
Complexity of Topological Properties of Regular ω-Languages

Victor L. Selivanov∗

A.P. Ershov Institute of Informatics Systems
Siberian Division of the Russian Academy of Sciences

vseliv@nspu.ru

and
Klaus W. Wagner

Institut für Informatik
Julius-Maximilians-Universität Würzburg
wagner@informatik.uni-wuerzburg.de

Abstract

We determine the complexity of topological properties (i.e., properties closed under the Wadge
equivalence) of regular ω-languages by showing that they are typically NL-complete (PSPACE-
complete) for the deterministic Muller, Mostowski and Büchi automata (respectively, for the nonde-
terministic Rabin, Muller, Mostowski and Büchi automata). For the deterministic Rabin and Streett
automata and for the nondeterministic Streett automata upper and lower complexity bounds for the
topological properties are established.

1 Introduction

The study of decidability and complexity questions for properties of regular languages is a central research
topic in automata theory. Its importance stems from the fact that finite automata are fundamental to
many branches of computer science, e.g., databases, operating systems, verification, and hardware and
software design.

There are many examples for decidable properties of regular languages (e.g., dot-depth one), while the
decidability of other properties is still a challenging open question (e.g., dot-depth two, generalized star-
height). Moreover, among the decidable properties there is a broad range of complexity results. For some
of them, e.g., for the dot-depth one property, efficient algorithms are known that work in nondeterministic
logarithmic space (NL) and hence in polynomial time. For other properties, a membership test needs more
resources, e.g., deciding the aperiodicity property of regular aperiodic languages is PSPACE-complete.

In this paper we determine the complexity of topological properties of regular ω-languages given by differ-
ent types of ω-automata. Topological properties are classes of ω-languages which are closed under inverse
continuous functions. Defining the Wadge reducibility ≤w on the Cantor space as the many-one reducibil-
ity via continuous functions, the topological properties are the classes of ω-languages which are closed
under Wadge reducibility. The classes {L′ | L′ ≤w L} for ω-languages L are called elementary topological
properties; every topological property is the union of elementary topological properties. Obviously, there
is a bijection between the elementary topological properties and the Wadge degrees.

To explain our results, let us recall some facts from [Wag79] where the Wadge degrees of regular ω-
languages (over any alphabet A with at least two symbols) were determined, in particular the following
results were established:

∗Supported by DFG Mercator program and by RFBR grant 07-01-00543a.

1

1. The structure (R;≤w) of regular ω-languages under the Wadge reducibility is almost well-ordered
with order type ωω, i.e.,x for each ordinal α < ωω there is a regular ω-languages Aα ∈ R, such that
Aα <w Aα⊕Aα <w Aβ for α < β < ωω, and any regular set is Wadge-equivalent to one of the sets
Aα, Aα, and Aα ⊕Aα where α < ωω.

2. The elementary topological properties of regular ω-languages are Rα =def {L | L ≤w Aα},
co-Rα =def {L | L ≤w Aα}, and Rα+1 ∩ co-Rα+1 = {L | L ≤w Aα ⊕ Aα}. The Wadge-degrees
of regular ω-languages are R′α =def {L | L ≡w Aα} = Rαr co-Rα, co-R′α =def {L | L ≡w Aα} =
co-RαrRα, and R̃α =def (Rα+1 ∩ co-Rα+1)r (Rα ∪ co-Rα)

3. All elementary topological properties of regular ω-languages and all Wadge-degrees of regular ω-
languages are decidable (the regular ω-languages given by deterministic Muller automata).

A natural question is to determine the complexity of the classes listed under 2. for different popular types
of ω-automata such as deterministic or nondeterministic Büchi, Muller, Rabin, Streett and Mostowski
(or parity) automata. To our knowledge, only a couple of results in this direction were established so far.
They are collected in the following

Theorem 1.1 1. [KPB95, WY95] For every α < ωω, given a deterministic Muller automaton M,
one can decide in polynomial time whether Lω(M) ∈ Rα.

2. [SVW87] The problem of deciding, given a nondeterministic Büchi automaton M with input al-
phabet A, whether Lω(M) = Aω, is PSPACE-complete.

3. [SVW87] The problem of deciding, given a nondeterministic Büchi automaton M, whether Lω(M)
= ∅, is NL-complete.

The Statements 2 and 3 above are related to the classesRα becauseR0 coincides with {∅} = {L | L ≤w ∅}
and the dual class co-(R0) for R0 coincides with {Aω} = {L | L ≤w Aω}.
We will determine the complexity of all elementary topological properties of regular ω-languages and
all Wadge-degrees of regular ω-languages w.r.t. the mentioned types of ω-automata. These results are
represented in the following table. Let C be an elementary topological property of regular ω-languages,
i.e., C ∈ {Rα, co-Rα,Rα+1 ∩ co-Rα+1 | α < ωω} or a Wadge-degree of regular ω-languages, i.e., C ∈
{R′α, co-R′α, R̃α+1 | α < ωω}. For deterministic Büchi automata this is restricted to C ⊆ Rω because
they can accept only such regular ω-languages from Rω. The lower bounds mean hardness for the
complexity class in question.

deterministic nondeterministicautomata type C
lower bound upper bound lower bound upper bound

= R0 NL NL NL NLMuller 6= R0 NL NL PSPACE PSPACE
= R0 NL NL NL NL

Rabin 6= R0 P PNP PSPACE PSPACE
= co-R0 NL NL P co-NP

Streett 6= co-R0 P PNP PSPACE EXPSPACE
= R0 NL NL NL NLMostowski 6= R0 NL NL PSPACE PSPACE
= R0 NL NL NL NLBüchi 6= R0 NL NL PSPACE PSPACE

In Sections 2 and 3 we recall the notation and necessary facts about ω-languages, topology and finite
automata. Section 4 recalls necessary information from [Wag79] about topological properties of regular
ω-languages. In Section 5 we establish upper complexity bounds for deterministic automata. In Sections 6
and 7 we show the results for deterministic Muller, Mostowski and Büchi automata, and Section 8 provides
the results for Rabin and Streett automata. In Section 9 we show the results for all nondeterministic
types of ω-automata.

2

2 ω-Languages and Topology

We use standard set-theoretic notation. For a set S, let P (S) be the class of subsets of S. For a class
C ⊆ P (S), let co-C be the dual class {C | C ∈ C} and let BC(C) be the Boolean closure of C.
Fix a finite alphabet A containing more than one symbol. For simplicity we may assume that A is one
of the alphabets Ak =def {0, 1, . . . , k − 1} for k > 1, so 0, 1 ∈ A. Let A∗ and Aω denote respectively the
sets of all words and of all ω-words (i.e. sequences α : N→ A) over A. The empty word is denoted by ε.
Let A+ = A∗r {ε} and A≤ω = A∗ ∪ Aω. For n ∈ N, let An be the set of words of length n. Note that
usually we work with the fixed alphabet A but sometimes we consider several alphabets simultaneously.
The “fixed-alphabet mode” is the default one.

We use some almost standard notation concerning words and ω-words, so we are not too casual in
reminding it here. For w ∈ A∗ and ξ ∈ A≤ω, w v ξ means that w is a initial part of ξ, w · ξ = wξ denotes
the concatenation, and l = |w| is the length of w = w(0) · · ·w(l−1). For u ∈ A∗ and n < ω, let un denote
the concatenation of n copies of the word u. For w ∈ A∗,W ⊆ A∗ and L ⊆ A≤ω, let w ·L = {wξ | ξ ∈ L},
let W · L = {wξ | w ∈ W, ξ ∈ L}, let Wω = {w0w1 · · · ∈ Aω | wi ∈ W}.
The set Aω carries the Cantor topology with the open sets W · Aω, where W ⊆ X∗. Let B denote the
class of Borel subsets of Aω, i.e. the least class containing the open sets and closed under complement and
countable union. Borel sets are organized in a hierarchy the lowest levels of which are as follows: G and F
are the classes of open and closed sets, respectively; Gδ (Fσ) is the class of countable intersections (unions)
of open (resp. closed) sets; Gδσ (Fσδ) is the class of countable unions (intersections) of Gδ- (resp. of Fσ-)
sets, and so on. In the modern notation of hierarchy theory, Σ0

1 = G, Σ0
2 = Fσ, Σ0

3 = Gδσ, Σ0
4 = Fσδσ

and so on, Π0
n =def co-Σ0

n is the dual class for Σ0
n, and ∆0

n = Σ0
n ∩Π0

n. The sequence {Σ0
n+1}n<ω is

known as the finite Borel hierarchy. It may be in a natural way extended on all countable ordinals. The
resulting sequence called the Borel hierarchy exhausts the class B. For any n > 0, the class Σ0

n contains
∅, Aω and is closed under countable unions and finite intersections, while the class ∆0

n is closed under
complement and finite unions. For any n > 0, we have the strict inclusions Σ0

n ∪Π0
n ⊂ BC(Σ0

n) ⊂ ∆0
n+1.

For L,K ⊆ Aω, L is said to be Wadge reducible to K (in symbols L ≤w K), if L = g−1(K) for some
continuous function g : Aω → Aω. The Wadge reducibility on P (Aω) is a preorder. By ≡w we denote the
induced equivalence relation which gives rise to the corresponding quotient partial ordering. Following a
well established jargon, we call this ordering the structure of Wadge degrees [Wa72, Wa84]. The operation
L ⊕K = {0 · ξ ∪ i · η | 0 < i < k, ξ ∈ L, η ∈ K} on subsets of Aω

k induces the operation of least upper
bound in the structures of Wadge degrees. Any level of the Borel hierarchy is closed under the Wadge
reducibility in the sense that every set reducible to a set in the level is itself in that level. Moreover,
every Σ-level C (and also every Π-level) of the Borel hierarchy has a Wadge complete set C which means
that C = {L | L ≤w C}. For additional information on ω-languages see e.g. [Sta97, Th90, Th96].

3 Finite Automata Accepting ω-Languages

Finite automata may accept ω-languages in different ways. Here we briefly recall some acceptance modes
and corresponding facts that will be used later.

By deterministic pre-automaton (over A) we mean a triple M = (S, A, δ) consisting of a finite non-
empty set S of states, an input alphabet A and a transition function δ : S × A → S. The transition
function is naturally extended to the function δ : S × A∗ → S defined by induction δ(s, ε) =def s and
δ(s, xa) =def δ(δ(s, x), a) where x ∈ A∗ and a ∈ A. Furthermore, we define the function δ : S×A∗ → P (S)
by δ(s, x) =def {δ(s, u) | u v x}. For input sequences from Aω define the function δ : S × Aω → Sω by
δ(s, ξ)(n) = δ(s, ξ[n]).

Nondeterministic pre-automata are defined in the same way only now the transition function is of the
form δ : S × A → P (S) which is extended to the fuction δ : S × A∗ → P (S) by δ(s, ε) =def {s} and
δ(s, xa) =def

⋃
s∈δ(s,x) δ(s, a) where x ∈ A∗ and a ∈ A. As is well known, deterministic pre-automata

may be considered as a particular case of the nondeterministic ones. For input sequences from Aω define

3

the function δ : S ×Aω → P (Sω) by δ(s, ξ) =def {η | η(0) = s ∧ ∀i(η(i + 1) ∈ δ(η(i), ξ(i)))}.
Pre-automata equipped with appropriate additional structures are used as acceptors, i.e. devises accept-
ing words or ω-words. A deterministic automaton (dfa for short) is a quadruple M = (S, A, δ, s0, F)
where (S,A, δ) is a pre-automaton, s0 ∈ S, (the initial state), and F ⊆ S (the set of final states). Such
an automaton recognizes the language L(M) = {x ∈ A∗ | δ(s, x) ∈ F}. Nondeterministic automata
(nfa) are defined analogously. Such an automaton (M, s, F) accepts the language L(M) = {x ∈ A∗ |
δ(s, x) ∩ F 6= ∅}. It is well-known that deterministic and nondeterministic automata accept the same
class of languages which are called regular languages.

Unlike automata on finite words, for automata on ω-words the acceptance conditions were defined in
different way by different authors, and it is not clear which of these conditions are more natural than
the others. As a result, there are several notions of automata accepting ω-words (which we generally call
ω-automata). Let us briefly recall the most popular versions. For η ∈ Sω, let inf(η) be the set of all s ∈ S
which occur infinitely often in η.

A deterministic Büchi automaton is a quadruple M = (S, A, δ, s0, F) where (S, A, δ) is a determininstic
pre-automaton, s0 ∈ S, and F ⊆ S. It recognizes the set Lω(M) = {ξ ∈ Aω | inf(δ(s0, ξ)) ∩ F 6= ∅}.
A deterministic Muller automaton is a quadruple M = (S, A, δ, s0,F) where (S,A, δ) is a determininstic
pre-automaton, s0 ∈ S, and F ⊆ P (S). It recognizes the set Lω(M) = {ξ ∈ Aω | inf(δ(s0, ξ)) ∈ F}.
A deterministic Rabin automaton is a quadruple M = (S, A, δ, s0,F) where (S, A, δ) is a determininstic
pre-automaton, s0 ∈ S, and F ⊆ P (S) × P (S). It recognizes the set Lω(M) = {ξ ∈ Aω | ∃((E,F) ∈
F)(inf(δ(s0, ξ)) ∩ E = ∅ ∧ inf(δ(s0, ξ)) ∩ F 6= ∅)}.
A deterministic Mostowski automaton (known also as Rabin chain automaton or parity automaton) is the
special case of a deterministic Rabin automaton M = (S, A, δ, s0,F) where F = {(E1, F1), (E2, F2), . . . ,
(Em, Fm)} satisfies E1 ⊆ F1 ⊆ E2 ⊆ F2 ⊆ · · · ⊆ Em ⊆ Fm.

A deterministic Streett automaton is formally the same object as a deterministic Rabin automaton M,
but it recognizes the set L′ω(M) = {ξ ∈ Aω | ∀((E, F) ∈ F)(inf(δ(s0, ξ))∩E 6= ∅∨ inf(δ(s0, ξ))∩F = ∅)}.
Notice that deterministic Streett automata are complementary to deterministic Rabin automata. This
means L′ω(M) = Aωr Lω(M) for every deterministic Rabin automaton M.

The nondeterministic versions of the introduced types of automata are defined in the usual way: We
start with a nondeterministic pre-automaton and instead of the acceptance condition H(inf(δ(s0, ξ)))
we use the acceptance condition ∃η(η ∈ δ(s0, ξ) ∧H(inf(η))), i.e. there is an infinite run such that the
corresponding sequence of states satisfies the acceptance condition.

Theorem 3.1 For any ω-language L ⊆ Aω the following statements are equivalent:
1. L is recognized by a deterministic Muller (Rabin, Mostowski, Streett) automaton.
2. L is recognized by a nondeterministic Büchi (Muller, Rabin, Mostowski, Streett) automaton.
3. L is a finite union of sets U · V ω where U ⊆ A∗ and V ⊆ A+ are regular languages.

The ω-languages satisfying the assertions above are called regular ω-languages. Let R be the class of
regular ω-languages.

Theorem 3.2 1. R ⊂ BC(Σ0
2).

2. [La69, SW74] The deterministic Büchi automata accept exactly the regular Π0
2-sets.

For the above defined types of automata we introduce the abbreviatons B, M, R, P, and S for Büchi
automata, Muller automata, Rabin automata, Mostowski (parity) automata, and Strett automata, resp.,
and D and N stand for deterministic and nondeterministic, resp. In this way, for example, NB is the
name for nondeterministic Büchi automata.

4

Let C be a class of ω-languages, and let T be a type of automata. We consider the

Problem (C)T :
Given: An automaton M of type T .
Question: Does M accept an ω-language in C?
Because of the duality of the deterministic Rabin acceptance and the deterministic Streett acceptance
we have

Proposition 3.3 If C is a class of ω-languages then (C)DS ≡log
m (co-C)DR.

By Theorem 3.1 all the introduced classes of ω-automata (besides deterministic Büchi automata) are
equivalent in the sense that they recognize the same ω-languages. Moreover, the well known proofs of
these equivalences are effective, i.e. from a given automaton of some type one can compute an equivalent
automaton of any other type. When one is interested in complexity considerations (as we are here), the
computational resources needed for finding the equivalent automaton and its size become important.

We say that a type T of ω-automata is polynomial time reducible to a type T ′ of ω-automata (for short
T ≤p T ′) if there exists a polynomial time computable function f such that, for every automaton M
of type T , the result f(M) is an automaton of type T ′ which accepts the same ω-language as M. The
following relationship to decision problems is obvious:

Proposition 3.4 Let T and T ′ be two types of ω-automata, and let C be a class of ω-languages. Then
T ≤p T ′ implies (C)T ≤p

m (C)T ′ .

Unfortunately, some of the well known reductions in Theorem 3.1 do not work in polynomial time. For
some cases one can even prove that this is not possible. In [Sa88] an overview on possibility or impossibility
of polynomial time reductions between different types of ω-automata is given.

Theorem 3.5 [Sa88] The following figure represents some results on polynomial time reductions between
different types of ω-automata. A solid line means that here exists a polynomial time reduction from the
notion below to the notion above. A dotted arc means that polynomial time reduction in this direction is
not proved and not disproved. Moreover, there are no further polynomial time reductions between these
types of ω-automata which do not already follow from the solid lines and dotted arcs.

DB

NB = NR = NP

NS

NMDS DR

DP DM

4 Topological Properties of Regular ω-Languages

Topological properties are classes of ω-languages which are closed under Wadge reducibility, i.e., under
inverse continuous functions. Theses are just the classes {L | ∃L′(L′ ∈ C ∧ L ≤w L′)} where C ⊆

5

P (Aω). We are interested in topological properties of regular ω-languages, these are just the classes
Ĉ =def {L | ∃L′(L′ ∈ C ∧ L ≤w L′)} ∩ R where C ⊆ R. If [L]w is the ≡w-equivalence class which
includes L ⊆ Aω (the Wadge degree of L) then there holds Ĉ =

⋃
L∈C [̂L]w for every C ⊆ R. That

means: we know all topological properties of regular ω-languages if we know all elementary topological
properties [̂L]w of regular ω-languages. Furthermore, we know these, if we know all regular Wadge degrees
[L]w ∩ R. We define the family T =def {[L]w ∩ R | L ∈ R} of all regular Wadge degrees and the family
T̂ =def {[̂L]w | L ∈ R} of all elementary topological properties of regular ω-languages.

These families of classes were completely characterized in [Wag79] by some invariants of deterministic
Muller automata. We recall in this section the definitions and results from this paper which we need
here. In what follows let M = (S,A, δ, s0,F) be a deterministic Muller automaton.

A subset S′ ⊆ S is called a loop if there exist an s ∈ S and x, z ∈ A∗ such that δ(s0, x) = δ(s, z) = s and
δ(s, z) = S′. A loop S2 is reachable from a loop S1 if there exists an s ∈ S1 and an x ∈ A∗ such that
δ(s, x) ∈ S2.

For m ≥ 1, an m+chain is a sequence (S1, S2, . . . , Sm) of loops such that S1 ⊂ S2 ⊂ · · · ⊂ Sm, S1, S3, · · · ∈
F , and S2, S4, · · · ∈ P (S)r F . An m−chain is a sequence (S1, S2, . . . , Sm) of loops such that S1 ⊂ S2 ⊂
· · · ⊂ Sm, S1, S3, · · · ∈ P (S)r F , and S2, S4, · · · ∈ F .

For m, n ≥ 1, an (m,n)+superchain is is a sequence (T1, T2, . . . , Tn) such that T1, T3, . . . are m+chains,
T2, T4, . . . are m−chains, and the loops from Ti+1 are reachable from the loops of Ti for i = 1, 2, . . . , n−1.
An (m,n)−superchain is a sequence (T1, T2, . . . , Tn) such that T1, T3, . . . are m−chains, T2, T4, . . . are
m+chains, and the loops from Ti+1 are reachable from the loops from Ti for i = 1, 2, . . . , n− 1.

Now define the characteristics
m+(M) =def max{m | there exists an m+chain in M},
m−(M) =def max{m | there exists an m−chain in M},
m(M) =def max{m+(M), m−(M)}},
n+(M) =def max{n | there exists an (m(M), n)+superchain in M},
n−(M) =def max{n | there exists an (m(M), n)−superchain in M}, and
n(M) =def max{n+(M), n−(M)}.

Proposition 4.1 Let M = (S, A, δ, s0,F) be a deterministic Muller automaton.
1. |m+(M)−m−(M)| ≤ 1 and |n+(M)− n−(M)| ≤ 1.

2. m(M) · n(M) ≤ |S|.

The characteristics m+(M), m−(M), n+(M), and n−(M), are invariants of all automata accepting the
same language:

Theorem 4.2 For deterministic Muller automata M and M′, if Lω(M) = Lω(M′) then m+(M) =
m+(M′), m−(M) = m−(M′), n+(M) = n+(M′), and n−(M) = n−(M′).

Theorem 4.2 justifies the following definition. Let L be an ω-language and letM be a deterministic Muller
automaton such that Lω(M) = L. Then m+(L) =def m+(M), m−(L) =def m−(M), n+(L) =def n+(M),
and n−(L) =def n−(M).

For m,n ≥ 1, define the classes

Cn
m =def {L | m(L) = m ∧ n+(L) = n− 1 ∧ n−(L) = n},

Dn
m =def {L | m(L) = m ∧ n+(L) = n ∧ n−(L) = n− 1},

En
m =def {L | m(L) = m ∧ n+(L) = n−(L) = n},

Ĉn
m =def {L | m(L) < m ∨ (m(L) = m ∧ n+(L) < n)},

D̂n
m =def {L | m(L) < m ∨ (m(L) = m ∧ n−(L) < n)}, and

Ên
m =def {L | m(L) < m ∨ (m(L) = m ∧ n(L) ≤ n)}.

Some important relationships between these classes are given by the following theorem.

6

Theorem 4.3 Let m, n ≥ 1.
1. Dn

m = co-Cn
m and D̂n

m = co-Ĉn
m.

2. Ĉn
m ∪ D̂n

m ⊂ Ên
m = Ĉn+1

m ∩ D̂n+1
m .

3. Ĉ1
m+1 ∩ D̂1

m+1 =
⋃

n≥1 Ĉn
m =

⋃
n≥1 D̂n

m =
⋃

n≥1 Ên
m = {L | m(L) ≤ m}.

4. The classes Cn
m, Dn

m, and En
m form a partition of the class of regular ω-languages.

5. Cn
m = Ĉn

mr D̂n
m and Dn

m = D̂n
mr Ĉn

m.

6. En
m = Ên

mr (Ĉn
m ∪ D̂n

m).

The following theorem shows the topological nature of the classes Ĉn
m, D̂n

m and Ên
m.

Theorem 4.4 1. For m,n ≥ 1, there hold Ĉn
m = Ĉn

m, D̂n
m = D̂n

m and Ên
m = Ên

m. Hence these classes
are topological properties of regular ω-languages.

2. Ĉ1
1 = {∅} and D̂1

1 = {Aω}.
3. Ĉ2

1 is the class of regular open languages, and D̂2
1 is the class of regular closed languages.

4. Ĉ1
2 is the class of regular Gδ-languages, and D̂2

1 is the class of regular Fσ-languages.

5. For m,n ≥ 1, the classes Cn
m and Dn

m are regular Wadge degrees.

6. For n ≥ 1, the class En
1 is a regular Wadge degree.

From this theorem we know that the classes Ĉn
m and D̂n

m for m,n ≥ 1, and the classes Ên
1 for n ≥ 1

are elementary topological properties of regular ω-languages. So one has to look at the classes Ên
m for

m ≥ 2 and n ≥ 1, how they split into elementary topological properties of regular ω-languages. For
this reason define d+S =def {s | s ∈ S and an (m(M), n(M))+superchain can be reached from s} and
d−S =def {s | s ∈ S and an (m(M), n(M))−superchain can be reached from s}. Notice that d+S 6= ∅
implies s0 ∈ d+S, that d−S 6= ∅ implies s0 ∈ d−S, and that the defining condition m(M) = m∧n+(M) =
n−(M) = n of En

m is equivalent to m(M) = m ∧ n(M) = n ∧ d+S ∩ d−S 6= ∅.
The derivation dM of a Muller automaton M = (S,A, δ, s0,F) is defined as follows. If m(M) = 1
or n+(M) 6= n−(M) then dM =def M. Otherwise dM is defined as the Muller automaton dM =def

((d+S ∩ d−S) ∪ {s+, s−}, A, dδ, s0,F ∩ P (d+S ∩ d−S)) where s+, s− 6∈ d+S ∩ d−S and

dδ(s, a) =def

δ(s, a), if s, δ(s, a) ∈ d+S ∩ d−S,
s+, if s ∈ d+S ∩ d−S and δ(s, a) ∈ d+Sr d−S,
s−, if s ∈ d+S ∩ d−S and δ(s, a) 6∈ d+S,
s+, if s = s+,
s−, if s = s−.

For r ≥ 1, define the r-th derivation of M by d0M =def M and dr+1M =def d(drM).

Theorem 4.5 For deterministic Muller automata M and M′, if Lω(M) = Lω(M′) then Lω(dM) =
Lω(dM′), i.e., the derivation is an invariant of all automata accepting the same language.

Theorem 4.5 justifies the following definition. Let L be an ω-language and let M be an deterministic
Muller automaton such that Lω(M) = L. Then d(L) =def Lω(dM). For C ⊆ R define d(C) =def {d(L) |
L ∈ C} and d−1(C) =def {L | d(L) ∈ C}.

Theorem 4.6 1. If L ∈ {Cn
m | m,n ≥ 1} ∪ {Dn

m | m,n ≥ 1} ∪ {En
1 | n ≥ 1} then d(L) = L.

2. If L ∈ {En
m | m ≥ 2, n ≥ 1} then d(L) ∈ C1

m ∩D1
m.

For a class C ⊆ R and m,n ≥ 1 we define En
mC =def {L | L ∈ En

m ∧ d(L) ∈ C} = En
m ∩ d−1(C). Now the

family T of all regular Wadge degrees can be characterized as follows.

7

Theorem 4.7 T = {En1
m1

En2
m2

. . . Enr−1
mr−1Cnr

mr
| r ≥ 1, m1 > m2 > · · · > mr ≥ 1, n1, n2, . . . , nr ≥ 1}∪

{En1
m1

En2
m2

. . . Enr−1
mr−1Dnr

mr
| r ≥ 1,m1 > m2 > · · · > mr ≥ 1, n1, n2, . . . , nr ≥ 1}∪

{En1
m1

En2
m2

. . . Enr−1
mr−1E

nr
1 | r ≥ 1,m1 > m2 > · · · > mr−1 > 1, n1, n2, . . . , nr ≥ 1}.

For our decision algorithms the following theorem will be important.

Theorem 4.8 For m ≥ 2 and n ≥ 1, if C ⊆ C1
m ∩D1

m then Ên
mC = Ĉn

m ∪ D̂n
m ∪ En

mĈ.

An interesting relationship between the structure of T and T̂ , resp., and the ordinal numbers below ωω

should be mentioned. It is well-known that every non-zero ordinal α < ωω can be presented in the form

α = n1 ·ωm1 +n2 ·ωm2 + · · ·+nr ·ωmr where r ≥ 1, m1 > m2 > · · · > mr ≥ 0 and n1, n2, . . . , nr ≥ 1 (*).

This gives a bijection between the ordinals below ωω and the classes of type En1
m1

En2
m2

. . . Enr−1
mr−1Cnr

mr
. If

α is presented in the form (*) then we define R′α =def En1
m1+1E

n2
m2+1 . . . Enr−1

mr−1+1C
nr+1
mr+1. Then co-R′α =

En1
m1+1E

n2
m2+1 . . . Enr−1

mr−1+1D
nr+1
mr+1. For α = n1 ·ωm1 +n2 ·ωm2 + · · ·+nr−1 ·ωmr−1 +nr where r ≥ 1, m1 >

m2 > · · · > mr−1 ≥ 1 and n1, n2, . . . , nr ≥ 1 we obtain R̃α+1 = En1
m1+1E

n2
m2+1 . . . Enr−1

mr−1+1E
nr+1
1 where

R̃α+1 =def (Rα+1 ∩ co-Rα+1)r (Rα ∪ co-Rα) and Rα =def R̂′α. Thus we have T = {R′α, co-R′α, R̃α+1 |
α < ωω} and T̂ = {Rα, co-Rα,Rα+1 ∩ co-Rα+1 | α < ωω}.
There holds Rα ∪ co-Rα ⊆ Rα+1 ∩ co-Rα+1 for α < ωω. Hence, (T ;≤w) and (T̂ ;⊆) have a quasi-linear
structure.

Interestingly, w.r.t. many-one reductions between regular ω-languages, finite state transducers are as
powerful as arbitrary continuous functions. For L, L′ ⊆ Aω, we write L ≤fa L′ if there exists a function
f : Aω → Aω computed by a finite state transducer such that ξ ∈ L ↔ f(ξ) ∈ L′.

Theorem 4.9 For all regular ω-languages L and L′, there holds L ≤fa L′ if and only if L ≤w L′.

Finally, a “part” of a Muller automaton M accepts an ω-language which is Wadge-reducible to Lω(M).

Proposition 4.10 If M = (S, A, δ, s0,F) is a deterministic Muller automaton and x ∈ A∗ then
Lω((S,A, δ, δ(s0, x),F)) ≤w Lω(M).

5 Upper Bounds for Deterministic Automata

Let M = (S, A, δ, s0, E) be a deterministic ω-automaton of some type, where E describes an accep-
tance condition for this type. Obviously, M is equivalent to the deterministic Muller automaton M̃ =
(S, A, δ, s0, {S′ | S′ satisfies condition E}), i.e., there holds Lω(M) = Lω(M̃). In fact, deterministic ω-
automata of arbitrary types can be considered as succinct presentations of deterministic Muller automata.
Hence the definitions of chains, superchains, and the characteristics m+, m−, n+, and n− apply also to
these types of ω-automata.

For X ∈ {M, R,S,P, B}, let

ChainDX =def {(M,m, s, +) | M is a deterministic X-automaton,m ≥ 1,
and s belongs to an m+chain of M}∪

{(M,m, s,−) | M is a deterministic X-automaton,m ≥ 1,
and s belongs to an m−chain of M}

and

SuperDX =def {(M,m, n, s, +) | M is a deterministic X-automaton, m, n ≥ 1,
and an (m,n)+superchain of M is reachable from s}∪

{(M,m, n, s,−) | M is a deterministic X-automaton, m, n ≥ 1,
and an (m,n)−superchain of M is reachable from s}

8

We observe

Proposition 5.1 Let M be a deterministic X-automaton, and let m,n ≥ 1.
1. m+(M) ≥ m ⇐⇒ there exists an s ∈ S such that (M,m, s, +) ∈ ChainDX.

2. m−(M) ≥ m ⇐⇒ there exists an s ∈ S such that (M, m, s,−) ∈ ChainDX.

3. n+(M) ≥ n ⇐⇒ (M,m(M), n, s0, +) ∈ SuperDX.

4. n−(M) ≥ n ⇐⇒ (M, m(M), n, s0,−) ∈ SuperDX.

In what follows, we will make use of the fact that the class NL is closed under complementation and
consequently, the NL-query-hierarchy collapses to NL. That is, if we use NL-oracles during an NL-
computation then this can be simulated by an NL-computation without oracle. So it will be sufficient
to present LNL-algorithms or NLNL-algorithms for the problems in question. This applies also to NL-
computations with a fixed additional oracle A. That means, for example, LNLA

= NLNLA

= NLA. We
should hint to some subtlety: When using oracles during an NL-computation, the oracle queries have to
have the form (x, z) where x is the input of the base computation and |z| ≤ c · log |x| for some constant
c > 0. For L-computation with oracle, there is no such restriction.

It turns out that, for deciding the topological degrees, the complexity of Chain plays a central role.
Knowing its complexity, the complexity of the topological degrees follows in a uniform way.

Lemma 5.2 Let X ∈ {M,R,S,P, B}.
1. SuperDX ∈ NLChainDX .

2. There exists an LNLChainDX -algorithm which, given a deterministic X-automaton M, computes the
characteristics m+(M), m−(M), n+(M), and n−(M).

3. There exists an LNLChainDX -algorithm which, given a deterministic X-automaton M, computes dM.
4. For every C ⊆ R, if (C)DX ∈ NLChainDX then (d−1C)DX ∈ NLChainDX .

Proof. 1. For a deterministic X-automaton M = (S, A, δ, s0, E), m,n ≥ 1, and s ∈ S there holds

(M,m, n, s, +) ∈ SuperDX ⇐⇒ there exist s1, s2, . . . , sn ∈ S such that
si is reachable from si−1, for i = 1, 2, . . . ,m,
(M,m, s1,+), (M,m, s3,+), (M,m, s5, +), · · · ∈ ChainDX, and
(M,m, s2,−), (M,m, s4,−), (M,m, s6,−), · · · ∈ ChainDX,

and analogously for (M,m, n, s,−). This gives an NLChainDX-algorithm for SuperDX.

2. Easy by using Proposition 5.1 and Lemma 5.2.1.

3. For a given deterministic X-automaton M = (S, A, δ, s0, E), if m+(M) = 1 or n+(M) 6= n+(M)
then M is put out. Otherwise, the automaton ((d+S ∩d−S)∪{s+, s−}, A, dδ, s0, E ′) has to be generated
where E ′ is the restriction of E to subsets of d+S ∩ d−S. The main problem here is to decide s ∈
dS+ and s ∈ dS− for given s ∈ S. But this is equivalent to (M, m(M),n(M), s, +) ∈ SuperDX and
(M, m(M),n(M), s,−) ∈ SuperDX, resp., which can be checked by NLChainDX-queries.

4. Let C ⊆ R be such that (C)DX ∈ NLChainDX . By the definition we haveM∈ (d−1C)DX ⇔ dM∈ (C)DX.
By Lemma 5.2.3, an LNLChainDX -algorithm can produce dM from M, and then one more NLChainDX-query
is asked to find out whether dM is in (C)DX. This results in an LNLChainDX -algorithm to accept (d−1C)DX,
hence (d−1C)DX ∈ NLChainDX . ¤

Theorem 5.3 For X ∈ {M, R,S,P, B} and C ∈ T , the problems (Ĉ)DX and (C)DX are in NLChainDX .

Proof. By induction. We start with the classes Ĉn
m, D̂n

m, and Ên
m. For Ĉn

m, the definition yields the
equivalence M ∈ (Ĉn

m)DX ⇐⇒ m(M) < m ∨ (m(M) = m ∧ n+(M) < n). Using this and Lemma
5.2.2 we can check M ∈ (Ĉn

m)DX by an L-algorithm with an NLChainDX-oracle. The argument for

9

(D̂n
m)DX and (Ên

m)DX is completely analogous. By the Statements 5 and 6 of Theorem 4.3 we obtain
(Cn

m)DX, (Dn
m)DX, (En

m)DX ∈ LNLChainDX = NLChainDX .

For the induction step, let m ≥ 2, n ≥ 1, and En
mC ∈ T . Consequently, C ⊆ C1

m ∩ D1
m. By Theorem 4.8

and the respective definitions we obtain

M∈ (Ên
mC)DX ⇐⇒M ∈ (Ĉn

m)DX ∨M ∈ (D̂n
m)DX ∨ (M∈ (En

m)DX ∧M ∈ (d−1Ĉ)DX) and

M∈ (En
mC)DX ⇐⇒M ∈ (En

m)DX ∧M ∈ (d−1C)DX.

By the assumption of our induction we know that (Ĉ)DX and (C)DX are in NLChainDX . By Lemma 5.2.4
also (d−1Ĉ)DX and (d−1C)DX are in NLChainDX . Consequently, (Ên

mC)DX and (En
mC)DX are in NLChainDX .

¤

6 Deterministic Muller Automata

In this section, let M = (S, A, δ, s0,F) be a deterministic Muller automaton where F = {S1, S2, . . . , Sr}.
We define a few problems needed for our algorithm. Let m,n ≥ 1.

(M, i, j) ∈ Subset ⇔def Si ⊂ Sj

(M, i, j) ∈ Subseteq ⇔def Si ⊆ Sj

(M, s, s′) ∈ Reach ⇔def ∃(x ∈ A∗)(δ(s, x) = s′)
(M, i) ∈ Loop ⇔def Si is a loop of M

(M, i, j) ∈ Between+ ⇔def ∃k(Sk is a loop of M and Si ⊂ Sk ⊂ Sj)
(M, i, j) ∈ Between− ⇔def (M, i) 6∈ Between+ ∧ ∃S′(S′ is a loop of M and Si ⊆ S′ ⊆ Sj)

(M, i) ∈ Outside+ ⇔def ∃k(Sk is a loop of M and Si ⊂ Sk)
(M, i) ∈ Outside− ⇔def (M, i) 6∈ Outside+ ∧ ∃S′(S′ is a loop of M and Si ⊆ S′)
(M, i) ∈ Inside+ ⇔def ∃k(Sk is a loop of M and Sk ⊂ Si)
(M, i) ∈ Inside− ⇔def (M, i) 6∈ Inside+ ∧ ∃S′(S′ is a loop of M and S′ ⊆ Si)

Lemma 6.1 1. The problems Subset, Subseteq, Reach, Loop, Between+, Between−, Outside+, Outside−,
Inside+, and Inside− are in NL.

2. ChainDM ∈ NL.

Proof. 1. It is evident that Subset, Subseteq are in L and that Reach is in NL.

For Loop we use the obvious equivalences

(M, i) ∈ Loop ⇐⇒ there exist s ∈ Si and x, z ∈ A∗ such that δ(s0, x) = s, δ(s, z) = s,
and δ(s, z) = Si

⇐⇒ there exist x, u = u1u2 . . . ul ∈ A∗ such that δ(s0, x) = s1, δ(sj , uj) = sj+1 for
i = 1, 2, . . . , l − 1, δ(sl, ul) = s1, and δ(s1, u) ⊆ Si where s1, s2, . . . , sl are the
elements of Si in the order they appear on the input tape.

At the beginning the algorithm guesses nondeterministically an x ∈ A∗ (without storing it) and simulates
M with start state s0 on x until M reaches the state s1. Now it guesses nondeterministically an u1 ∈ A∗

(without storing it) and simulates M with start state s1 on u1 until M reaches the state s2 where it is
checked whether every reached state is in Si. Then it proceeds in the same way with u2, u3, . . . , ul (set
sl+1 =def s1). If all checks are positive then the algorithm accepts. This is clearly an NL-algorithm.

Easy LNL-algorithms for Between+, Outside+, and Inside+ are given just by their definitions.

To decide Between−, the condition (M, i) 6∈ Between+ is in co-NL, and the condition ∃S′(S′ is a loop in M
and Si ⊆ S′ ⊆ Sj) can be verified by an NL-algorithm which works just as the one for Loop but it checks
whether every reached state is in Sj instead of Si. Similar algorithms can be designed for Outside− and
Inside−.

2. For ChainDM we consider the following obvious equivalences

10

(M, 2m + 1, s, +) ∈ ChainDM ⇐⇒ there exist i1, i2, . . . , im+1 such that Si1 , Si2 , . . . , Sim+1 are loops,
s ∈ Sim+1 , and there exist loops R1, R2, . . . , Rm ∈ P (S)r F
such that Si1 ⊂ R1 ⊂ Si2 ⊂ R2 ⊂ · · · ⊂ Rm ⊂ Sim+1

⇐⇒ there exist i1, i2, . . . , im, j1, j2, . . . , jm such that s ∈ Sjm
,

and for all µ = 1, 2, . . . , m there holds:
– Siµ

and Sjµ
are loops and Sjµ

⊆ Siµ+1 if µ < m,
– there is no loop Sk such that Siµ

⊂ Sk ⊂ Sjµ
, and

– there is a loop S′ such that Siµ ⊂ S′ ⊂ Sjµ

⇐⇒ there exist i1, i2, . . . , im, j1, j2, . . . , jm such that s ∈ Sjm
,

and for all µ = 1, 2, . . . , m there holds:
(M, iµ) ∈ Loop, (M, jµ) ∈ Loop, (M, jµ, iµ+1) ∈ Subset if µ < m,
and (M, iµ, jµ) ∈ Between−.

From the latter equivalence we can easily get an NLNL-algorithm to accept (M, 2m+1, s, +) ∈ ChainDM.
For (M, 2m, s, +) ∈ ChainDM, (M, 2m + 1, s,−) ∈ ChainDM, and (M, 2m, s,−) ∈ ChainDM and we
obtain similar equivalences and algorithms. ¤
Now we prove the main result of this section.

Theorem 6.2 For C ∈ T , the problems (Ĉ)DM and (C)DM are NL-complete.

Proof. The membership of these problems to NL follows immediately from Theorem 5.3 and Lemma
6.1.2.

For the hardness in NL we reduce the complement of an NL-complete version of the graph accessibility
to our problems (which completes the proof because of co-NL = NL).

The graph accessibility problem remains NL-complete if the instances are restricted to directed acyclic
graphs (V,E) with one source s and two sinks t+ and t− where all non-sinks have outdegree 2. Let GAP′

denote the set of such instances (V, E, s, t+, t−) such that there exists a path from s to t+.

We start with deterministic Muller automata with input alphaber A. Let M1 and M2 be deterministic
Muller automata with input alphabet A such that Lω(M1) ∈ C and m(M1) < m(M2). Note that this
implies Lω(M2) 6∈ Ĉ.
Given an instance (V,E, s, t+, t−) to GAP′, we construct from this and the automata M1 and M2 a new
deterministic Muller automaton M as follows. The initial part of M is the graph (V,E), where for every
non-sink v ∈ V one outgoing edge is used for the input symbol 0, and the other outgoing edge is used
for all other input symbols. The sink t− is identified with the initial state of M1, and the sink t+ is
identified with the initial state of M2. The initial state of M is s, and final sets of M are the final sets
of M1 and the final sets of M2.

If (V, E, s, t+, t−) is not in GAP′ then there is no path from s to t+ and hence the loops in M2 are not
loops in M (because the cannot be reached from the initial state of M). If there is no path from s to t+

then there is a path from s to t−. Hence the loops of M are just the loops of M1. Consequently, Lω(M)
and Lω(M1) are in the same Wadge degree, i.e., Lω(M) ∈ C.
If (V, E, s, t+, t−) is in GAP′ then there is a path from s to t+ and hence the loops in M2 are also loops
in M. Also t− can be reachable from s, and hence the loops of M1 can also be loops of M. However,
because of m(M1) < m(M2) the chains in M1 do not contribute to the superchains in M. Consequently,
Lω(M) and Lω(M2) are in the same Wadge degree, i.e., Lω(M) 6∈ Ĉ. ¤

7 Deterministic Mostowski and Büchi Automata

For these types of automata we can prove the same results as for deterministic Muller automata.

Lemma 7.1 The problems ChainDP and ChainDB are in NL.

11

Proof. Since Büchi automata are special Mostowski automata, it is sufficient to prove the lemma
for Mostowski automata. Let M = (S, A, δ, s0, {(E1, F1), (E2, F2), . . . , (Er, Fr)}) be a deterministic
Mostowski automaton auch that E1 ⊆ F1 ⊆ E2 ⊆ F2 ⊆ · · · ⊆ Er ⊆ Fr. Because of these inclusions, the
condition

∧r
i=1(S

′∩Ei 6= ∅∨S′∩Fi = ∅) is equivalent to the condition
∨r+1

i=1 (S′∩Ei 6= ∅∧S′∩Fi−1 = ∅),
where F0 =def ∅ and Er+1 =def S.

Now we obtain the following equivalences:

(M,m, s, +) ∈ (Chain)DP ⇐⇒ s belongs to an m+chain in M
⇐⇒ s belongs to an m+chain in M′

⇐⇒ there exist loops S1 ⊂ S2 ⊂ · · · ⊂ Sm such that∨r
i=1(Sµ ∩ Ei = ∅ ∧ Sµ ∩ Fi 6= ∅) for µ = 1, 3, 5, . . . and∧r
i=1(Sµ ∩ Ei 6= ∅ ∨ Sµ ∩ Fi = ∅) for µ = 2, 4, 6, . . .

⇐⇒ there exist loops S1 ⊂ S2 ⊂ · · · ⊂ Sm and i1 > i2 > · · · > im such that
Sµ ∩ Eiµ = ∅ and Sµ ∩ Fiµ 6= ∅ for µ = 1, 3, 5, . . . and
Sµ ∩ Eiµ 6= ∅ and Sµ ∩ Fiµ−1 = ∅ for µ = 2, 4, 6, . . .

⇐⇒ there exist s ∈ S, x, u1, u2, . . . , um ∈ A∗, and i1 > i2 > · · · > im such that
δ(s0, x) = s,
δ(s, ui) = s for µ = 1, 2, . . . ,m,
δ(s, uµ) ∩ Eiµ = ∅ and δ(s, uµ) ∩ Fiµ 6= ∅ for µ = 1, 3, 5, . . . , and
δ(s, uµ) ∩ Eiµ 6= ∅ and δ(s, uµ) ∩ Fiµ−1 = ∅ for µ = 2, 4, 6,

The latter can be tested by the following NL algorithm.

◦ Guess s ∈ S.
◦ Guess x letterwise and check δ(so, x) = s.
◦ For µ = 1, 2, . . . , m:

– Guess iµ. If µ > 1 check iµ < iµ+1.
– If µ is odd then guess uµ letterwise and check

δ(s, ui) = s, δ(s, uµ) ∩ Eiµ = ∅, and δ(s, uµ) ∩ Fiµ 6= ∅.
– If µ is even then guess uµ letterwise and check

δ(s, ui) = s, δ(s, uµ) ∩ Eiµ 6= ∅, and δ(s, uµ) ∩ Fiµ−1 = ∅.
◦ Accept if all checks are o.k.

For (M,m, s,−) ∈ (Chain)DP we obtain analogous equivalences and an analogous algorithm. ¤
To understand Statement 2 of the following theorem remember that deterministic Büchi automata can
accept just the sets from Ĉ1

2, i.e., from C1
2, Cn

1 , Dn
1 , and En

1 for n ≥ 1

Theorem 7.2 1. For every C ∈ T , the problems (Ĉ)DP and (C)DP are NL-complete.

2. The problems (C1
2)DB, (Ĉn

1)DB, (Cn
1)DB, (D̂n

1)DB, (Dn
1)DB, (Ên

1)DB, and (En
1)DB are NL-complete

for n ≥ 1.

Proof. The membership of these problems to NL is given by Theorem 5.3 and Lemma 7.1.

The NL-hardness for deterministic Mostowski automata can be shown in exactly the same way as for
deterministic Muller automata, see Theorem 6.2.

For deterministic Büchi automata we need a modification of the above proof. For Cn
1 , Dn

1 , and En
1 the

proof works if we choose M2 such that Lω(M2) ∈ Cn+1
1 . For C1

2 we choose M1 and M2 such that
Lω(M1) = ∅ and Lω(M2) ∈ C1

2. This shows GAP′ ≤log
m (C1

2)DB. ¤

8 Deterministic Rabin and Streett Automata

We start with the complexity of chains and superchains. Just by guessing a possible chain or superchain
and testing whether it is really one we obtain

12

Proposition 8.1 The problems ChainDR, ChainDS, SuperDR, and SuperDS are in NP.

From Theorem 5.3 we obtain immediately that the problems (Ĉ)DR and (C)DR are in PNP for all C ∈ T .
However, in some cases there are better upper bounds in terms of the Boolean hierarchy {NP(n)}n≥1

over NP (see e.g. [WW85]); recall that NP(1) coincides with NP, NP(2) is the class of differences of
NP-sets and NP(3) is the class of sets (Ar B) ∪ C where A,B, C are NP-sets. Unfortunately, in most
cases there remains a gap between upper bound and lower bound. We consider Rabin automata first.

Theorem 8.2 1. The problem (C1
1)DR is NL-complete.

2. The problem (D1
1)DR is P-hard and in co-NP.

3. The problems (Cn
m)DR and (Dn

m)DR for m + n > 2, and the problems (En
m)DR for m,n ≥ 1 are

P-hard and in NP(2).

4. The problems (Ĉn
m)DR and (D̂n

m)DR for m + n > 2, and the problems (Ên
m)DR for m,n ≥ 1 are

P-hard and in co-NP(3).

5. For every C ∈ T r⋃
m,n≥1{Cn

m, Dn
m, En

m}, the problems (Ĉ)DR and (C)DR are P-hard and in PNP.

Proof. 1. The upper bound follows from the fact that (C1
1)NR is in NL (Theorem 9.1). The hardness

follows from the NL-hardness of (C1
1)DP (Theorem 7.2) because Mostowski automata are special cases of

Rabin automata.

Now we consider the upper bounds for the Statements 2, 3, 4, and 5.

2. From Theorem 9.2 we conclude (C1
1)DS ∈ co-NP, and Proposition 3.3 yields (D1

1)DR ∈ co-NP.

For 3 and 4, the upper bounds follow from the definition of the classes in question, the fact that the
characteristics used in this definitions can be expressed by ChainDR and SuperDR (Proposition 5.1), and
by Proposition 8.1.

For 5, the upper bound is is an immediate consequence of Proposition 8.1 and Theorem 5.3.

Now we prove the P-hardness results for the Statements 2, 3, 4, and 5. Because of Proposition 3.3 it is
sufficient to prove that (Ĉ)DS and (C)DS are P-hard for all C ∈ T r {D1

1}.
Let C ∈ Tr{D1

1}, and let M̃ = (S̃, A, δ̃, s̃0, E) be a deterministic Streett automaton such that Lω(M̃) ∈ C.
We reduce the P-complete satisfiability problem for anti Horn formulas to (C)DS and (Ĉ)DS. For a given
anti Horn formula H = H1∧H2∧· · ·∧Hr with variables x1, . . . , xk we construct the deterministic Streett
automaton Mm

H =def (S,A, δ, s0, {(E1, F1), . . . , (Er+m, Fr+m)} ∪ E) where
◦ S =def {s0, s1, . . . , sk, s′1, . . . , s

′
k, r1, . . . , r2m+1, t} ∪ S̃,

◦ Ei =def {sj | xj ∈ Hi} and Fi =def

{ {sj} if xj in Hi

{t} if no negated variable is in Hi

}
for i = 1, . . . , r,

Er+i =def {r2i+1} and Fr+i =def {r2i} for i = 1, . . . , m,

◦ δ(s0, a) =def

{
t if a = 0
s̃0 if a 6= 0 ,

δ(sj , a) =def s′j for j = 1, . . . , k and a ∈ A,

δ(s′j , a) =def

{
s′j+1 if a = 0
sj if a 6= 0

}
for j = 1, . . . , k − 1 and δ(s′k, a) =def

{
r1 if a = 0
sk if a 6= 0 ,

δ(rj , a) =def

{
rj+1 if a = 0
t if a 6= 0

}
for j = 1, . . . , 2m and δ(r2m+1, a) =def t for a ∈ A,

δ(t, a) =def s′1 for a ∈ A, and
δ(s, a) =def δ̃(s, a) for s ∈ S̃ and a ∈ A.

The transition function δ is illustrated by the next figure where the input symbol 1 stands for every
symbol from Ar {0}.

13

0

...
...

s′1

s′2

s′k

t

r2m+1

r2m

r3

r2

r1

0

0

0

0

0

0

0

0

0

0

0

M̃

1
0, 1

1

1

1

1

0, 1

0, 1

1

0, 1

1

0, 1

s1

s2

sk

sk−1 s′k−1

1

1

s0

The only loops of Mm
H are the loops of M̃ and the sets S′∪{s′1, . . . , s′k, r1, . . . , rl, t} with S′ ⊆ {s1, . . . , sk}

and 1 ≤ l ≤ 2m + 1. A loop S′ ∪ {s′1, . . . , s′k, r1, . . . , rl, t} fulfills the acceptance condition of Mm
H if and

only if the assignment I defined by I(xl) = 1 ⇔def sl ∈ S′ satisfies H and l is odd.

If H is satisfiable then there is an satisfying assignment I. For l = 1, . . . , 2m + 1
◦ the loops {sj | I(xj) = 1} ∪ {s′1, . . . , s′k, r1, . . . , rl, t} for odd l satisfy the acceptance condition of
Mm

H and
◦ the loops {sj | I(xj) = 1}∪{s′1, . . . , s′k, r1, . . . , rl, t} for even l do not satisfy the acceptance condition

of Mm
H .

Hence these loops form a (2m + 1)+chain, i.e., m+(Mm
H) ≥ 2m + 1 and Mm

H 6∈ (Ĉ)DS.

If H is not satisfiable then only loops of M̃ can satisfy the acceptance conditions of Mm
H . Consequently,

the non-M̃ part of Mm
H can enrich the chain and superchain structure of M̃ only if m(M̃) = 1, n+(M̃) =

1, and n−(M̃) = 0. But this means Lω(M̃) ∈ D1
1 which case we do not deal with here. ¤

Because of Proposition 3.3 we obtain

Theorem 8.3 1. The problem (D1
1)DS is NL-complete.

2. The problem (C1
1)DS is P-hard and in co-NP.

3. The problems (Cn
m)DS and (Dn

m)DS for m+n > 2, and the problems (En
m)DS for m,n ≥ 1 are P-hard

and in NP(2).

4. The problems (Ĉn
m)DS and (D̂n

m)DS for m+n > 2, and the problems (Ên
m)DS for m,n ≥ 1 are P-hard

and in co-NP(3).

5. For every C ∈ T r⋃
m,n≥1{Cn

m, Dn
m, En

m}, the problems (Ĉ)DS and (C)DS are P-hard and in PNP.

It should be noticed that we would obtain exact complexity results for deterministic Rabin and Streett
automata if we could show that ChainDR (or, equivalently, ChainDS) is in P. By Theorem 5.3, Theorem
8.2, and Theorem 8.3 we obtain

Theorem 8.4 Assume ChainDR ∈ P.

14

1. For all C ∈ T r {C1
1}, the problems (Ĉ)DR and (C)DR are P-complete.

2. For all C ∈ T r {D1
1}, the problems (Ĉ)DS and (C)DS are P-complete.

However, we even do not know the complexity of the problem (D1
1)DR, that is the problem of whether

every loop of a given deterministic Rabin automaton satisfies the acceptance condition of this automaton.
We know that this problem in P-hard and in co-NP, but we do not know whether this problem is in P
or co-NP-complete.

9 Nondeterministic Automata

Let M = (S, A, δ, s0, E) be a nondeterministic ω-automaton of some type. A set S′ ⊆ S is a loop of M
if there are l ≥ 1, x ∈ A∗, a1, . . . , al ∈ A, and s1, . . . , sl ∈ S such that {s1, . . . , sl} = S′, s1 ∈ δ(s0, x),
sj+1 ∈ δ(sj , aj) for j = 1, . . . , l − 1, and s1 ∈ δ(sl, al).

Theorem 9.1 Let T ∈ {NR, NM, NP, NB}.
1. The problem (C1

1)T is NL-complete.

2. For every C ∈ T r {C1
1}, the problems (C)T and (Ĉ)T are PSPACE-complete.

Proof. 1. Upper bound. Since Mostowski and Büchi automata are special cases of Rabin automata, we
can restrict ourselves to Muller and Rabin automata.

Let M = (S, A, δ, s0, {(E1, F1), . . . , (Er, Fr)}) be a nondeterministic Rabin automaton. We conclude
M 6∈ (C1

1)NR ⇔ there exists a loop of M which satisfies the acceptance condition of M
⇔ there exists x ∈ A∗, l ≥ 1, a1, . . . , al ∈ A, s1, . . . , sl ∈ S, and i ∈ {1, . . . , r}

such that s1 ∈ δ(s0, x), sj+1 ∈ δ(sj , aj) for j = 1, . . . , l − 1, s1 ∈ δ(sl, al),
{s1, . . . , sl} ∩ Ei = ∅ and {s1, . . . , sl} ∩ Fi 6= ∅.

The latter can be checked by an NL-algorithm. Hence (C1
1)NR ∈ co-NL = NL.

For a nondeterministic Muller automaton M = (S,A, δ, s0, {S1, . . . , Sr}) we obtain

M 6∈ (C1
1)NM ⇔ there exists i ∈ {1, . . . , r} such that Si is a loop of M

⇔ there exists i ∈ {1, . . . , r} (let s1, . . . , sl be the states in Si in the order they appear
on the input tape), x, u = u1 . . . ul ∈ A∗, and v1, . . . , vl ∈ S∗ such that, for j = 1, . . . , l :
− vi is a possible sequence of states for input uj to M with initial state sj ,
− the last state of vj is sj+1(set sl+1 =def s1), and
− all states of vj are in Si.

The latter can be checked by an NL-algorithm. Hence (C1
1)NM ∈ co-NL = NL.

The hardness follows from the fact that these problems for the corresponding deterministic types are
already NL-hard.

2. Upper bound. Since a nondeterministic Muller automaton can be converted in polynomial time into
an equivalent nondeterministic Rabin automaton, and since Mostowski and Büchi automata are special
cases of Rabin automata (see Theorem 3.5) we can restrict ourselves to the case of nondeterministic
Rabin automata.

In [Sa88] an algorithm A1 is given which converts a nondeterministic Rabin automaton M with n states
into an equivalent deterministic Muller automaton M′ with 2O(n log n) states. The states of M′ are trees
of maximum size n which are labeled with sets of states of M. The procedure to find the next state for
an input symbol is done in space polynomial in n. Hence the algorithm A1 works in polynomial space.

Now we combine this polynomial space algorithm A1 which converts the nondeterministic Rabin automa-
ton M into a deterministic Muller automaton M′ with the NL-algorithm A2 from Theorem 8.3 checking

15

Lω(M′) ∈ C or Lω(M′) ∈ Ĉ, resp. The problem arises that we cannot write down the exponentially
long M′ in polynomial space. We overcome this difficulty as follows. We do not store M′ but only the
position of the input head of A2 when working on M′. Any time when A2 needs another bit of M′ we
let re-run the computation of A1 on M until the moment when this bit is produced. Combining A1 and
A2 in such a way we obtain a PSPACE-computation.

Hardness. We reduce the PSPACE-complete problem of whether a given finite nondeterministic au-
tomaton (on finite words) accepts A∗ (see [MS72]) to our problems. Fix two regular ω-languages
L1 6∈ Ĉ and L2 ∈ C. Define the homomorphism h : A∗ → A∗ by h(a) =def aa for a ∈ A, and
set Ã =def A2 r {aa | a ∈ A}. For every language L ⊆ A∗ we define the ω-language L′ =def

0h(L)ÃAω ∪ 0h(A∗)ÃL1 ∪ 0h(A)ω ∪ (Ar {0})L2. Obviously, for a given nondeterministic finite au-
tomaton M accepting L one can construct in logarithmic space a nondeterministic automaton of any
type that accepts L′.

If L = A∗ then L′ =def 0h(A∗)ÃAω ∪ 0h(A)ω ∪ (Ar {0})L2 = 0Aω ∪ (Ar {0})L2. Because of C 6= C1
1

we have m+(L2) ≥ 1. Since m+(Aω) = 1 and m−(Aω) = 0, the 0Aω part of L′ connot enrich the chain
and superchain structure of the (Ar {0})L1 part of L′. Consequently, L′ and L2 are in the same Wadge
degree, i.e., L′ ∈ C.
If L 6= A∗ then there exists an x0 ∈ A∗r L. Because of 0h(x0)01Aω ∩ 0h(L)ÃAω = ∅ we obtain
0h(x0)01Aω ∩L′ = 0h(x0)01L1. Consider a deterministic Muller automaton (S, A, δ, s0,F) accepting L′.
Then (S, A, δ, δ(s0, 0h(x0)01),F) accepts L1. Because of Proposition 4.10 we have L1 ≤w L′, and by
L1 6∈ Ĉ we obtain L′ 6∈ Ĉ. ¤

Theorem 9.2 1. The problem (C1
1)NS is P-hard and in co-NP.

2. For every C ∈ T r {C1
1} the problems (C)NS and (Ĉ)NS are PSPACE-hard and in EXPSPACE.

Proof. 1. Upper bound. Let M = (S, A, δ, s0, {(E1, F1), . . . , (Er, Fr)}) be a nondeterministic Streett
automaton. The upper bound follows from the equivalence

M∈ (C1
1)DS ⇔ ∀(S′ ⊆ S)

(
S′ loop in M→

r∨

i=1

(S′ ∩ Ei = ∅ ∧ S′ ∩ Fi 6= ∅))

which is clearly a co-NP-condition.

For the P-hardness observe that even (C1
1)DS is P-hard (Theorem 8.3).

2. Upper bound. An exponential time algorithm can convert the nondeterministic Streett automaton
M = (S, A, δ, s0, {(E1, F1), . . . , (Er, Fr)}) into the equivalent nondeterministic Muller automaton M′ =
(S, A, δ, s0, {S′ ⊆ S | ∧r

i=1(S
′ ∩ Ei 6= ∅ ∨ S′ ∩ Fi = ∅)}). Now apply Theorem 9.1.2.

The PSPACE-hardness follows from the PSPACE-hardness of the corresponding problems for Mostowski
automata (Theorem 9.1.2) because of Theorem 3.5 and Proposition 3.4. ¤
Acknowledgement. The authors are grateful to Ludwig Staiger for his impressive contribution to the
theory of ω-languages and for many helpful discussions.

References

[KPB95] S. Krishnan, A. Puri and R. Brayton. Structural complexity of ω-automata. Lecture Notes in
Computer Science, v. 915, Springer: Berlin 1995, p. 143–156.

[La69] L.H. Landweber. Decision problems for ω-automata. Mathematical Systems Theory, 4 (1969),
376–384.

[MS72] A. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential time. Proc. 13th IEEE Symp. on Switching and Automata Theory (1972),
125-129

16

[Sa88] S. Safra. On the complexity of ω-automata. IEEE FOCS 1988, 319–327.

[SVW87] A.P. Sistla, M.Y. Vardi and P. Wolper. The complementation problem for Büchi automata
with applications to temporal logic. Theoretical Computer Science 49 (1987), 217–237.

[Sta97] L. Staiger. ω-Languages. In: Handbook of Formal Languages v. 3, Springer, Berlin, 1997, 339–
387.

[SW74] L. Staiger and K. Wagner. Automatentheoretische und automatenfreie Characterisierungen
topologischer Klassen regulärer Folgenmengen. Elektronische Informationsverarbeitung und Ky-
bernetik 10 No 7 (1974), 379–392.

[Th90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, v. B
(1990), p.133–191.

[Th96] W. Thomas. Languages, automata and logic. Handbook of Formal Language theory, v. B (1996),
p.133–191.

[Wa72] W. Wadge. Degrees of complexity of subsets of the Baire space. Notices AMS, 1972, A-714.

[Wa84] W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis, University of
California, Berkely, 1984.

[Wag79] K. Wagner. On ω-regular sets. Information and Control, 43 (1979), p. 123–177.

[WW85] G. Wechsung and K.W. Wagner. On the Boolean closure of NP, Manuskript. Extended ab-
stract as: G. Wechsung, On the Boolean closure of NP, Proceedings of the 1985 Int. Conf. on
Fundamentals of Computation theory, v.199 of Lecture Notes in Computer Science, p.485–493.
Springer-Verlag, 1985.

[WY95] T. Wilke and H. Yoo. Computing the Wadge degree, the Lipschitz degree, and the Rabin index
of a regular language of infinite words in polynomial time. Lecture Notes in Computer Science,
v. 915, Springer: Berlin 1995, p. 288–302.

17

