Complexity of Topological Properties of Regular w-Languages

Victor L. Selivanov*

A.P. Ershov Institute of Informatics Systems
Siberian Division of the Russian Academy of Sciences
vseliv@nspu.ru
and
Klaus W. Wagner
Institut fiir Informatik
Julius-Maximilians-Universitat Wiirzburg
wagner@informatik.uni-wuerzburg.de

Abstract

We determine the complexity of topological properties (i.e., properties closed under the Wadge
equivalence) of regular w-languages by showing that they are typically NL-complete (PSPACE-
complete) for the deterministic Muller, Mostowski and Biichi automata (respectively, for the nonde-
terministic Rabin, Muller, Mostowski and Biichi automata). For the deterministic Rabin and Streett
automata and for the nondeterministic Streett automata upper and lower complexity bounds for the
topological properties are established.

1 Introduction

The study of decidability and complexity questions for properties of regular languages is a central research
topic in automata theory. Its importance stems from the fact that finite automata are fundamental to
many branches of computer science, e.g., databases, operating systems, verification, and hardware and
software design.

There are many examples for decidable properties of regular languages (e.g., dot-depth one), while the
decidability of other properties is still a challenging open question (e.g., dot-depth two, generalized star-
height). Moreover, among the decidable properties there is a broad range of complexity results. For some
of them, e.g., for the dot-depth one property, efficient algorithms are known that work in nondeterministic
logarithmic space (NL) and hence in polynomial time. For other properties, a membership test needs more
resources, e.g., deciding the aperiodicity property of regular aperiodic languages is PSPACE-complete.

In this paper we determine the complexity of topological properties of regular w-languages given by differ-
ent types of w-automata. Topological properties are classes of w-languages which are closed under inverse
continuous functions. Defining the Wadge reducibility <, on the Cantor space as the many-one reducibil-
ity via continuous functions, the topological properties are the classes of w-languages which are closed
under Wadge reducibility. The classes {L' | L’ <y, L} for w-languages L are called elementary topological
properties; every topological property is the union of elementary topological properties. Obviously, there
is a bijection between the elementary topological properties and the Wadge degrees.

To explain our results, let us recall some facts from [Wag79] where the Wadge degrees of regular w-
languages (over any alphabet A with at least two symbols) were determined, in particular the following
results were established:

*Supported by DFG Mercator program and by RFBR. grant 07-01-00543a.

1. The structure (R; <) of regular w-languages under the Wadge reducibility is almost well-ordered
with order type w¥, i.e.,x for each ordinal o < w® there is a regular w-languages A, € R, such that
Ag <w Aa ® Ay <y Ap for a < 8 < w®, and any regular set is Wadge-equivalent to one of the sets
Ay, Ay, and Ay @ A, where o < w®.

2. The elementary topological properties of regular w-languages are R, =qer {L | L <w Aa},
c0-Ra =def {L | L <& An}, and Roi1 Nco-Ras1 = {L | L <y Ay @ Ay}. The Wadge-degrees
of regular w-languages are R., =gef {L | L =y Ao} = Ra~ c0-Ra, cO-R), =dqet {L | L =y A} =
c0-Ra~ Ra, and Ro =def (Ras1 Nco-Rar1)N (Ra U co-Ry)

3. All elementary topological properties of regular w-languages and all Wadge-degrees of regular w-
languages are decidable (the regular w-languages given by deterministic Muller automata).

A natural question is to determine the complexity of the classes listed under 2. for different popular types
of w-automata such as deterministic or nondeterministic Biichi, Muller, Rabin, Streett and Mostowski
(or parity) automata. To our knowledge, only a couple of results in this direction were established so far.
They are collected in the following

Theorem 1.1 1. [KPB95, WY95] For every a < w*, given a deterministic Muller automaton M,
one can decide in polynomial time whether L,(M) € R,.
2. [SVWS8T]| The problem of deciding, given a nondeterministic Bichi automaton M with input al-
phabet A, whether L, (M) = A%, is PSPACE-complete.
3. [SVWS8T] The problem of deciding, given a nondeterministic Biichi automaton M, whether L, (M)
= (), is NL-complete.

The Statements 2 and 3 above are related to the classes R,, because R coincides with {0} = {L | L <, 0}
and the dual class co-(Rg) for Rg coincides with {A¥} = {L | L <, A¥}.

We will determine the complexity of all elementary topological properties of regular w-languages and
all Wadge-degrees of regular w-languages w.r.t. the mentioned types of w-automata. These results are
represented in the following table. Let C be an elementary topological property of regular w-languages,
ie, C € {Ra,c0-Ra, Rat1 Nco-Roy1 | @ < w¥} or a Wadge-degree of regular w-languages, i.e., C €
{R,,co-R.,Ras+1 | @ < w*}. For deterministic Biichi automata this is restricted to C C R, because
they can accept only such regular w-languages from R,. The lower bounds mean hardness for the

complexity class in question.

automata type c deterministic nondeterministic
lower bound | upper bound | lower bound | upper bound
Muller =Ry NL NL NL NL
Ro NL NL PSPACE PSPACE
Rabin =Ry NL NL NL NL
£ Ro P pNP PSPACE PSPACE
Streett = co-Ro NL NL P co-NP
co-Ry p pNP PSPACE | EXPSPACE
Mostowski =TRo NL NL NL NL
Ro NL NL PSPACE PSPACE
.o =Ry NL NL NL NL
Biichi
#* Ry NL NL PSPACE PSPACE

In Sections 2 and 3 we recall the notation and necessary facts about w-languages, topology and finite
automata. Section 4 recalls necessary information from [Wag79] about topological properties of regular
w-languages. In Section 5 we establish upper complexity bounds for deterministic automata. In Sections 6
and 7 we show the results for deterministic Muller, Mostowski and Biichi automata, and Section 8 provides
the results for Rabin and Streett automata. In Section 9 we show the results for all nondeterministic
types of w-automata.

2 w-Languages and Topology

We use standard set-theoretic notation. For a set S, let P(S) be the class of subsets of S. For a class
C C P(95), let co-C be the dual class {C'| C € C} and let BC(C) be the Boolean closure of C.

Fix a finite alphabet A containing more than one symbol. For simplicity we may assume that A is one
of the alphabets Ay =qer {0,1,...,k—1} for k> 1,80 0,1 € A. Let A* and A“ denote respectively the
sets of all words and of all w-words (i.e. sequences « : N — A) over A. The empty word is denoted by e.
Let At = A*\ {e} and AS¥ = A* U A“. For n € N, let A" be the set of words of length n. Note that
usually we work with the fixed alphabet A but sometimes we consider several alphabets simultaneously.
The “fixed-alphabet mode” is the default one.

We use some almost standard notation concerning words and w-words, so we are not too casual in
reminding it here. For w € A* and £ € ASY, w C £ means that w is a initial part of £, w-& = w¢ denotes
the concatenation, and ! = |w| is the length of w = w(0) - - - w(l—1). For u € A* and n < w, let u™ denote
the concatenation of n copies of the word u. For w € A*, W C A* and L C A=, let w-L = {w | £ € L},
let W-L={wé|weW,§eL},let W¥ ={wow; --- € A | w; € W}.

The set A¥ carries the Cantor topology with the open sets W - A“, where W C X*. Let B denote the
class of Borel subsets of A%, i.e. the least class containing the open sets and closed under complement and
countable union. Borel sets are organized in a hierarchy the lowest levels of which are as follows: G and F
are the classes of open and closed sets, respectively; Gs (F,) is the class of countable intersections (unions)
of open (resp. closed) sets; Gs» (Fps) is the class of countable unions (intersections) of Gs- (resp. of Fi,-)
sets, and so on. In the modern notation of hierarchy theory, E(l) =G, XY =F,, 2% =Gsy,) = Frs5
and so on, ITY =4er co-XY is the dual class for 30, and A? = 29 NTI2. The sequence {E9, },<. is
known as the finite Borel hierarchy. It may be in a natural way extended on all countable ordinals. The
resulting sequence called the Borel hierarchy exhausts the class B. For any n > 0, the class X9 contains
), A“ and is closed under countable unions and finite intersections, while the class AY is closed under
complement and finite unions. For any n > 0, we have the strict inclusions £9 UTI? ¢ BC(Z9) c A? ;.

For L,K C A%, L is said to be Wadge reducible to K (in symbols L <, K), if L = g~}(K) for some
continuous function g : AY — A“. The Wadge reducibility on P(A“) is a preorder. By =,, we denote the
induced equivalence relation which gives rise to the corresponding quotient partial ordering. Following a
well established jargon, we call this ordering the structure of Wadge degrees [Wa72, Wa84]. The operation
LoK={0-§Ui-n|0<i<ke€L,ne K} on subsets of A} induces the operation of least upper
bound in the structures of Wadge degrees. Any level of the Borel hierarchy is closed under the Wadge
reducibility in the sense that every set reducible to a set in the level is itself in that level. Moreover,
every X-level C (and also every II-level) of the Borel hierarchy has a Wadge complete set C' which means
that C = {L | L <, C'}. For additional information on w-languages see e.g. [Sta97, Th90, Th96].

3 Finite Automata Accepting w-Languages

Finite automata may accept w-languages in different ways. Here we briefly recall some acceptance modes
and corresponding facts that will be used later.

By deterministic pre-automaton (over A) we mean a triple M = (S, A,) consisting of a finite non-
empty set S of states, an input alphabet A and a transition function § : S x A — S. The transition
function is naturally extended to the function § : S x A* — S defined by induction 6(s,e) =gef s and
§(s,7a) =get 6(6(s,), a) where x € A* and a € A. Furthermore, we define the function d : Sx A* — P(S)
by 8(s,2) =det {0(s,u) | u C z}. For input sequences from A“ define the function § : § x A“ — S by
3(s,6)(n) = (s, &[n]).

Nondeterministic pre-automata are defined in the same way only now the transition function is of the
form 6 : S x A — P(S) which is extended to the fuction § : § x A* — P(S) by d(s,&) =qer {s} and
6(s,2a) =det Uses(s,s) 0(s,a) where z € A* and a € A. As is well known, deterministic pre-automata
may be considered as a particular case of the nondeterministic ones. For input sequences from A% define

the function ¢ : S x A“ — P(5%) by 0(s,€) =aet {n | 7(0) = s AVi(n(i+1) € 6(n(i),£(4)))}-

Pre-automata equipped with appropriate additional structures are used as acceptors, i.e. devises accept-
ing words or w-words. A deterministic automaton (dfa for short) is a quadruple M = (S, A, 4, so, F)
where (S, 4, 9) is a pre-automaton, sg € S, (the initial state), and F' C S (the set of final states). Such
an automaton recognizes the language L(M) = {z € A* | §(s,x) € F}. Nondeterministic automata
(nfa) are defined analogously. Such an automaton (M, s, F) accepts the language L(M) = {x € A* |
d(s,z) N F # P}. It is well-known that deterministic and nondeterministic automata accept the same
class of languages which are called regular languages.

Unlike automata on finite words, for automata on w-words the acceptance conditions were defined in
different way by different authors, and it is not clear which of these conditions are more natural than
the others. As a result, there are several notions of automata accepting w-words (which we generally call
w-automata). Let us briefly recall the most popular versions. For n € S| let inf(n) be the set of all s € S
which occur infinitely often in 7.

A deterministic Bichi automaton is a quadruple M = (S, A, §, sg, F') where (S, A,) is a determininstic
pre-automaton, so € S, and F' C S. It recognizes the set L (M) = {£ € A% | inf(§(so,&)) N F # 0}.

A deterministic Muller automaton is a quadruple M = (S, A, §, sg, F) where (S, 4, ¢) is a determininstic
pre-automaton, sg € S, and F C P(S). It recognizes the set L, (M) = {£ € A“ | inf(6(s0,&)) € F}.

A deterministic Rabin automaton is a quadruple M = (S, A, d, so, F) where (S, A, d) is a determininstic
pre-automaton, sy € S, and F C P(S) x P(S). It recognizes the set L,(M) = {£ € A¥ | I((E,F) €
F)(inf(6(s0,)) N B = 0 A in(8(s0,) N F # 0)}.

A deterministic Mostowski automaton (known also as Rabin chain automaton or parity automaton) is the

special case of a deterministic Rabin automaton M = (S, A, §, sg, F) where F = {(E, F1), (E2, F2),. ..,
(B, Fin)} satisfies By CFy CEy, CF, C--- CE,p CFy.

A deterministic Streett automaton is formally the same object as a deterministic Rabin automaton M,
but it recognizes the set L/, (M) = {{ € A¥ |V((E,F) € F)(inf(d(s0,&))NE # OVinf(d(so,&))NEF = 0)}.

Notice that deterministic Streett automata are complementary to deterministic Rabin automata. This
means L/, (M) = A“\ L,(M) for every deterministic Rabin automaton M.

The nondeterministic versions of the introduced types of automata are defined in the usual way: We
start with a nondeterministic pre-automaton and instead of the acceptance condition H (inf(d(sg,&)))
we use the acceptance condition In(n € §(so,&) A H(inf(n))), i.e. there is an infinite run such that the
corresponding sequence of states satisfies the acceptance condition.

Theorem 3.1 For any w-language L C A“ the following statements are equivalent:
1. L is recognized by a deterministic Muller (Rabin, Mostowski, Streett) automaton.
2. L is recognized by a nondeterministic Bichi (Muller, Rabin, Mostowski, Streett) automaton.
3. L is a finite union of sets U - V¥ where U C A* and V C AT are reqular languages.

The w-languages satisfying the assertions above are called regular w-languages. Let R be the class of
regular w-languages.

Theorem 3.2 1. R C BC(X9).
2. [La69, SW74] The deterministic Biichi automata accept exactly the regular TIS-sets.

For the above defined types of automata we introduce the abbreviatons B, M, R, P, and S for Biichi
automata, Muller automata, Rabin automata, Mostowski (parity) automata, and Strett automata, resp.,
and D and N stand for deterministic and nondeterministic, resp. In this way, for example, NB is the
name for nondeterministic Biichi automata.

Let C be a class of w-languages, and let T be a type of automata. We consider the

Problem (C)r:
Given: An automaton M of type T.
Question: Does M accept an w-language in C?

Because of the duality of the deterministic Rabin acceptance and the deterministic Streett acceptance
we have

Proposition 3.3 IfC is a class of w-languages then (C)ps =28 (co-C)pr.

By Theorem 3.1 all the introduced classes of w-automata (besides deterministic Biichi automata) are
equivalent in the sense that they recognize the same w-languages. Moreover, the well known proofs of
these equivalences are effective, i.e. from a given automaton of some type one can compute an equivalent
automaton of any other type. When one is interested in complexity considerations (as we are here), the
computational resources needed for finding the equivalent automaton and its size become important.

We say that a type T of w-automata is polynomial time reducible to a type T” of w-automata (for short
T <P T") if there exists a polynomial time computable function f such that, for every automaton M
of type T, the result f(M) is an automaton of type 7" which accepts the same w-language as M. The
following relationship to decision problems is obvious:

Proposition 3.4 Let T and T’ be two types of w-automata, and let C be a class of w-languages. Then
T <P T implies (C)r <P (C)7-.

Unfortunately, some of the well known reductions in Theorem 3.1 do not work in polynomial time. For
some cases one can even prove that this is not possible. In [Sa88] an overview on possibility or impossibility
of polynomial time reductions between different types of w-automata is given.

Theorem 3.5 [Sa88] The following figure represents some results on polynomial time reductions between
different types of w-automata. A solid line means that here exists a polynomial time reduction from the
notion below to the notion above. A dotted arc means that polynomial time reduction in this direction is
not proved and not disproved. Moreover, there are no further polynomial time reductions between these
types of w-automata which do not already follow from the solid lines and dotted arcs.

NS\

NB/:NRQP

DS DR N‘M
D‘P* ——————— -> DM
DB~

4 Topological Properties of Regular w-Languages

Topological properties are classes of w-languages which are closed under Wadge reducibility, i.e., under
inverse continuous functions. Theses are just the classes {L | 3L'(L' € C AL <, L)} where C C

P(A¥). We are interested in topological properties of regular w-languages, these are just the classes
C =get {L | 3L(I' € CAL <y L')} NR where C C R. If [L], is the =,-equivalence class which
includes L C A“ (the Wadge degree of L) then there holds C = Upec [L]w for every C € R. That
means: We/kEOW all topological properties of regular w-languages if we know all elementary topological
properties [L]y, of regular w-languages. Furthermore, we know these, if we know all reqular Wadge degrees
[L]w NR. We define the family 7 =qe¢f {[L]lw "R | L € R} of all regular Wadge degrees and the family

T =4et {[L]w | L € R} of all elementary topological properties of regular w-languages.

These families of classes were completely characterized in [Wag79] by some invariants of deterministic
Muller automata. We recall in this section the definitions and results from this paper which we need
here. In what follows let M = (S, A, J, so, F) be a deterministic Muller automaton.

A subset S' C S is called a loop if there exist an s € S and x, 2 € A* such that §(so,z) = 6(s,2) = s and

0(s,2) = S". A loop Ss is reachable from a loop S if there exists an s € S; and an z € A* such that
d(s,x) € Ss.

For m > 1, an m™ chain is a sequence (S, 2, ..., Sy,) of loops such that S; € Sy C --- C S,,, S1,553,-+- €
F,and So, Sy, - € P(S)~ F. An m~ chain is a sequence (Si,Ss,...,S,,) of loops such that S; C Sy C
-+ C Sm,y 51,83, € P(S)NF, and S3,8,--- € F.

For m,n > 1, an (m, n)" superchain is is a sequence (11, T, ..., T,) such that Ty, T3, ... are m*chains,
T5,Ty, ... are m~chains, and the loops from 7T;,1 are reachable from the loops of T; fori =1,2,... ,n—1.
An (m,n)” superchain is a sequence (T1,Ts,...,T,) such that T1,T5,... are m~chains, T, Ty,... are
m™Tchains, and the loops from T}, are reachable from the loops from T} for i =1,2,...,n — 1.

Now define the characteristics

mT (M) =qef max{m | there exists an m*chain in M},

m~ (M) =qof max{m | there exists an m~chain in M},

mM) =ger mas{m® (M), m- (M)},

nt (M) =qef max{n | there exists an (m(M),n) superchain in M},

n~ (M) =qef max{n | there exists an (m(M),n) superchain in M}, and
n(M) =qef max{nt(M),n"(M)}.

Proposition 4.1 Let M = (S, A, d, s, F) be a deterministic Muller automaton.
1. jmT™(M) —m~(M)| <1 and |nT (M) —n~(M)| < 1.
2. m(M) -n(M) <|S].

The characteristics m* (M), m~ (M), n* (M), and n~ (M), are invariants of all automata accepting the
same language:

Theorem 4.2 For deterministic Muller automata M and M', if L,(M) = L,(M’) then m* (M) =
mt (M), m™ (M) =m~ (M), nt (M) =nt (M), and n= (M) =n~(M').

Theorem 4.2 justifies the following definition. Let L be an w-language and let M be a deterministic Muller
automaton such that L,(M) = L. Then m™ (L) =gef m™ (M), m™ (L) =gef m~ (M), n7 (L) =ger n™ (M),
and n™ (L) =qef n~ (M).

For m,n > 1, define the classes

Cl' =dqef {L|m(L)=mAn"

L
D% =gef {L|m(L)=mAnT(L)=nAn"(L)=n-—1},
E:Ln —def {L|mL L =

C? =get {L|m(L) <mV (m(L)=mAnt(L)<n)},
];)Zl =def {L|m(L) <mV (m(L)=mAn (L) <n)}, and
El =gt {L|m(L) <mV (m(L)=mAn(L) <n)}.

Some important relationships between these classes are given by the following theorem.

Theorem 4.3 Let m,n > 1.
1. D7, = co-C?, and D, = co-C7,.
Cr uDr Cc Er, =l n DL
anﬂ N]f)71n+1 = UnZl C?n = Un21 15% = Un21 E% ={L|m(L) <m}.
The classes C,, DI, and E form a partition of the class of reqular w-languages.
Ccr = Cn D and D, =D~ Cn .

E" =Er~ (Cr uDn).

SIS N S

The following theorem shows the topological nature of the classes ng]A)ﬁl and E’T‘n

Theorem 4.4 1. For m,n > 1, there hold C", = ér\r}ﬂ, D = ﬁﬁ and B, = @1 Hence these classes
are topological properties of reqular w-languages.

Cl = {0} and D} = {A~}.
C% is the class of reqular open languages, and]A)f is the class of regular closed languages.
C% is the class of regular Gs-languages, and D? is the class of regular F,-languages.

For m,n > 1, the classes C}!, and D}, are reqular Wadge degrees.

S v

Forn > 1, the class E} is a regqular Wadge degree.

From this theorem we know that the classes Cﬁl and]AD’;L for m,n > 1, and the classes E’f forn > 1
are elementary topological properties of regular w-languages. So one has to look at the classes Eﬂn for
m > 2 and n > 1, how they split into elementary topological properties of regular w-languages. For
this reason define d*S =4¢r {s | s € S and an (m(M),n(M)) " superchain can be reached from s} and
d™S =qef {s | s € S and an (m(M),n(M)) superchain can be reached from s}. Notice that d*S # 0
implies 5o € d*.9, that d=S # 0 implies sg € d~5, and that the defining condition m(M) = mAnt (M) =
n~ (M) =n of E, is equivalent to m(M) =m An(M)=nAdtSnNd=S # 0.
The derivation dM of a Muller automaton M = (S, A, 4, sg, F) is defined as follows. If m(M) = 1
or nt (M) # n= (M) then dM =g M. Otherwise dM is defined as the Muller automaton dM =g
((d*Snd-S)u{st,s},A,dd, s, FNP(ATSNAS)) where st,s~ ¢ dtSNd~S and

5(s,a), if s,8(s,a) edtSNdS,

st, if sedtSNd=S and §(s,a) € dT S\ d™S,

dé(s,a) =qef { S, if sedt™SNd=S and §(s,a) € d+S,
st, if s =sT,
s, ifs=s".

For r > 1, define the r-th derivation of M by d°M =4t M and "™ M =4.¢ d(d"M).

Theorem 4.5 For deterministic Muller automata M and M', if L,(M) = L,(M’) then L,(dM) =
L,(dM), i.e., the derivation is an invariant of all automata accepting the same language.

Theorem 4.5 justifies the following definition. Let L be an w-language and let M be an deterministic
Muller automaton such that L, (M) = L. Then d(L) =qef Lo, (dM). For C C R define d(C) =qer {d(L) |
LeC}and d71(C) =get {L | d(L) € C}.

Theorem 4.6 1. If L€ {C" |m,n>1}U{D? | m,n>1}U{E} |n > 1} thend(L) = L.
2. If Le{E" | m>2n>1} thend(L) € C}, NDL .

For a class C C R and m,n > 1 we define E"C =qef {L | L € E?, Ad(L) € C} = E", Nd~(C). Now the
family 7 of all regular Wadge degrees can be characterized as follows.

Theorem 4.7 T={EpER E; \Cl|r>1m;>my> >my>1,n1,n2,...,n, > 1}U

{E”nI@llE:}rfg Eg’zf—llDTnL{L |T > 17m1 >Mmo >0 > My > 17”17”27"'unr > 1}U
{EpiEpz B LB [r>1,mg >me > - >mpe_1 > 1,n1,n9,...,n, > 1}

For our decision algorithms the following theorem will be important.

Theorem 4.8 Form >2 andn > 1, if C C CL N DL, then EnC = Cn, uDr UE"C.

An interesting relationship between the structure of 7 and ’j', resp., and the ordinal numbers below w®
should be mentioned. It is well-known that every non-zero ordinal @ < w® can be presented in the form
a=ny-wMm+ng W+ +n. WM wherer > 1, my >mg >+ >m, >0and ny,ng,...,n. >1(*%).

This gives a bijection between the ordinals below w“ and the classes of type EJl EJ2 ...E%‘[_ll(]ﬁ{r. If

o is presented in the form (*) then we define R/, =qer Ep EN2 . Bl +1Cﬁ{'f+11. Then co-R,, =

Ny — r+1 —
Ept GEr2 By Dt Forao=ngcw™ 4 ng - w™2 A+ np_y - w™ = 40, where 7 > 1, my >
D n n Npr—1 n,+1
mg > -+ >mpy_y > 1 and ny,ng,...,ny > 1 we obtain Roy1 = E0 E2 o B By where

ﬁaH =def (RQH Nco-Rat1)N (Ra Uco-Ry) and Ry =det 7@ Thus we have 7 = {R., co—R’a,ﬁaH |
a<w?}tand T = {Ry,c0-Ra, Rat1 NCo-Rot1 | o < w¥}.

There holds Rg U co-Ra € Ras1 N co-Ray1 for a < w®. Hence, (T;<y) and (7;C) have a quasi-linear
structure.

Interestingly, w.r.t. many-one reductions between regular w-languages, finite state transducers are as
powerful as arbitrary continuous functions. For L, L’ C A%, we write L <g, L’ if there exists a function
f:AY — A¥ computed by a finite state transducer such that £ € L « f(£) € L'.

Theorem 4.9 For all reqular w-languages L and L', there holds L <¢, L' if and only if L <, L'.

Finally, a “part” of a Muller automaton M accepts an w-language which is Wadge-reducible to L, (M).

Proposition 4.10 If M = (S, A,0,s0,F) is a deterministic Muller automaton and x € A* then
L,((S,A,6,6(s0,2),F)) <w Lu(M).

5 Upper Bounds for Deterministic Automata

Let M = (S,A4,9,50,€) be a deterministic w-automaton of some type, where £ describes an accep-
tance condition for this type. Obviously, M is equivalent to the deterministic Muller automaton M =

(S, A, 8,80, {5’ | S’ satisfies condition £}), i.e., there holds L, (M) = L,(M). In fact, deterministic w-
automata of arbitrary types can be considered as succinct presentations of deterministic Muller automata.
Hence the definitions of chains, superchains, and the characteristics m™, m~, n*, and n~ apply also to
these types of w-automata.

For X € {M,R,S,P,B}, let

Chainpx =def {(M,m,s,+) | M is a deterministic X-automaton, m > 1,
and s belongs to an m™chain of M}U

{M,m,s,—) | M is a deterministic X-automaton,m > 1,
and s belongs to an m ™~ chain of M}

and

Superpy =det {(M,m,n,s,+) | M is a deterministic X-automaton, m,n > 1,
and an (m,n)tsuperchain of M is reachable from s}U

{M,m,n,s,—) | M is a deterministic X-automaton, m,n > 1,
and an (m,n)” superchain of M is reachable from s}

We observe

Proposition 5.1 Let M be a deterministic X-automaton, and let m,n > 1.
1. m*T (M) > m <= there exists an s € S such that (M, m, s, +) € Chainpx.
2. m~ (M) > m <= there exists an s € S such that (M, m,s,—) € Chainpx.
3. nT(M) >n <= (M, m(M),n,sg,+) € Superpx.

4. 0= (M) > n <= (M,m(M),n, sg,—) € Superpx.

In what follows, we will make use of the fact that the class NL is closed under complementation and
consequently, the NL-query-hierarchy collapses to NL. That is, if we use NL-oracles during an NL-
computation then this can be simulated by an NL-computation without oracle. So it will be sufficient
to present LN"-algorithms or NLN"-algorithms for the problems in question. This applies also to NL-
computations with a fixed additional oracle A. That means, for example, LNV = NLNY = NLA. We
should hint to some subtlety: When using oracles during an NL-computation, the oracle queries have to
have the form (x, z) where z is the input of the base computation and |z| < ¢ - log|z| for some constant
¢ > 0. For L-computation with oracle, there is no such restriction.

It turns out that, for deciding the topological degrees, the complexity of Chain plays a central role.
Knowing its complexity, the complexity of the topological degrees follows in a uniform way.

Lemma 5.2 Let X € {M,R,S,P,B}.

1. Superpy € NLChainox,

2. There ewists an LNL"""P% -algorithm which, given a deterministic X-automaton M, computes the

characteristics m* (M), m™ (M), n* (M), and n~ (M).

3. There exists an LNV""*"P% -algorithm which, given a deterministic X-automaton M, computes dAM.

4. For every CC R} zf (C)DX c NLChaian then (dflc)DX c NLChainDX'

Proof. 1. For a deterministic X-automaton M = (5, A, 9, s9,&), m,n > 1, and s € S there holds

(M,m,n,s,+) € Superpyx <= there exist si, s2,...,8, € S such that
s; is reachable from s;_1, for i =1,2,...,m,
(M,m,s1,4), (M, m,s3,+), (M, m,s5,+),- - € Chainpx, and
(M,m, s3,—), (M, m,s4,—), (M, m, sg,—), - € Chainpx,

and analogously for (M,m,n,s, —). This gives an NLChainox _aleorithm for Superpyx.

2. Easy by using Proposition 5.1 and Lemma 5.2.1.

3. For a given deterministic X-automaton M = (S, 4,4, s0,€), if m™(M) = 1 or n™ (M) # nt (M)
then M is put out. Otherwise, the automaton ((d*SNd~S)U{s™,s™}, A, dd, so,&’) has to be generated
where £’ is the restriction of £ to subsets of d¥S N d~S. The main problem here is to decide s €
dS* and s € dS™ for given s € S. But this is equivalent to (M, m(M),n(M),s,+) € Superpx and
(M, m(M),n(M), s, —) € Superpy, resp., which can be checked by NLCMmpx_gyeries.

4. Let C C R be such that (C)px € N[Chainpx By the definition we have M € (d71C)px < dM € (C)px.

By Lemma 5.2.3, an NLex -algorithm can produce d M from M, and then one more N -query

is asked to find out whether dM is in (C)px. This results in an LNLE DX -algorithm to accept (d~1C)px,
hence (d=*C)px € N[, Chainpx O

LChaian

Theorem 5.3 For X € {M,R,S,P,B} and C € T, the problems (C)px and (C)px are in NLEPmox

Proof. By induction. We start with the classes C’n‘w]AD;}L7 and E;g For C"m, the definition yields the

equivalence M € (C)px = m(M) < mV (mM) =mAn"(M) < n). Using this and Lemma
5.2.2 we can check M € (C)px by an L-algorithm with an NL“""PX_oracle. The argument for

(D7)px and (E™)px is completely analogous. By the Statements 5 and 6 of Theorem 4.3 we obtain
(C%)DX, (DZL)DX, (E:Ln)DX 6 LNLChalnDX _ NLChaian-

For the induction step, let m > 2, n > 1, and E*,C € 7. Consequently, C C C.,, N D! . By Theorem 4.8
and the respective definitions we obtain

M e (EnC)px <= M € (C™)px VM € (D™)px V (M € (E™)px A M € (d~1€)px) and
M e (E%C)DX — Me (E:Ln)DX AM e (d_1C)Dx.

By the assumption of our induction we know that (é)DX and (C)px are in NLEh@nox By Lemma 5.2.4
also (d='C)px and (d~'C)px are in NL"px - Consequently, (E7C)px and (E?,C)px are in NLEhainox,
O

6 Deterministic Muller Automata

In this section, let M = (5, A, 4, so, F) be a deterministic Muller automaton where F = {57, S,...,S,}.
We define a few problems needed for our algorithm. Let m,n > 1.

(M, 1,7) € Subset Sdef S; C 5
(M,1i,j) € Subseteq <qer S; €5
(M, s,s") € Reach Saer Iz € A*)(0(s,2) = &)
(M, i) € Loop Sger S 1s a loop of M
(M,]) € Between™ <ge¢ k(S is a loop of M and S; C Sj, C S;)
(M,i,j) € Between™ <qgef (M, 1) € Betweent A 3S’(S” is a loop of M and S; C S’ C 5;)
(M, i) € Outside™ <qer k(S is a loop of M and S; C Sy)
(M, i) € Outside”™ <gef (M,4) € Outside™ A 3S’(S” is a loop of M and S; C 5”)
(M, i) € Insidet ©qer k(S is a loop of M and Sy, C S;)
(M,i) € Tnside™ <gef (M,4) & Inside™ A 3S'(S" is a loop of M and S’ C S;)

Lemma 6.1 1. The problems Subset, Subseteq, Reach, Loop, Between™, Between~, Outside™, Outside ™,
Inside™, and Inside™ are in NL.
2. Chainpy € NL.

Proof. 1. It is evident that Subset, Subseteq are in L. and that Reach is in NL.
For Loop we use the obvious equivalences

(M, i) € Loop <= there exist s € S; and z,z € A* such that d(sg,z) = s, d(s,2) = s,
and 0(s,2) = S;
<= there exist z,u = wiug ... u; € A* such that 6(so,x) = s1, 6(sj,u;) = s;41 for
i=1,2,...,0—1, 8(s;,u;) = s1, and §(s1,u) C S; where s1, 82,...,5 are the
elements of S; in the order they appear on the input tape.

At the beginning the algorithm guesses nondeterministically an € A* (without storing it) and simulates
M with start state sg on x until M reaches the state s;. Now it guesses nondeterministically an u; € A*
(without storing it) and simulates M with start state s; on w; until M reaches the state sy where it is
checked whether every reached state is in S;. Then it proceeds in the same way with us,us, ..., u; (set
S1+1 =def S1). If all checks are positive then the algorithm accepts. This is clearly an NL-algorithm.

Easy LN"-algorithms for Between™, Outside™, and Inside™ are given just by their definitions.

To decide Between —, the condition (M, i) & Between™ is in co-NL, and the condition 35’(S’ is a loop in M
and S; C S’ C S;) can be verified by an NL-algorithm which works just as the one for Loop but it checks
whether every reached state is in .S; instead of S;. Similar algorithms can be designed for Outside™ and
Inside™.

2. For Chainpy; we consider the following obvious equivalences

10

(M,2m +1,5,+) € Chainpy <= there exist iy, 42, ..., 4,41 such that S;,,S;,,...,S;, ., are loops,
5 € 8j,,.,, and there exist loops Ri, Ry, ..., Ry € P(S)NF
such that S;, CR;1 C S, CRy C--- C Ry, C S,y
<= there exist i1,2,...,%m, j1,J2,...,Jm such that s € 5 _,
and for all = 1,2,...,m there holds:
-8, and S;, are loops and S;, C S; ., if up <m,
— there is no loop S such that S;, C Sx C §j,, and
— there is a loop S such that S;, C S’ C Sj,
<= there exist i1,2,...,%m,j1,J2, ..., Jm such that s € 5,
and for all = 1,2,..., m there holds:
(M, i,) € Loop, (M, j,) € Loop, (M, ju,i,us1) € Subset if p < m,
and (M, iy, j,) € Between™ .

From the latter equivalence we can easily get an NLNL—algorithm to accept (M, 2m+1,s,+4) € Chainpy.
For (M, 2m,s,+) € Chainpy, (M,2m + 1,s,—) € Chainpy, and (M, 2m,s,—) € Chainpy and we
obtain similar equivalences and algorithms. O

Now we prove the main result of this section.

Theorem 6.2 For C € T, the problems (C)pnm and (C)pum are NL-complete.

Proof. The membership of these problems to NL follows immediately from Theorem 5.3 and Lemma
6.1.2.

For the hardness in NL we reduce the complement of an NL-complete version of the graph accessibility
to our problems (which completes the proof because of co-NL = NL).

The graph accessibility problem remains NL-complete if the instances are restricted to directed acyclic
graphs (V,) with one source s and two sinks ¢ and ¢t~ where all non-sinks have outdegree 2. Let GAP’
denote the set of such instances (V, E,s,tT,¢7) such that there exists a path from s to .

We start with deterministic Muller automata with input alphaber A. Let M; and M5 be deterministic
Muller automata with input alphabet A such that L,(M;) € C and m(M;) < m(Mz). Note that this
implies L, (M) & C.

Given an instance (V, E,s,t7,t7) to GAP’, we construct from this and the automata M; and Mz a new
deterministic Muller automaton M as follows. The initial part of M is the graph (V, E'), where for every
non-sink v € V one outgoing edge is used for the input symbol 0, and the other outgoing edge is used
for all other input symbols. The sink ¢~ is identified with the initial state of M7, and the sink t* is
identified with the initial state of M. The initial state of M is s, and final sets of M are the final sets
of My and the final sets of M.

If (V,E,s,tT,t7) is not in GAP’ then there is no path from s to ¢+ and hence the loops in Msy are not
loops in M (because the cannot be reached from the initial state of M). If there is no path from s to ¢*
then there is a path from s to t~. Hence the loops of M are just the loops of M;. Consequently, L, (M)
and L, (M) are in the same Wadge degree, i.e., L,(M) € C.

If (V,E,s,tT,t7) is in GAP’ then there is a path from s to tT and hence the loops in My are also loops
in M. Also ¢t~ can be reachable from s, and hence the loops of M; can also be loops of M. However,
because of m(Mj) < m(My) the chains in M; do not contribute to the superchains in M. Consequently,
L,(M) and L, (Msy) are in the same Wadge degree, i.e., L,(M) & C. O

7 Deterministic Mostowski and Biichi Automata

For these types of automata we can prove the same results as for deterministic Muller automata.

Lemma 7.1 The problems Chainpp and Chainpg are in NL.

11

Proof. Since Biichi automata are special Mostowski automata, it is sufficient to prove the lemma
for Mostowski automata. Let M = (S, 4,9, s0,{(E1, F1), (E2, Fs),...,(Er F-)}) be a deterministic
Mostowski automaton auch that £y C Fy C Ey C Fy, C --- C E,. C F,.. Because of these inclusions, the
condition A\!_, (S'NE; # 0V S'NF; =) is equivalent to the condition \/:ill(S’ﬂEi #OANS'NF;_1 =0),
where FO =def @ and ET+1 =def S.

Now we obtain the following equivalences:

(M, m,s,+) € (Chain)pp <= s belongs to an m™chain in M

<= s belongs to an m™chain in M’

<= there exist loops S1 C Sy C --- C Sy, such that
Vi (SuNE;=0AS,NF; #0) for p=1,3,5,... and
N (SuNE; 0V S, NF;, =0) for p=2,4,6,...

<= there exist loops S C Sy C --- C Sy, and i1 > iy > - -+ > iy, such that
S,NE;, =0and S, NF;, #0 for p=1,3,5,... and
S,NE;, #0and S, NF;,_1 =0 for p=2,4,6,...

<= there exist s € S, x,u1,us,..., U,y € A*, and i; > iy > -+ > i, such that
0(s0,) = s,
0(s,u;) =sfor p=1,2,...,m,

5(s,u,) N Eiy =0 and 6(s,u,) N Fy, # 0 for p=1,3,5,..., and

8(s,u,) N By # 0 and 6(s,uy,) N EFy—q = 0 for p=2,4,6,....
The latter can be tested by the following NL algorithm.

Guess s € S.

Guess z letterwise and check §(s,,x) = s.

For p=1,2,....m:
— Guess i,. If 4 > 1 check 3, < ,41.

[e]

o

[¢]

— If 11 is odd then guess u,, letterwise and check
§(syu;) = s, 6(s,up,) N By, =0, and 6(s,u,) N Fyy, # 0.
— If i1 is even then guess u,, letterwise and check
§(syu;) = s, 6(s,up,) N By, # 0, and 6(s,uy,) N Fimr = 0.

Accept if all checks are o.k.

@]

For (M, m, s, —) € (Chain)pp we obtain analogous equivalences and an analogous algorithm. 0

To understand Statement 2 of the following theorem remember that deterministic Biichi automata can
accept just the sets from C3, i.e., from C}, C7, D7, and E} for n > 1

Theorem 7.2 1. For every C € T, the problems (C)pp and (C)pp are NL-complete.
2. The problems (Cy)ps, (CP)ps, (CP)ps, (DM)bE, (DM)DB, (EM)DB, and (E7)pE are NL-complete

forn > 1.
Proof. The membership of these problems to NL is given by Theorem 5.3 and Lemma 7.1.

The NL-hardness for deterministic Mostowski automata can be shown in exactly the same way as for
deterministic Muller automata, see Theorem 6.2.

For deterministic Biichi automata we need a modification of the above proof. For C}, D}, and E} the
proof works if we choose My such that L,(Mas) € C?H. For C} we choose M; and M, such that
L,(M;) =0 and L,(Msz) € Ci. This shows GAP’ <!°¢ (Cl)pp. O

8 Deterministic Rabin and Streett Automata

We start with the complexity of chains and superchains. Just by guessing a possible chain or superchain
and testing whether it is really one we obtain

12

Proposition 8.1 The problems Chainpgr, Chainpg, Superpy, and Superpg are in NP.

From Theorem 5.3 we obtain immediately that the problems ((f)DR and (C)pr are in PNF forall C € 7.
However, in some cases there are better upper bounds in terms of the Boolean hierarchy {NP(n)},>1
over NP (see e.g. [WWB85]); recall that NP(1) coincides with NP, NP(2) is the class of differences of
NP-sets and NP(3) is the class of sets (A~ B) U C where A, B,C are NP-sets. Unfortunately, in most
cases there remains a gap between upper bound and lower bound. We consider Rabin automata first.

Theorem 8.2 1. The problem (C})pr is NL-complete.
2. The problem (D})pr is P-hard and in co-NP.

3. The problems (CI)pr and (DI)pr for m +n > 2, and the problems (EX)pr for m,n > 1 are
P-hard and in NP(2).

4. The problems (C)pr and (D?,)pr for m +n > 2, and the problems (E)pr for m,n > 1 are
P-hard and in co-NP(3).

5. For every C € T\ U,, ,>1{Ch,, DIy, EN}, the problems (C)pr and (C)pr are P-hard and in PNY.

Proof. 1. The upper bound follows from the fact that (Ci)xg is in NL (Theorem 9.1). The hardness
follows from the NL-hardness of (C1)pp (Theorem 7.2) because Mostowski automata are special cases of
Rabin automata.

Now we consider the upper bounds for the Statements 2, 3, 4, and 5.
2. From Theorem 9.2 we conclude (C})ps € co-NP, and Proposition 3.3 yields (D1)pr € co-NP.

For 3 and 4, the upper bounds follow from the definition of the classes in question, the fact that the
characteristics used in this definitions can be expressed by Chainpr and Superpy (Proposition 5.1), and
by Proposition 8.1.

For 5, the upper bound is is an immediate consequence of Proposition 8.1 and Theorem 5.3.

Now we prove the P-hardness results for the Statements 2, 3, 4, and 5. Because of Proposition 3.3 it is
sufficient to prove that (C)ps and (C)ps are P-hard for all C € 7~ {D}}.

Let C € T~{D}}, and let M = (S, A, 4, 50, &) be a deterministic Streett automaton such that Lw(M) € C.

We reduce the P-complete satisfiability problem for anti Horn formulas to (C)ps and (C)ps. For a given

anti Horn formula H = Hy A Hy A--- A H, with variables x1, ..., x; we construct the deterministic Streett
automaton M7 =qef (S, A, 6, 50, {(E1, F1), ..., (B, Frgom) } U E) where
o S —def {30781, e ,Sk,Sll, e ,S;C,’/‘l, e ,7“2m+1,t} U S,
_ _ s itz in H; -
o Ei =aet {s; | j € Hi} and F; =aef { {t} if no negated variable is in H; fori=1,....m,

Eryi =aet {r2iv1} and Fryy =qer {roi} fori=1,...,m,
t ifa=0
o 6(50,@) —def { 50 1f(1, # O)

0(sj,a) =aef 8 for j=1,...,k and a € A,

s, ifa=0 . ifa=0
3(s},a) :def{8;+1 ifa#O}forjzl""’k_landé(s;“’a) :def{li ;fz7é0’
8(rj,a) =gef { :Hl EZ;O } for j=1,...,2m and 6(ram+1,a) =aet t for a € A,

0(t,a) =qet 8§ for a € A, and
(s, a) =gt 0(s,a) for s € S and a € A.

The transition function ¢ is illustrated by the next figure where the input symbol 1 stands for every
symbol from A~ {0}.

13

The only loops of M} are the loops of M and the sets S'U{st, ..., sk, 1, .., th with 8" C {s1,...,s5}
and 1 <1 <2m+1. Aloop S"U{s},...,s},r1,...,7,t} fulfills the acceptance condition of M7} if and
only if the assignment I defined by I(x;) =1 <qef 81 € S’ satisfies H and [is odd.
If H is satisfiable then there is an satisfying assignment I. For [=1,...,2m + 1

o the loops {s; | I(z;) = 1} U{s),...,s},71,...,7,t} for odd I satisfy the acceptance condition of

7 and
o theloops {s; | I(z;) = 1}U{s],..., s}, 71,...,71,t} for even I do not satisfy the acceptance condition
of M.

Hence these loops form a (2m + 1)*chain, i.e., mT(M7) > 2m + 1 and M7 & (C)ps.

If H is not satisfiable then only loops of M can satisfy the acceptance conditions of M7%. Consequently,
the non-M part of M7} can enrich the chain and superchain structure of M only if m(M) = 1, n* (M) =

1, and n= (M) = 0. But this means L, (M) € D] which case we do not deal with here. O

Because of Proposition 3.3 we obtain

Theorem 8.3 1. The problem (D})ps is NL-complete.
2. The problem (C})ps is P-hard and in co-NP.

3. The problems (CI,
and in NP(2).

4. The problems (C%)Ds and (]A)%)Ds form+n > 2, and the problems (E%)Ds form,n > 1 are P-hard
and in co-NP(3).

5. For every C € T~ |J

)ps and (DI})ps for m+n > 2, and the problems (EI',)ps for m,n > 1 are P-hard

{Cr,Dr Em}, the problems (C)ps and (C)ps are P-hard and in PN*.

m,n>1
It should be noticed that we would obtain exact complexity results for deterministic Rabin and Streett
automata if we could show that Chainpr (or, equivalently, Chainpg) is in P. By Theorem 5.3, Theorem
8.2, and Theorem 8.3 we obtain

Theorem 8.4 Assume Chainpgr € P.

14

1. For all C € T~ {Cl}, the problems (C)pr and (C)pr are P-complete.
2. For all C € T~ {D1}, the problems (C)ps and (C)ps are P-complete.

However, we even do not know the complexity of the problem (D})pgr, that is the problem of whether
every loop of a given deterministic Rabin automaton satisfies the acceptance condition of this automaton.
We know that this problem in P-hard and in co-NP, but we do not know whether this problem is in P
or co-NP-complete.

9 Nondeterministic Automata

Let M = (S, A, 4, s0,E) be a nondeterministic w-automaton of some type. A set S C S is a loop of M
if there are [> 1, © € A*, ay,...,a; € A, and $1,...,5 € S such that {s1,...,5} = 5', s1 € d(s0,2),
Sj+1 € 0(sj,a4) for j=1,...,1—1, and s1 € 6(s;,).

Theorem 9.1 Let T € {NR,NM, NP, NB}.
1. The problem (Ci)r is NL-complete.
2. For every C € T~ {C1}, the problems (C)r and (C)r are PSPACE-complete.

Proof. 1. Upper bound. Since Mostowski and Biichi automata are special cases of Rabin automata, we
can restrict ourselves to Muller and Rabin automata.

Let M = (S, A, 6, so, {(E1, F1), ..., (Er, F.)}) be a nondeterministic Rabin automaton. We conclude
M ¢ (C{)nr & there exists a loop of M which satisfies the acceptance condition of M
& there exists x € A*, 1> 1,a1,...,a; € A,$1,...,8 €S, andi € {l,...,r}
such that s1 € §(so, x), sj41 € 0(sj,a;5) for j=1,...,1—1,51 € 6(s1,),
{s1,...,s1yNE; =0 and {s1,...,5} NF; #0.

The latter can be checked by an NL-algorithm. Hence (C{)ng € co-NL = NL.

For a nondeterministic Muller automaton M = (S, 4,9, s, {S1,...,S5,}) we obtain

M ¢ (Ci)nm & there exists i € {1,...,7} such that S; is a loop of M
< there exists i € {1,...,7} (let s1,..., s be the states in S; in the order they appear
on the input tape),z,u = uy ...u; € A* and vy,...,v; € S* such that, for j=1,...,1:
— v; is a possible sequence of states for input u; to M with initial state s;,
— the last state of v; is s;11(set ;41 =der 1), and
— all states of v; are in S;.

The latter can be checked by an NL-algorithm. Hence (C})xm € co-NL = NL.

The hardness follows from the fact that these problems for the corresponding deterministic types are
already NL-hard.

2. Upper bound. Since a nondeterministic Muller automaton can be converted in polynomial time into
an equivalent nondeterministic Rabin automaton, and since Mostowski and Biichi automata are special
cases of Rabin automata (see Theorem 3.5) we can restrict ourselves to the case of nondeterministic
Rabin automata.

In [Sa88] an algorithm A; is given which converts a nondeterministic Rabin automaton M with n states
into an equivalent deterministic Muller automaton M’ with 2°(?1°87) states. The states of M’ are trees
of maximum size n which are labeled with sets of states of M. The procedure to find the next state for
an input symbol is done in space polynomial in n. Hence the algorithm A; works in polynomial space.

Now we combine this polynomial space algorithm A; which converts the nondeterministic Rabin automa-
ton M into a deterministic Muller automaton M’ with the NL-algorithm A, from Theorem 8.3 checking

15

Lo(M’') € C or L,(M’) € C, resp. The problem arises that we cannot write down the exponentially
long M’ in polynomial space. We overcome this difficulty as follows. We do not store M’ but only the
position of the input head of A; when working on M’. Any time when A5 needs another bit of M’ we
let re-run the computation of A; on M until the moment when this bit is produced. Combining A; and
Ajg in such a way we obtain a PSPACE-computation.

Hardness. We reduce the PSPACE-complete problem of whether a given finite nondeterministic au-
tomaton (on finite words) accepts A* (see [MST72]) to our problems. Fix two regular w-languages
Ly ¢ C and Ly € C. Define the homomorphism h : A* — A* by h(a) =gt aa for a € A, and
set A =g A2~ {aa | a € A}. For every language L C A* we define the w-language L' =qef
0h(L)AA® U Oh(A*)AL; U Oh(A)® U (A~ {0})Ly. Obviously, for a given nondeterministic finite au-
tomaton M accepting L one can construct in logarithmic space a nondeterministic automaton of any
type that accepts L'.

If L = A* then L' =g¢r OR(A*)AA“ UOR(A)* U (AN {0})Ly = 0A% U (A~ {0})Ly. Because of C # Cl
we have m*(Ly) > 1. Since m*(4%) =1 and m™ (A4%) = 0, the 0A¥ part of L' connot enrich the chain

and superchain structure of the (A~ {0})L; part of L’. Consequently, L’ and Lo are in the same Wadge
degree, i.e., L' € C.

If L # A* then there exists an xy € A*~ L. Because of 0h(x0)014% N Oh(L)AA“ = § we obtain
0h(29)01A¥ N L' = 0h(x)01L,. Consider a deterministic Muller automaton (S, 4, §, s, F) accepting L’.
Then (5, A, 0, (s, 0h(x9)01), F) accepts Li. Because of Proposition 4.10 we have L; <, L', and by
L1 & C we obtain L' ¢ C. O

Theorem 9.2 1. The problem (C})xs is P-hard and in co-NP.
2. For every C € T~ {C1} the problems (C)xs and (C)ns are PSPACE-hard and in EXPSPACE.

Proof. 1. Upper bound. Let M = (S, A,9J, so,{(E1, F1),...,(E, F;)}) be a nondeterministic Streett
automaton. The upper bound follows from the equivalence

M € (Cl)ps & V(5" € 8)(S" loop in M — \/(S'NE; =0 A S NF; #0))
=1
which is clearly a co-NP-condition.

For the P-hardness observe that even (C1)pg is P-hard (Theorem 8.3).

2. Upper bound. An exponential time algorithm can convert the nondeterministic Streett automaton
M= (54,6 s0,{(E1,F1),...,(E F.)}) into the equivalent nondeterministic Muller automaton M’ =
(S,4,8,50,{S"CS| N, (SNE; #0Vv S NF;, =0)}). Now apply Theorem 9.1.2.

The PSPACE-hardness follows from the PSPACE-hardness of the corresponding problems for Mostowski
automata (Theorem 9.1.2) because of Theorem 3.5 and Proposition 3.4. O

Acknowledgement. The authors are grateful to Ludwig Staiger for his impressive contribution to the
theory of w-languages and for many helpful discussions.

References

[KPB95] S. Krishnan, A. Puri and R. Brayton. Structural complexity of w-automata. Lecture Notes in
Computer Science, v. 915, Springer: Berlin 1995, p. 143-156.

[La69] L.H. Landweber. Decision problems for w-automata. Mathematical Systems Theory, 4 (1969),
376-384.

[MS72] A. Meyer and L.J. Stockmeyer. The equivalence problem for reqular expressions with squaring
requires exponential time. Proc. 13th TEEE Symp. on Switching and Automata Theory (1972),
125-129

16

[Sa88]

S. Safra. On the complexity of w-automata. IEEE FOCS 1988, 319-327.

[SVW8T7] A.P. Sistla, M.Y. Vardi and P. Wolper. The complementation problem for Biichi automata

[Sta97]

[SW74]

[Th90]

[Th6]

[WaT72]
[Wa84]

[Wag79]
[WW85]

[WY95]

with applications to temporal logic. Theoretical Computer Science 49 (1987), 217-237.

L. Staiger. w-Languages. In: Handbook of Formal Languages v. 3, Springer, Berlin, 1997, 339—
387.

L. Staiger and K. Wagner. Automatentheoretische und automatenfreie Characterisierungen
topologischer Klassen reguliarer Folgenmengen. Flektronische Informationsverarbeitung und Ky-
bernetik 10 No 7 (1974), 379-392.

W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, v. B
(1990), p.133-191.

W. Thomas. Languages, automata and logic. Handbook of Formal Language theory, v. B (1996),
p-133-191.

W. Wadge. Degrees of complexity of subsets of the Baire space. Notices AMS, 1972, A-714.

W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis, University of
California, Berkely, 1984.

K. Wagner. On w-regular sets. Information and Control, 43 (1979), p. 123-177.

G. Wechsung and K.W. Wagner. On the Boolean closure of NP, Manuskript. Extended ab-
stract as: G. Wechsung, On the Boolean closure of NP, Proceedings of the 1985 Int. Conf. on
Fundamentals of Computation theory, v.199 of Lecture Notes in Computer Science, p.485-493.
Springer-Verlag, 1985.

T. Wilke and H. Yoo. Computing the Wadge degree, the Lipschitz degree, and the Rabin index
of a regular language of infinite words in polynomial time. Lecture Notes in Computer Science,

v. 915, Springer: Berlin 1995, p. 288-302.

17

