Satisfiability of Algebraic Circuits
over Sets of Natural Numbers

Christian Glafler, Christian ReitwieBner,
Stephen Travers, and Matthias Waldherr

Theoretische Informatik, Julius Maximilians Universitat Wiirzburg, Germany.

Abstract. We investigate the complexity of satisfiability problems for {U,N,~,+, x}-
circuits computing sets of natural numbers. These problems are a natural generalization of
membership problems for expressions and circuits studied by Stockmeyer and Meyer (1973)
and McKenzie and Wagner (2003).

Our work shows that satisfiability problems capture a wide range of complexity classes like
NL, P, NP, PSPACE, and beyond. We show that in several cases, satisfiability problems
are harder than membership problems. In particular, we prove that testing satisfiability for
{N, +, x }-circuits already is undecidable. In contrast to this, the satisfiability for {U, +, x }-
circuits is decidable in PSPACE.

Classification: Computational Complexity; Combinatorial Integer Circuits; Algorithms

1 Introduction

In complexity theory, satisfiability questions play an important role in understanding the
nature of computational problems. The satisfiability test for Boolean formulas is the ques-
tion of whether there exists an assignment of truth values true and false to the variables
such that the Boolean expression evaluates to true. This was the first natural problem
proven to be NP-complete [Coo71] and it is still one of the most prominent NP-complete
problems today. The latter also holds for the similar problem of testing satisfiability for
boolean circuits, where boolean expressions are described in a more succinct way.

In this paper, we investigate satisfiability questions for a more general kind of circuits,
namely algebraic circuits over sets of natural numbers. The notion of algebraic circuits
has its origin in Integer Expressions introduced by Stockmeyer and Meyer [SM73] in 1973.
An integer expression is an expression built up from single natural numbers by using set
operations (7, U, N) and algebraic operations (4, x). Stockmeyer and Meyer investigated
the complexity of membership problems for such expressions, i.e., given an expression F,
how difficult is it to test whether a certain natural number is a member of the set described
by E? Restricting the set of allowed operations results in membership problems of different
complexities.

Wagner [Wag84| introduced circuits over sets of natural numbers in 1984. The latter
describe integer expressions in a more succinct way. The input gates of such a circuit
are labeled with natural numbers, the inner gates compute set operations (~, U, N) and
arithmetic operations (+,x). Wagner [Wag84], Yang [Yan00], and McKenzie and Wagner
[MWO03] studied the complexity of membership problems for algebraic circuits over natural
numbers: Here, for a given circuit C' with given numbers assigned to the input gates, one
has to decide whether a given number n belongs to the set described by C.



In this paper, we study generalizations of these membership problems, namely satisfiability
problems for algebraic circuits over sets of natural numbers. In contrast to membership
problems, here a circuit can contain unassigned input gates. The question is, given a circuit
C with gate labels from O, O C {~,U,N,+, x}, and given a natural number n, does there
exist an assignment of natural numbers to the variable input gates such that n is contained
in the set described by the circuit? We denote this problem with SC(O).

As our circuits can still contain non-variable input gates with fixed inputs, it is immediate
that a satisfiability problem always is a generalization of a membership problem. Hence,
solving a satisfiability problem is at least as hard as solving a membership problem.

Notice that the domain of the input variables is unbounded, hence it is not a priori clear
that our satisfiability problems are decidable. Nevertheless, we can characterize the com-
plexity of many satisfiability problems precisely by proving them to be complete for (de-
cidable) complexity classes. In other cases however, we can formally prove the satisfiability
problem to be undecidable: We show that the problem of solving diophantine equations,
which was proven to be undecidable by Matiyasevich [DPR61,Mat70], can be reduced to
SC(N, +, x), the problem of testing satisfiability for {N, 4+, X }-circuits.

Interestingly, if we start with SC(N, +, x) and drop one of the operations N, +, or X, then
in all three cases we arrive at an NP-complete problem, namely SC(+, x), SC(N,+), or
SC(N, x). The latter is of particular interest, since in contrast to most other NP-complete
problems, here the membership in NP is more difficult to show than the NP-hardness.
For this end, we introduce a problem that addresses the solvability of certain systems of
monom equations. The nontrivial fact that integer programming is contained in NP allows
us to show that the solvability of systems of monom equations also belongs to NP. Finally,
this can be used to establish SC(N, x) € NP.

Our main open question is whether SC(7,U,N, x), the satisfiability problem for
{7,U,N, x }-circuits, is decidable. A further open question is to find a better lower bound
for the satisfiability problem for {x }-circuits. We prove this problem to be in UP NcoUP.

A summary of our results (Table 1) and a discussion of open problems can be found in
the conclusions section.

2 Preliminaries

We fix the alphabet X' = {0,1}. X* is the set of words, and |w| is the length of a word
w € X*. N denotes the set of the natural numbers, N denotes the set of positive integers.
We denote with L, NL, P, NP, coNP, and PSPACE the standard complexity classes whose
definitions can be found in textbooks on computational complexity [Pap94].

We extend the arithmetical operations 4+ and - to subsets of N: Let M, N C N. We define
the sum of M and N as M + N Z{m +n:m € M and n € N}. We define the product of
M and N as M x NZ{m-n:m € M and n € N}. Unless otherwise stated, the domain
of a variable is N.

For a complexity class C, let 3P-C denote the class of languages L such that there exists a
polynomial p and a B € C such that for all z, z € L <= Jy(|y| < p(|«]), (z,y) € B).



Unless stated otherwise, all hardness- and completeness-results are in terms of logspace
many-one reducibility.

2.1 Satisfiability Problems for Circuits over Sets of Natural Numbers

We define the circuit model and related decision problems. A circuit C = (V, E, g¢) is a
finite, non-empty, directed, acyclic graph (V, E') with a specified node go € V. The graph
can contain multi-edges, it does not have to be connected, and V' = {1,2,...,n} for some
n € N. Moreover, the nodes in the graph (V, E) are topologically ordered, i.e., for all
v1,v9 € V, if v1 < vy, then there is no path from vy to v1. The nodes in V are also called
gates. Nodes with indegree 0 are called input gates and g¢ is called the output gate. If in
a circuit there is an edge from gate u to gate v, then we say that u is a direct predecessor
of v and v is the direct successor of u. If there is a path from u to v but u is not a direct
predecessor of v, then w is an indirect predecessor of v and v is an indirect successor of u.

Let O C {U,n, ~,+, x}. An O-circuit with unassigned inputs C = (V, E, gc, @) is a circuit
(V,E, gc) whose gates are labeled by the labeling function o : V- — O UN U {x} such
that the following holds: Each gate has an indegree in {0, 1,2}, gates with indegree 0 have
labels from N U {x}, gates with indegree 1 have label ~, and gates with indegree 2 have
labels from {U,N, +, x}. Input gates with a label from N are called assigned (or constant)
input gates; input gates with label x are called unassigned (or variable) input gates.

Let u; < --- < u, be the unassigned inputs in C, and let z1,...,z, € N. By assigning
value z; to the input u; for 1 <1i < n, we obtain an O-circuit C(xy,...,x,) whose input
gates are all assigned. Consequently, if C' has no unassigned inputs, then C' = C().

As all input gates of the circuit C(x1,...,x,) have some natural number assigned to it,
each gate g € V computes a set I(g) C N, inductively defined as follows:

{a(g)}, if alg) # *,

{z}, fg=ugforake{l,...,n}

— If g has label ~ and direct predecessor g;, then I(g) £ N — I(g1).

— If g has label o € {U,N,+, x} and direct predecessors g; and go, then we define

I(9) £1(g1) o I(g2).

— If g is an input gate, then I(g) £ {

We define I(C(z1,...,2,)) L I(gc), the set computed by the O-circuit C(z1,...,x,). If
a circuit computes a singleton, we will sometimes write I(C(x1,...,2,)) = a instead of

I(C(z1,...,25)) = {a}.

Definition 1. Let O C {U,N, ", +, x}. We define membership problems, equivalence
problems, and satisfiability problems for circuits.

MC(0) £ {(C,b) | C is an O-circuit without unassigned inputs, b € N, and b € I(C())}

SC(0) £ {(C,b) | C is an O-circuit with unassigned inputs uy < -+ < u,, b €N,
and there exist x1,...,2, € N such that b € I(C’(wl, . ,xn))}

When an O-circuit C' = (V, E, g., ) is used as input for an algorithm, then we use a suit-
able encoding such that it is possible to verify in deterministic logarithmic space whether
a given string encodes a valid circuit. In the following, we will therefore assume that all
algorithms start with such a validation of their input strings.



2.2 Examples

Let C be the circuit in Fig. 1(a). The % indicates that the sole input gate is unassigned.
Moreover, we assume that the N-gate is the output gate. If 0 is assigned to the input gate,
then both the input gate and the +-gate compute the set {0}. Consequently, the N-gate
computes {0}. For all other assignments to the input gate, the circuit computes (). Hence,
(C,0) € SC(N,+) and (C,b) ¢ SC(N,+) for all b # 0.

Fig. 1.

Let D be the circuit in Fig. 1(b). Depending on the assignments of the input gates, D com-
putes either {1} or (). Consequently, (D,1) € SC(~,N,+, x) and (D,b) ¢ SC(~,N,+, xX)
for all b # 1. The example in Fig. 1(c) shows a circuit that generates either the empty set
or any single prime.

3 Bounds that can be translated from MC(O) to SC(O)

This section summarizes upper and lower bounds that can be easily obtained from known
results about membership problems. Here we can directly take over the lower bounds, since
satisfiability problems are generalizations of membership problems. Moreover, we show
that for sets of operations O C {U,N, ~,+} and O C {U, +, x}, the satisfiability problem
can be expressed as a polynomially bounded projection of the corresponding membership
problem. This allows us to easily translate several known results into upper bounds for
satisfiability problems.

Proposition 1. The following results are immediate consequences of the results by
McKenzie and Wagner [MW03].



1. SC(~,U,N,+), SC(U,N,+), SC(U,N, x), SC(,U,N, x), SC(U,+, x) are <1%-hard
for PSPACE.

U, X) is Slrﬁg—hard for NP.

N) and SC(U) are <198-complete for NL.
) is Sg{g-hard for NL.

SC(
SC(
SC(x

SC(uU,N) is §1ﬁg—complete for P.

Gvds S0 e

By definition, the problem SC(Q) is an unrestricted projection of the MC(O) problem.
We now show that for O C {U,N, ~,+} and O C {U, +, x} this projection is polynomially
bounded.

Lemma 1. Let C be a circuit over the operations O C {U,N,~,+, x} with ezactly n
unassigned inputs. For any b € N, x1,...,z, € N and ¢ < b it holds that

1. if O C{U,n,~,+}, then
ceI(C(z1,...,24)) <= c€ I(C(min(z1,b+1),...,min(z,, b+ 1))).
2. if O C{U,+, x}, then

ceI(C(z1,...,2n)) = c € I(C(min(z1,b+1),...,min(x,, b+ 1))).

Proof. We show both parts by induction over the number of direct and indirect predeces-
sors of the output gate and, for the sake of brevity, use the notations & £z, zs, ..., z,
and min(#,b + 1) £ min (2, b + 1), min (29, b + 1),...,min(z,, b + 1).

1. For the induction base consider C to be a circuit where the output gate is the first input
gate and let ¢ < b. If this input gate is assigned, the assertion is obviously true. Otherwise,
the following equivalence holds:

ceI(C(%)) < c=m1 <= c=min(z,b+1) <= c€ I(C(min(z,b+ 1)))

For the induction step, let C be a circuit whose output gate g has at least one direct prede-
cessor, let b € N and ¢ < b. The cases where g has the label ~, U or N are straightforward.
So let g have the label + and the direct predecessors u and v. Let C} (resp., C3) be the
circuit that has u (resp., v) as output gate and is otherwise equal to C'.

Note that ¢ € I(C(z)) if and only if there exist s € I(C1(Z)) and t € I(Cy(Z)) such
that s,t < ¢ < b and s +t = ¢. Thus, by the induction hypothesis, for all these s,t it
holds that s € I(C1(z)) and t € I(Ca(z)) if and only if s € I(C(min(z,b+ 1))) and
t € I(Co(min(z,b+ 1))). We obtain ¢ € I(C(2)) if and only if ¢ € I(Cy(min(Z,b+ 1)) +
Co(min(z,b+1))) = I[(C(min(z,b + 1))).

2. The induction base, i.e., the case where the output gate is an input gate, is easy to see.

For the induction step, let C' be a circuit whose output gate g has at least one direct
predecessor, let b € N and ¢ < b. The case where g has label U or + is the same as in the
proof of the first part and is thus omitted.



So let g have label x, direct predecessors u and v and let Cy (resp., C3) be the circuit that
has output gate u (resp., v) and is otherwise equal to C. If ¢ € I(C(%)), then there exist
s € I(C1(7)) and t € I(C5(%)) such that s-t = c.

In the case ¢ = 0, without loss of generality, s must be zero. By the induction hypothesis we
have s € I(Cy(min(Z,b+1))). Then, the only possibility for ¢ ¢ I(C(min(Z,b+1))) is that
I(Co(min(Z,b + 1))) is the empty set. But this cannot happen, since the operations +, x
and U only produce empty sets if one of their inputs is the empty set and we start with
singleton sets at the input gates. So if ¢ = 0 € I(C(Z)), then also ¢ € I(C'(min(z,b+ 1))).

The case ¢ # 0 is analogous to the argumentation for + in the first part and thus the
induction is complete. O

Corollary 1. Let C be a circuit over the operations O C {U,N, ", +} or O C {U,+, x}
with exactly n unassigned inputs and let b € N.

(C,b) € SC(O) <« Tz1,...,2, €1{0,1,...,04+ 1} s.t. (C(x1,...,25),b) € MC(O)

Proof. From Lemma 1 we know that if z1,..., 2, is a satisfying input assignment for C|
then so is min(x1,b + 1),..., min(z,,b+ 1). So we have a satisfying input assignment if
and only if we have one whose values are bounded by b + 1. Therefore, (C,b) € SC(O) if
and only if b € I(C(y1,...,yn)) for some yi,...,y, bounded by b+ 1. O

Corollary 2. Let O C{U,N,~,+} or O C {U,+, x} be a set of operations and let C be
a complexity class. Then the following holds:

MC(0) e C = SC(0) € FP-C.

Proof. Follows from Corollary 1, since |(z1,...,x,)| is polynomially bounded by |(C,b)|.
O

Corollary 3. It holds that

1. SC(~,U,N,+), SC(U,N, +), and SC(U, +, x) are in PSPACE.
2. SC(~,U,n), SC(N,+), SC(U, x), SC(U, +), SC(+), and SC(+, x) are in NP.

Proof. Since 3P-PSPACE = PSPACE and 3P-NP = NP, the statement follows from Corol-
lary 2 and the results by McKenzie and Wagner [MWO03]. O

4 Satisfiability and Diophantine Equations

Circuits with gates + and x can be used to compute multivariate polynomials. The pres-
ence of N then allows us to translate the solvability of diophantine equations into the
satisfiability of circuits. Hence the latter satisfiability problems are undecidable. Particu-
larly, they are not polynomially bounded projections of their membership problems.



Lemma 2. There exists a logspace computable function that on input of a multivariate
polynomial p(xy,...,x,) computes a {+, X }-circuit C with n unassigned inputs such that

forallyy,...,yn €N, I(C(y1,...,yn)) = {01, .-, yn)}

Proof. 1t suffices to argue for terms of the form z¢ where e > 1. We construct a circuit C
that has one unassigned input such that for all z, I(C(z)) = {z°}. Let bin(e) = e - - - €.
We start with a circuit that consists of gates vy, ..., v such that vy is an input gate and
all other gates have label x. Moreover, for i € [0,k — 1], there are two edges from gate v;
to gate v;11. Observe that I(v;) = I(vp)? and therefore,

IT (vi) = I(wo)e.

i,eizl

This product can be produced by adding at most £ — 1 additional gates with label x to
our circuit and by suitably connecting these new gates to the gates v; where e; = 1. We
obtain a circuit C' such that for all z, I(C(z)) = {«°}. O

Theorem 1. SC(N,+, x) is undecidable.

Proof. We show that the question of whether a given diophantine equation has solutions in
N can be reduced to SC(N, +, x). By the Davis-Putnam-Robinson-Matiyasevich theorem
[DPR61,Mat70] this implies the undecidability of SC(N,+, x).

Let p(x1,...,2,) = 0 be a diophantine equation with integer coefficients. By moving
negative monoms and constants to the right-hand side, we obtain an equation

Wxyyoooyxn) =r(x1,. .., 2p)

such that all coefficients in [, and all coefficients in r are positive. According to
Lemma 2, we construct circuits C; and C, such that Ci(x1,...,z,) = {l(x1,...,2,)}
and Cp(x1,...,2,) = {r(z1,...,2,)}. Define a new circuit by

C'(21,. . 20) L0 x (C(z1, ..y 20) N Cr(1, .o, 20)).

Note that p(x1,...,2,) = 0 has a solution in N if and only if (C’,0) € SC(N,+,x). O

5 Decidable Satisfiability Problems

In this section we prove upper and lower bounds for decidable satisfiability problems for
circuits. Here it turns out that the problems SC(N, x), SC(+), and SC(x) are particularly
interesting. For SC(N, x), proving membership in NP is nontrivial. We finally prove this
with help of certain systems of monom equations and the (also nontrivial) result that
integer programming belongs to NP. Moreover, we show that SC(+) is likely to be more
difficult than SC(x). While SC(+) is NP-hard, SC(x) belongs to UP N coUP.



5.1 Circuits with both Arithmetic and Set Operations

The problem SC(N, x) has an interesting property. In contrast to most other NP-complete
problems, here proving the membership in NP is more difficult than proving the hardness
for NP. We start working towards a proof for SC(N, x) € NP and define the following
problem which asks for the solvability of systems of monom equations.

Name: MonEq
Instance: A list of equations of the following form.
2527 = 594322
yz? = 230
22yts3 = gl

Question: Has this system of equations a solution within the natural numbers?
Formally, the problem MonEq is defined as follows (where we define 0° to be 1).

MonEq £ {(A,B,C,D) | A = (a;;) € N™*" B = (b; ;) € N™*" C = (c1,...,¢p) € N,
D = (dy,...,dy,) € N™ and there exist z1,...,z, € N such

that for all i € [1,m], [T}, 2} = i - | wzi’j}

Note that formally, this definition neither allows constant factors at the left-hand side of
equations nor allows products of constant factors like 271 - 393 . 597, However, such factors
can be easily expressed by using additional variables. For example, the equation

73 . 1570 . x5y7 _ 372,3
can be equivalently transformed into the following system.

a="1
b=15™
aba®y” = 3723

We show that systems of monom equations can be solved in nondeterministic polynomial
time. Our proof transforms the original problem MonEq to a restricted version MonEq’
and further to a more restricted version MonEq”. Then we show the latter to be in NP
where we use the fact that integer programming belongs to NP.

Lemma 3. MonEq € NP.

Proof. We start with the definition of a variant of MonEq that restricts to positive constant
factors and positive solutions.

MonEq' £{(A, B,C,D)|A = (a; ;) € N™" B = (b;;) € N™*" C = (c1,...,cm) € (NT)™,

D = (dy,...,dy) € N™ and there exist x1,...,z, € NT such that
. a;j  d; b;,j
for all i € [L,m], [T;_; 2, = ¢ - [[j=y ;" }

8



Assume for the moment that we have shown MonEq' € NP. Under this assumption we can
describe a nondeterministic polynomial-time algorithm that accepts MonEq. The input is
a MonEq instance (A, B, C, D). First, we nondeterministically guess the variables that will
be equal to 0, i.e., we guess a set I C {1,...,n} and demand that x; = 0 for all i € I and
that 2; > 0 for all j ¢ I. This allows us to determine whether or not a certain side of an
equation is 0. We delete all equations whose sides both equal 0. If there exists an equation
that equals 0 on one side and that is different from 0 on the other side, then this equation
cannot be satisfied and hence we reject. Otherwise, all remaining equations are greater
than 0 on both sides. Hence we arrived at a MonEq' instance which by assumption can be
solved in NP. This shows MonEq € NP. So it remains to prove MonEq' € NP.

Let us define a variant of MonEq’ that restricts to the case where all constant factors and
all components of the solution are powers of the same prime number p.

MonEq” £ {(A, B,p, D) | A = (a;;) € N™" B = (b;;) € N™*" D = (dy,...,dn) € N™,
p is a prime, and there exist x1,...,z, € {p” ‘ r € N} such that

for all i € [1,m], [T/_y 27" = p% - [0y 27}
Assume for the moment that we have shown MonEq” € NP. Under this assumption we
show that MonEq € NP. Let the MonEq' instance (A, B,C, D) be our input and let
p1,...,p; be the primes that appear in the prime factorization of the numbers ¢y, ..., ¢p,.
Moreover, for k € [1,{] and i € [1,m], let e ; denote the exponent of the prime factor py,
in the factorization of c;. Let us observe the following equivalence.

(A,B,C,D) € MonEq <= Vke[l,l] 3zkq,..., 250 € {D] ’ r € N} Vie[l,m],
i,7 di bi,'
I 9”2,; =py - 1Ij= )]

(1)

The implication from right to left is easy to see, since with

l

df .

Lj= H Lk,j
k=1

we obtain a solution z1,...,xz, for the MonEq’ instance (A, B,C, D). So let us consider
the implication from left to right and let x1,...,z, be a solution for (A4, B,C, D). Let xy, ;
be the number that is obtained from z; by removing all prime factors different from py.
Observe that x 1, ..., 2y is a solution for the system on the right-hand side of (1). This
proves (1).

The equivalence (1) shows that MonEq' is conjunctively truth-table reducible to MonEq".
By our assumption, the latter is in NP and therefore, we obtain MonEq € NP. So it
remains to prove MonEq” € NP.

The definition of MonEq” demands that each element x; of the solution can be written as
x; = p% for a suitable e; € N. We obtain

(A, B,p,D) € MonEq"” <= p is prime and there exist e1,...,e, € N such that (2)
for all i € [1,m], [[j_, p%s = pdi . H?leejbi»j

<= p is prime and there exist ey, ...,e, € N such that (3)
for all 7 € [1,m], E?:l €ja;; = d; + Z?:l ejbm.

The right-hand side of (3) can be expressed by the following integer program.



= Yjo160iy < di+ 35 ejbj for i € [1,m]
— Zj:l €;a;j = d; + Zj:l ejbm for ¢ € [1,m]
—e; >0 for j € [l,n]

For such systems of inequalities, the existence of integer solutions can be verified in NP
[Kar72]. This shows MonEq” € NP and finishes the proof of the lemma. |

Using the fact that systems of monom equations can be solved in nondeterministic poly-
nomial time we now show that SC(N, x) belongs to NP.

Theorem 2. SC(N, x) € NP

Proof. We describe a nondeterministic polynomial-time algorithm for SC(N, x) on input
(C,d). Without loss of generality we may assume that the nodes 1,...,m are the unas-
signed input gates and the nodes m+1,..., m+n are the assigned input gates with labels
bi,...,b,. We recursively attach monoms of the form z{z3%--- 22, 1, to the gates of C: We
attach the monom x; to input gate i. Let ¢ be a gate with the direct predecessors i; and
i such that the monom M is attached to i1 and My is attached to is. If ¢ is a Xx-gate,
then we attach the monom M; - Ms to i (where we simplify the product in the sense that
multiple occurrences of variables x; are combined). If 7 is a N-gate, then we attach the
monom M to 4. In this way, we attach a monom to each gate of C'. Now each N-gate ¢
that is (directly or indirectly) connected to the output gate induces a monom equation
M, = M, where M; and M, are the monoms that are attached to ¢’s direct predecessors.
These equations form a system of monom equations. Next we add the following equations
to this system.

— For i € [1,n] the equation x,,.; = b; where b; is the label of the assigned input gate
m+ 1.
— The equation M = d where M is the monom attached to the output gate.

Our algorithm accepts if and only if the obtained system of monom equations has a solution
within the natural numbers.

By Lemma 3, the described algorithm is a nondeterministic polynomial-time algorithm.
So it remains to argue for the correctness of this algorithm.

For a monom M attached to some gate, let M(aq,...,am,b1,...,b,) denote the number
that is obtained when M is evaluated for 1 = aq, ..., Ty = am, Tmy1 = b1, - - o, T, = by
A straightforward induction on the structure of C' yields the following.

Claim. If gate g has the monom M attached, then for all ay, ..., a,, € N, the gate g of the
circuit C(ay,...,an) either computes () or computes the set {M(aq,...,am,b1,...,b,)}.

We show that the algorithm accepts (C,d) if and only if (C,d) € SC(N, x).

Assume our algorithm accepts on input (C,d). So there exist ai,...,a, such that
a1,---,0m,b1,...,b, is a solution for the constructed system of monom equations. Sup-
pose I(C(ai,...,am)) = 0. Then there exists a N-gate g with direct predecessors g;

10



and go such that g is connected to the output gate, I(g1) # 0, I(g2) # 0, and
I(g1) # I(g2). Let M, M, and My be the monoms attached to g, g1, and go respectively. By
Claim 5.1, I(g1) = {Mi(a1,...,am,b1,...,b,)} and I(g2) = {Ma(a1,...,am,b1,...,bp)}.
The equation M; = DM, appears in our system of monom equations. Therefore,
Mi(ai,...,am,b1,...,bn) = Ma(ay,...,am,b1,...,b,) and hence I(g1) = I(g2). We have
already seen that the latter is not true and so it follows that I(C(ay,...,an)) # 0. Now
let M denote the monom attached to the output gate. By Claim 5.1, I(C(aq,...,ay)) =
{M(ay,...,am,b1,...,b,)}. The equation M = d appears in the system of monom equa-
tions. This shows I(C(ay,...,an)) = {d} and hence (C,d) € SC(N, x).

Conversely, assume now that (C,d) € SC(N, x), i.e., there exist ai,...,a, € N such
that I(C(a1,...,am)) = {d}. We show that x1 = a1, ..., Ty, = amy Ty = b1, .,
Tman = bp is a solution for the system of monom equations that is constructed by the
algorithm. The latter immediately implies that the algorithm accepts on input (C,d). In
the circuit C'(aq,...,ay), each N-gate g that is connected to the output gate computes a
nonempty set. So if g; and go are the predecessors of g, then I(g) = I(g1) = I(g2). Let
M, My, and Ms be the monoms attached to g, g1, and g9 respectively. From Claim 5.1
it follows that M (a1,...,am,b1,...,bn) = Ma(ay,...,am,b1,...,b,). So all equations of
the form M; = M> are satisfied. Moreover, the additional equations of the form xy,4; = b;
are trivially satisfied by our solution. From I(C(ay,...,a,)) = {d} and from Claim 5.1
it follows that M(ay,...,am,b1,...,b,) = d where M is the monom attached to C’s
output gate. This shows that all equations of our system are satisfied by the solution
(a1,...,Qm,b1,...,b,) and it follows that the algorithm accepts.

Finally, we establish the lower bound for SC(N, x).

Theorem 3. SC(N, x) is <w&-hard for NP.

Proof. Now we show the NP-hardness of SC(N, x) by describing a <18 reduction from
3SAT to SC(N, x). Let f(x1,...,x,) be the input, i.e., f(z1,...,2,) =di Ada A+ ANdp,
where the d; are clauses that are a disjunction of three literals a;, b;, and ¢; (literals are
either z; or ;). We construct a circuit C' that has the following input gates:

- wl,w_l,...,l'n,ﬁ
- yl?%?“wy’ﬁuy_’mand 215215y Zmy Zm

For each variable z; we construct a subcircuit that computes (z; X T;) X (x; X T;) X (z; X T7)
at its output gate s;. For each clause d; = a; V b; V ¢; where a;, b;, and ¢; are literals, we
construct three subcircuits: a first one that computes (y; X 7;) X (y; X U7) X (y; X ¥;) at its
output gate u;, a second one that computes (z; X Z;) X (2; X Z;) X (2; X Z;) at its output
gate v;, and a third one that computes a; X b; X ¢; X y; X z; at its output gate w;. Finally,
the output gate of C' computes the intersection of all s;, u;, v;, and w;. Now our reduction
outputs (C,8).

Observe that the reduction can be computed in logarithmic space. We now argue that it
reduces 3SAT§1rﬁgSC(ﬂ, x ). First, assume that the input f(z1,...,2,) =di AdoA---Ndy,

11



belongs to 3SAT. So there exist e1, ..., e, € {0,1} such that f(eq,...,e,) = 1. We assign
the numbers 2% to the input gates z; and 2'7¢ to the input gates ;. By doing this, we
make sure that all gates s; evaluate to 8. Moreover, we assign the following numbers to
the input gates y;, ¥;, 2;, and Z;: If the clause d; contains 3 literals that evaluate to true
with respect to the assignment eq,...,e,, then assign 1 to y; and z; and assign 2 to ¥;
and %;. If d; contains 2 such literals, then assign 2 to y; and Z; and assign 1 to 7; and z;.
If d; contains 1 such literal (there must be at least one), then assign 2 to y; and z; and
assign 1 to 7; and Z;. Observe that this assignment makes sure that all gates u;, v;, and w;
evaluate to 8. Hence, the output gate of C' evaluates to 8 which shows (C,8) € SC(N, x).

Now assume that (C,8) € SC(N, x); we will show f(x1,...,x,) € 3SAT. By assumption,
all gates s;, u;, v;, and w; evaluate to 8. The value 8 at each s; implies that one of z; and
T; has input 2 while the other one has input 1. Similarly, the value 8 at each u; (resp., v;)
implies that one of y; and 7; (resp., z; and z;) has input 2 while the other one has input 1.
If z; has input 2, then let e; = 1, otherwise let e; = 0. The value 8 at each w; shows that
a; X b; X ¢; X y; X z; evaluates to 8. Since y; and z; are either 1 or 2, at least one of a;, b;, or ¢;
must evaluate to 2. Hence, the clause d; contains at least one literal that evaluates to true
with respect to the assignment eq,...,e,. This shows f(z1,...,z,) € 3SAT. Therefore,
3SAT<I98SC(N, x) and hence SC(N, x) is <198-hard for NP. O

The next corollary shows that we can utilize the algorithm presented in Theorem 2 which
evaluates {N, x }-circuits also to evaluate {U,N, x }-circuits: However, to cope with the
U-gates we first have to unfold the circuit such that no inner gate has outdegree greater
than 1. This can cause an exponential blow up in the size of the circuit.

Corollary 4. SC(U,N, x) € NEXP.

Proof. Let C be a {U,N, x }-circuit and b € N. We describe a nondeterministic exponential
time algorithm that decides (C,b) € SC(U,N, x). In exponential time, we can unfold the
circuit into a (possibly exponentially larger) circuit C’ where all gates except from the
variable input gates have outdegree at most 1: Starting with the output gate, for each
gate g with direct successors sy, ..., Sk, we replace g with identical gates g, ..., gr such
that the direct successor of gate g; is s;. Each ¢; has the same predecessors that g had,
so we now have k copies of all predecessors of g. We then repeat this procedure for the
next gate with outdegree greater than one. We exclude the variable input gates from this
procedure such that we do not get any new copies of these in the circuit C’.

Observe that C” is just a less space efficient representation of C'. It has the same unassigned
inputs and it holds for all z4,...,x, € N that

I(C(x1,...,20)) = I(C'(1,...,2,)).

Observe that by unfolding the circuit first, we have ensured that it suffices to consider
one natural number per gate when evaluating the unfolded circuit. For U-gates, we non-
deterministically guess whether we take the left or right predecessor: For each U-gate g
in C’, nondeterministically guess one bit b, € {0,1}. Evaluate the circuit using the same
algorithm as in Theorem 2. Whenever the algorithm encounters a U-gate g, continue with
the left predecessor of g if b, = 0 and continue with the right predecessor if b, = 1. As

12



the algorithm presented in Theorem 2 is a nondeterministic polynomial time algorithm,
the above steps can be performed in time 2PUCD for a suitable polynomial p. This proves
SC(U,N, x) € NEXP. O

5.2 Circuits with either Arithmetic or Set Operations.

We now discuss that SC(x) is easier than SC(+) unless NP = coNP. More precisely, we
show that SC(x) € UPNcoUP and prove SC(+) to be NP-complete. Here it is interesting
to note that the same variant of the KNAPSACK-problem is used to establish both, the
upper bound for SC(x) and the lower bound for SC(+). The latter requires a version of
KNAPSACK that allows the repeated use of weights. The upper bound for SC(x) depends
on the property that KNAPSACK is weakly NP-complete [GJ79], i.e., the problem is easy
to solve if the weights are given in unary representation. These constraints lead to the
following variant of the KNAPSACK-problem which is known to be weakly NP-complete
[Pap94, 9.5.33].

KNAPSACK' £{(vy,...,v,,b) ‘ n >0, vi,...0,,b € N and there exist uq,...,u, € N
such that > 7" | uv; = b}

Theorem 4. SC(+) and SC(+, x) are <j&-complete for NP.

Proof. We describe a reduction from KNAPSACK’ to SC(+). On input (vy,...,v,,b),
if some v; equals 0, then by deleting v; we obtain an equivalent but shorter instance
of the problem. If n = 0, then the problem is easy to solve. So we may assume that
n > 1 and that all v; are greater than 0. We use the method described in the proof
of Lemma 2 and construct in deterministic logarithmic space a {+}-circuit C' such that
I(C(z1,...,20)) = {viz1 + -+ + vpzp}. (In contrast to Lemma 2, here we do not need
x-gates, since the polynomial vyz1+- - - +v,x, has degree 1.) The reduction finally outputs
(C,b). Observe that (vy,...,v,,b) if and only if (C,b) € SC(+). So SC(+) and SC(+, x)
are NP-hard. Membership in NP follows from Corollary 3. a

By MC(x) € NL [MWO03] and Corollary 2, it is immediately clear that SC(x) € NP.
We now prove the better upper bound UP N coUP by utilizing dynamic programming.
More precisely, we will show that testing whether (C,p¢) € SC(x) for a prime p and
e > 0 reduces in polynomial time to solving a KNAPSACK' instance where the weights
are encoded in unary. By the weak NP-completeness of KNAPSACK’, the latter instance

can be solved in polynomial time via dynamic programming. We then exploit this to prove
that SC(x) € UP N coUP.

Proposition 2 ([GJ79]). KNAPSACK' is computable in polynomial time if the input
numbers are given in unary coding.

Theorem 5. SC(x) € UP NcoUP.

13



Proof. Let C be a {x }-circuit with unassigned inputs uy,...,ux and let n > 0. We now
describe how to decide whether (C,n) € SC(x). Recall that MC(x) € NL [MWO03], hence
a circuit without unassigned inputs can be evaluated in polynomial time. If n = 0, we
accept if and only if 1(C(0,0,...,0)) = 0. If n > 0, we compute a £1(C(1,1,...,1)). In
the case a = 0 we reject, since a = 0 implies that the circuit computes 0 regardless of
the inputs. If @ # 0, then no constant input that is connected to the output node can be
labeled with 0. In addition, we can conclude that every number computable by the circuit
is divisible by a. Consequently, if n is not divisible by a, we reject.

Let C' be the circuit obtained by replacing all labels of constant input gates in C by 1.
Clearly, this transformation can be performed in polynomial time. For all b > 0 it now
holds that

(C,a-b) € SC(x) < (C',b) € SC(x).

1df n
Set n' = 7.

The following nondeterministic algorithm decides whether (C’,n’) € SC(x):

1. guess numbers m,pi,...,Pn,€1,-.-,€y such that 1 <m < |n'|,

2<p;1 <pa<--<pn<n, and for all i it holds that 1 <e; < |n/|
if at least one of the p; is not prime then reject

if n’ #p{'---pS™ then reject

// here n’ =p{'---pS* is the prime factorization of n’

if (C,pi') € SC(x) for all i € [1,m| then accept else reject

g W N

Step 2 is possible in polynomial time by the algorithm by Agrawal, Kayal, and Saxena
[AKSO04].

We now explain that step 5 can also be carried out in polynomial time. Note that there
exist eq, ..., ex such that for every assignment x1,...,x, to the input gates wuq, ..., ug, it
holds that

I(C'(x1,...,¢x)) = ot k.

The exponents only depend on the circuit C’. Moreover, they can be computed in poly-
nomial time: First transform C’ into a -+-circuit C” as follows: Replace all x-nodes with
+-nodes. Then relabel all constant inputs with 0 instead of 1. Now observe that

I(C//(Ov'-- 7071,07--- ,O) == ej.
N——— N—_——
Jj—1 k—j
As this can be done in polynomial time, we have shown that all exponents can be computed
in polynomial time.

Claim. For a prime p and e > 0, (C’,p¢) € SC(X) can be tested in polynomial time.

Proof. If a prime power p° is computed at the output gate of C’, then it follows that all
input gates must have powers of p assigned to then. In this case it suffices to solve the
following problem: Do there exist y1, ...,y such that (p¥1)°! ... (p¥ )% = p°?

14



We conclude that

(C",p%) € SC(x) < Ty, ..., yr(eryr + eay1 + -+ + epyr, = €).

So it turns out that asking whether (C,p¢) € SC(x) is precisely the KNAPSACK’ prob-
lem. Since e < logn, it follows that the unary coding of e is polynomial in n and hence
polynomial in the input. By Proposition 2, it follows that we can check (C,p¢) € SC(x)
in polynomial time. This proves the claim O

We have shown that the above algorithm runs in polynomial time. To see that the algo-
rithm accepts if and only if (C’,n’) € SC(x), observe that the following holds:

(C',n') € SC(x) & Vicicm(C',p}') € SC(x),
where n’ = pll1 -...-plm is the prime factorization of n'.

Every number has a unique prime factorization. Therefore, there exists exactly one path on
which the algorithm reaches step 5. This shows SC(x) € UP. If we exchange ‘accept’ and
‘reject’ in step 5, then we arrive at an algorithm witnessing SC(x) € UP. This completes
the proof. a

We now show the NP-hardness of SC(™,U,N) by reducing 3SAT to SC(~,U,N). Here we
utilize the natural correspondence between {~,U,N} and {—, Vv, A}.

Theorem 6. SC(~,U,N) is <i&-complete for NP.

Proof. By Corollary 3, SC(~,U,N) € NP. Moreover, 3SAT§1?FSC(_,U,O) by translating
the Boolean operations —,V, A into the set operations ~,U,N and by asking whether the
resulting circuit can produce 1 (i.e., A C N is interpreted as true if and only if 1 € A). O

6 Conclusions

Table 1 summarizes our results. It shows that in most cases we can precisely characterize
the complexity of the different variants of the satisfiability problem. Several open questions
are apparent from it.

Our main open question is whether SC(7,U,N, x) is decidable. In the absence of +-
gates, we cannot express general diophantine equations, which indicates the difficulty of
proving undecidability. On the other hand, we do not know any decidable upper bound
for this problem, since here the complementation-gates make it difficult to find a bound
for the input gates. As the example in Fig. 1(c) shows, such circuits can express nontrivial
statements about prime numbers. A further open question is to find a better lower bound
for the satisfiability problem for {x }-circuits. We prove this problem to be in UP N coUP.
Membership in P seems to be difficult, since SC(x) comprises the following factoring-
like problem: Is the factorization of a given number n of a certain form, for instance
3.,5

n = x> -5 - 22? However, proving SC(x) to be hard for factorization is still open.

15



SC
@ Lower Bound | Upper Bound
TuUN+ X undecidable
“un+ |PSPACE|Pr.1| PSPACE |Co.3
“un x|PSPACE|Pr.1
“un NP |Th6] NP [Co3
un+ x undecidable
Un+ |PSPACE|Pr.1| PSPACE |Co.3
Un x|PSPACE|Pr.1| NEXP |Co4
un P Pr.1 P Pr.1
U + x|PSPACE|Pr.1| PSPACE |Co.3
U + NP |Th4 NP Co.3
U x| NP |Pr.1 NP Co.3
U NL |Pr.1 NL Pr.1

N+ x undecidable

n+ NP Th.4 NP Co.3

n x NP |Th.3 NP Th.2

N NL Pr.1 NL Pr.1
+ X NP Th.4 NP Th.4
+ NP |Th.4 NP Th.4

X NL Pr.1{UP NcoUP|Th.5

Table 1. Upper and lower bounds for SC(O). All bounds are with respect to <!°®-reductions and the
numbers in parentheses refer to the corresponding theorems.

References

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160:781-793,

[CooT1]

2004.
S. A. Cook. The complexity of theorem proving procedures. In Proceedings 3rd Symposium on
Theory of Computing, pages 151-158. ACM Press, 1971.

[DPR61] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Diophantine

[GJ79]
[Kar72]
[Mat70]
[MWO03]
[Pap94]
[SM73]

[Wag84]

[Yan00]

equations. Annals of Mathematics, 74(2):425-436, 1961.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Mathematical sciences series. Freeman, 1979.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complezity of Computer Computations, pages 85-103. Plenum Press, 1972.

Y. V. Matiyasevich. Enumerable sets are diophantine. Doklady Akad. Nauk SSSR, 191:279-282,
1970. Translation in Soviet Math. Doklady, 11:354-357, 1970.

P. McKenzie and K. W. Wagner. The complexity of membership problems for circuits over sets
of natural numbers. In Proceedings 20th Symposium on Theoretical Aspects of Computer Science,
volume 2607 of Lecture Notes in Computer Science, pages 571-582. Springer Verlag, 2003.

C. H. Papadimitriou. Computational Complezity. Addison-Wesley, Reading, MA, 1994.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proceedings
5th ACM Symposium on the Theory of Computing, pages 1-9. ACM Press, 1973.

K. Wagner. The complexity of problems concerning graphs with regularities. In Proceedings Math-
ematical Foundations of Computer Science, volume 176 of Lecture Notes in Computer Science,
pages 544-552. Springer-Verlag, 1984.

K. Yang. Integer circuit evaluation is PSPACE-complete. In IEEE Conference on Computational
Complezity, pages 204-213, 2000.

16



