t(n)) is accepted by pattetF }

Throughout the construction we will ensure that forsalithe sequencé€'z(t(n)) is valid for pattern
Py. This impliesW? ¢ LeafﬁB(Lpl,L’Pl): On input0™, an unbalanced machine first verifies that
m = t(n) for somen, and then produces a computation tree with leaf stéfygm). SinceCy,(m)

only contains short blocks efs, this machine can reorganize its computation tree such thatalre

removed from the leaf string. So it remains to show el ¢ PNPletog(m)”

Our oracleB will be defined as the union of (finite) oracle stages: > 1, which are constructed
iteratively. Each stag®,, is characterized by oracle words of length) and therefore by the sequence
Cp(t(n)). Let B[k, j] =det Uy<;<; B: denote an interval of oracle stages.

We enumeraté’fp[me}-machines as follows. Consider an enumeration of all tuplésN, p, ¢) such
that M is a deterministic polynomial-time oracle Turing machingis a nondeterministic polynomial-
time oracle Turing maching,is a polynomial and < 1. We interpret)M as the base machine andas
the oracle machine.

By defining the first value(0) of the tower function sufficiently large andn + 1) =ger 21, we can
ensure that the enumeration satisfies the following technical requirements. Fotttitteple of the
enumeration(M, N, p, €), all of the following holds:

1. p(t(n)) < 2%&" 1
2. 3log?t(n) < t(n)1-9/
3. 2tm) /2t S oAl gyl uo]

4. Letthe running times af/ and N be bounded by polynomiaisandr, respectively. Then it holds
thatr(¢(n)) < p(n).

5. M on inputx asks at mosfz|© nonadaptive queries to the oradleN).

Let (M, N,p,e) be then-th tuple in our enumeration and let = ¢(n). We diagonalize against
(M, N, p, €) through ensuring

L(MB[I,n],L(NB[l‘"])) + wBLn] (13)
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Notice thatM can access both oracles|1, n] and L(N B,

We describe the main idea behind the diagonalization agavistV, p,¢): We start with an oracle

B, such thatC'z(m) is accepted byP;. After that we simulatel/ with the so-far constructed oracle
(B[1,n]) on input0™ and determine segments i), that have to be reserved. M rejects0™ we are
done for this stage. Otherwise we charigieon non-reserved positions, such tiigs(m) is still valid

but now rejected by, (here thee’s compensate length differences). We then repeat the simulation of
M on input0™ with the modified oracle and update the list of reserved segments.dtill accepts we

are done, otherwise we modify non-reserved positions suctCthét:) remains valid but accepted by

Py again. We will show that after- log m such rounds) on input0™ will err in its decision.

The detailed construction of the diagonalization againét NV, p, €) follows.

We define
B =def TWYWUZ,

such thaty € {w, e}*, v does not contain a factef**!, and|3| = 2~ |4l. We start withB,, C {0,1}™
such thatC; (m) = 3. Clearly, Cp,(m) is accepted by patter’;: Whether a valid sequence is
accepted or rejected is determined by the first occurrence of a word from in the encoded sequence;
for u the sequence is accepted, foit is rejected.

Let F denote the set of reserved segmeitts:= () at the beginning.F" is supposed to contain words
of lengthm that we will not modify in the further construction. SimulatéZ-"l on input0™. If M
rejects, (13) is fulfilled and the construction of stalgg is complete. So assumé accepts. Let);

be the set of\/’s queries toB,, on input0™. Thus,|Q1| < p(m). Letq,..., ¢ be M’'s nonadaptive
queries taN wherek < m¢. LetQ;+ C {q¢1,...,q} be the set of positively answered queries. Hence,
for ¢ € Q4+, the nondeterministic machin®¥ on inputq produces at least one accepting path. We
defineQ2 =qef {q \ d¢" € Q4 (NN oninputq queriesg on its leftmost accepting path Observe that
|Q2| < p(m)?. We now setl’ = F U Q1 U Q2. Since|F| < p(m)? and|Cp, (m)| = 2™, there exist

2™ /p(m)3 consecutive words of lengtiu that are not inF. These words represent a segmeitt 3.

By the construction off, s € {w, e}*. In the next steps is replaced by a segmesite y{w’, e}*v such
that|s’| = |s| ands does not contain a factef**!. Observe that the purpose ©in this construction is

to compensate differences in the lengthg ab, w’ andv. After this modification(C'pg, (m) is still valid

but now rejected byP;. Since all further modifications in later rounds will be restricted to the segment
s', we reserve all the rest of the oracle at this stage,A@ow contains all words fron0, 1}™ except
those encoding’.

Again, we simulatel/Z] on input0™ and now assume that it has noticed the deception and thus
rejects. LetQ; be the set of queries tB,, during this simulation. Sinc€, C F, no query inQ+ can
have flipped from positive to negative. Consequently, there have to be quefies in.,qx} ~ Q+
which have been answered positively By during the second simulation df/. Let Q' be the

set of these queries. We repeat the above construction by defining thig, setqes {q|3q’ €
@', (N on inputq’ queriesg on its leftmost accepting path We have@s| < p(m) and|Q4| < p(m)?.

SetF = F'U Q3 U Q4. Hence, we still find

A
p(m)?* - p(m)?

consecutive words of length that are not inF". These correspond to a segmente {w’, e}* which
has not been reserved yet. This segment is replaced by a segnept{w, e}*u with |s;| = |s}|. This
modification cause€'s, (m) to be accepted by, .
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We can deceivé{ again by repeating the above procedure. After at rhastunds, no more of\l’s
gueries taV can flip from negative to positive. At that poimt/ cannot change its behavior any longer.
Each round the size of the non-reserved areé0oi }™ is divided by at mosp(m)3. Hence afterk
rounds we still have a segment of size

p(m)3k = p(m)3m = 93m<(logZm) — gm(-9/2me _ om(+a/2 = Al Jww'yy uvl.

Therefore, aftek rounds we can still find a sufficiently large non-reserved area. We can then modify
this segment to deceiv one final time. O

Utilizing Theorem 4.2, we can translate this oracle separation into a statement about the ptt-closure of
B;.

Theorem 5.9 R% (B,) NREG = B;.

Proof It suffices to argue for the inclusion from left to right. Assume there eXistsR:" (B;) NREG
such thatl, ¢ B;. So there existd/ € B; such thatL<H'L’. By Theorem 4.2, for all oracle®,
we then havé.eafP? (L) C LeafP?(L’). Theorem 2.1 holds relative to all oracles. Therefore, for all
oracles, it holds thatlL.eaf?® (L') C BC(NP)©. This contradicts Lemma 5.8. O

As a consequence, we obtain the first gap theorem of leaf-language definability above the Boolean
closure ofNP.

Corollary 5.10 LetD = Leaf?(C) for someC C REG. ThenD C BC(NP) or there exists an oracle
O such thatD® ¢ PNPlelosnl® for gl € < 1.

Theorem 5.11 RE (B32) NREG = By o

Proof It suffices to argue for the inclusion from left to right. Assume there eXistsRb,' (Bs ) \REG
suchthatl ¢ Bs . Sothere existd’ € B, such thatL <" L’. Hence for all oracle®), Leaft® (L) C
Z’Q’O. By Schmitz [Sch01], for all oracle®, yu.3upo C LeafEO(L). By Theorem 4.2, for all oracles

O, LeafP9(L) C Leaf??(L') and thereforey".3*.PO C ZIQ’O. This contradicts an oracle construction
by Spakowski and Tripathi [STO04]. a

By Theorem 5.4, is closed under ptt-reducibility. As stated in the Theorems 5.7, 5.9, and 5.11, the
classed3, s,, B1, andBs , are closed under ptt-reducibility if we restrict ourselves to regular languages.
We explain this difference and show that the restriction to regular languages is crucial>For3;,

is not closed under ptt-reducibility.

Theorem 5.12 There exist®3 € NP ~ REG such thatLeaf?(B) C NP.
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Proof We use the pairing functiof, -) that is defined as follows for letteas andb;.
(arag - - ap,biby - - - by) =det 0a10ay - - - 0ar1b11by - - - 1b;

Let N1, No, ... be an enumeration of nondeterministic polynomial-time-bounded Turing machines such
that V; on inputs of lengtm has running timex’ + i. We may assume that givénone can determine
the machineV; in polynomial-time in|i|.

Every word appears as leaf string of a suitable computation. This changes if we demand that the leaf
string is generated by a short input. A wards calledhonestly generateiflit is generated by a machine

N; on input of a sufficiently small word. We make this precise with the definition Bfwhich consists

of all honestly generated words.

B =get {w ‘ (Fi < Jw|/2) 3z € A%, 2| +i < |w])[By, () = w]}

Assume we are givem, i, andx as above. The running time of; onx is |z|* + i < |w|. Therefore, in
time O(|w|?) we can determine the maching, can simulate the firgto| computation paths o¥;(x),
and can test whethety, () = w. This showsB € NP.

Letn > 2andl <i < n/2. We estimateB N A"| as follows.

n/2 n/2 n/2

B <3 e 4ol < (01— Y < S o — S
=1 i=1 i=1

This shows that at least one word of any length belongs.ttn particular,B is infinite.

We argue thatB ¢ REG. For this we start with the description of a nondeterministic mactne
on input (M, k) wherek is a natural number and is a deterministic finite automaton. Firsy]
deterministically computes nonempty words, z such that for alf > 0, uv’z ¢ L(M). If such words
do not exist, thenV generates the leaf strirtlg Otherwise, in a nondeterministic way generates the
leaf stringuv® 2. Observe that the words v, z, if they exist, can be computed in polynomial-time which
shows thatV is polynomial-time bounded. Therefo®, = N; for somej > 1.

AssumeB € REG, i.e., B = L(M) for some finite automaton1. Choose sufficiently large such
that! > 2j andl > [(M, ) + j. Letz =qef (M, 1) andw =get B, (z). SinceB is infinite, there
exist nonempty words, v, z such that for ali > 0, uv'z ¢ L(M). Therefore, for suitable such words
it holds thatw = wv'z ¢ L(M). Soj < |w|/2 and|w| > |z|/ + j. It follows thatw € B — L(M)
which contradicts the assumptidh= L(M) and which shows3 ¢ REG.

Finally we showLeaff(B) C NP. Fixanyj > 1 and letL = {z | 8y,(z) € B}. It suffices to show
L € NP. Letz be an arbitrary word of length 2. Definew =qer B, (7) and observe

rel & weBRB
& (2P +j <|w) Vv (zf +j > |w| Aw e B).

The first|x|7 + j letters of the leaf string) can be determined in polynomial-time|irj. So the condition
|z” + j < |w| is decidable in polynomial-time ifx|. If |z| + j > |w|, thenw € B can be decided in
nondeterministic polynomial-time ijx|. Hence the condition on the right-hand side is decidabMn
which showsL € NP. O

Corollary 5.13 1. There exist®3 € NP \ REG such thatB € R}, (B, s).
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2. For everyk > 1, By, is not closed undec}; -reducibility.

Proof LetC' =qer {0,1}*1{0,1}* and defineB as in Theorem 5.12. There we sh@ve NP \ REG
andLeaf?(B) C NP. The argument for the latter inclusion is relativizable. Therefore, for all orégles
Leaf??(B) C NP9 = Leaf??(C). By Theorem 4.2B<5'C and henceB € R} (B, »). This shows
the first statement and the second one follows immediately. O

We state an upper bound for the complexity of tH&"-closure of regular languages.

Theorem 5.14 R5(REG) C |J,»; DSPACHIlog" n).

Proof Let L € REY(REG), i.e., there existd’ € REG such thatL <5’ via ptt-functionf. So there
existk > 0 and functiong; andgs as in Definition 3.1. Both functions are polynomial-time computable
when the tree is accessed as an oracle. For a wdel ¢, denote the balanced binary tree that has leaf
stringz.

Letm = [log|z|]¥ + k. We describe an algorithm that computésf (¢,.)): Consider all strings:
of length < m in lexicographical order. ¥ (¢, z, [log|z|]) = 1, then outputgs(t,, z, [log|z|]).
Consider the next string.

This algorithm computeg(f(t;)), since it exactly simulateg. If ¢, is accessed as oracle, then
g1(tz, z, [log |z|]) andg; (t., 2, [log |x|]) are computable in polynomial time lng |z|. Givenz, an or-

acle access t), can be simulated in logarithmic space. Therefore, the algorithm above can be simulated
in polylogarithmic space ifiz|. Givenj3(f(t,)), we can test in constant space whethef (¢,)) € L'.

The theorem follows, since

reL & B(ty) €L & B(f(ts)) € L.

Due to this theorem, we can now specify the complexity of nonregularsetisch thatleaf? (C') C
NP.3 Accordingly it is unlikely that such sets aNP-complete. In particular, this applies to the gt
that was used in Theorem 5.12 and Corollary 5.13.

Corollary 5.15 LetC be a set. Then the following holds: ]J‘eafgo(C) C NP for all oraclesO, then
C € Uy>1 DSPACHIog" n).

Proof For all oracles), Leaf??(C) € NPY = Leaf??(0*1{0,1}*). SoC'<’*0*1{0,1}* and hence
C € RE(REG) C [J;» DSPACHIogk n). O

Since PSPACE = Leaf?(REG) [HLST93], the last corollary remains valid if we replad& by
PSPACE.

3Recall that for regular sets, we already know by Theorem 5.7 that only langualjes,inome into question.
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