
Introduction and the Main Theorem Applications The Algorithm

The Multivariate Schwartz-Zippel Lemma

M. Levent Doğan

Joint work with A. A. Ergür, J. D. Mundo and E. Tsigaridas

Technische Universität Berlin

EuroCG 2020

Würzburg - 18.03.2020



Introduction and the Main Theorem Applications The Algorithm

Table of Contents

Introduction and the Main Theorem

Applications

The Algorithm



Introduction and the Main Theorem Applications The Algorithm

There is a wide literature on counting number of zeroes of a polynomial on a finite grid

thanks to its applications to Polynomial Identity Testing, Incidence Geometry and

Extremal Combinatorics.

Theorem (The Schwartz-Zippel-DeMillo-Lipton Lemma)

Let F be a field, let S ⊆ F be a finite set and let 0 6= p ∈ F[x1, x2, . . . , xn] be a

polynomial of degree d . Suppose |S | > d and let Sn := S × S × · · · × S . Then we have

|Z(p) ∩ Sn| ≤ d |S |n−1

where Z(p) = {v ∈ Fn | p(v) = 0} denotes the zero locus of p.

A theorem on the same direction is given by Alon:

Theorem (Alon’s Combinatorial Nullstellensatz)

Let p ∈ F[x1, x2, . . . , xn] be a polynomial of degree d =
∑n

i=1 di for some positive

integers di and assume that the coefficient of the monomial
∏n

i=1 x
di
i in p is non-zero.

Let Si ⊆ F be finite sets with |Si | > di and let S := S1 × S2 × · · · × Sn. Then, there

exists v ∈ S such that

p(v) 6= 0.
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In this talk, we want to obtain similar results for multi-grids.

Notation

We call a sequence λ = (λ1, λ2, . . . , λm) of positive integers a partition of n into m

parts if n = λ1 + λ2 + · · ·+ λm. In this case, we write λ
m̀
n. Given a partition λ

m̀
n,

we introduce the notation x1 = (x1, x2, . . . , xλ1
), x2 = (xλ1+1, xλ1+2, . . . , xλ1+λ2

) and

so on.

Given finite sets S1 ⊆ Fλ1 , S2 ⊆ Fλ2 , . . . , Sm ⊆ Fλm , we call the product

S := S1 × S2 × · · · × Sm

the multi-grid defined by S1, S2, . . . ,Sm.

Given a multivariate polynomial p ∈ C[x1, x2, . . . , xm], we want to bound number of

zeros of p can have on a multi-grid S . It turns out that this task is impossible without

imposing some conditions for p.
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Example

Let g1 ∈ C[x1, x2] \ C and g2 ∈ C[x3, x4] \ C. For h1, h2 ∈ C[x1, x2, x3, x4], set

p = g1h1 + g2h2.

Observe that Z(g1) and Z(g2) are planar curves in C2 and Z(p) contains

Z(g1)× Z(g2). In particular, p can vanish on arbitrarily large Cartesian products!

Definition

Let λ
m̀
n. An affine variety V ⊆ Cn is called λ-reducible if there exist

positive dimensional varieties Vi ⊆ Cλi such that

V1 × V2 × · · · × Vm ⊆ V.

Otherwise, we say V is λ-irreducible. A polynomial p ∈ C[x1, x2, . . . , xn] is said to be

λ-reducible (resp. λ-irreducible) if the hypersurface Z(p) defined by p is λ-reducible

(resp. λ-irreducible).
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The Main Theorem

Theorem (D., Ergür, Mundo, Tsigaridas)

Let λ
m̀
n be a partition of n into m parts and let p ∈ C[x1, x2, . . . , xn] be a

λ-irreducible polynomial of degree d ≥ 2. Let Si ⊆ Cλi and let S := S1 × S2 × · · · × Sm

be the multi-grid defined by Si . Then, for all ε > 0, we have

|Z(p) ∩ S| = On,ε(d5
m∏
i=1

|Si |
1− 1

λi +1
+ε

+ d2n4
m∑
i=1

∏
j 6=i

|Sj |)

where On,ε notation only hides constants depending on n and ε.

Observation

As long as we check λ-irreducibility over C, the bound works over any subfield of C.



Introduction and the Main Theorem Applications The Algorithm

The Main Theorem

Theorem (D., Ergür, Mundo, Tsigaridas)

Let λ
m̀
n be a partition of n into m parts and let p ∈ C[x1, x2, . . . , xn] be a

λ-irreducible polynomial of degree d ≥ 2. Let Si ⊆ Cλi and let S := S1 × S2 × · · · × Sm

be the multi-grid defined by Si . Then, for all ε > 0, we have

|Z(p) ∩ S| = On,ε(d5
m∏
i=1

|Si |
1− 1

λi +1
+ε

+ d2n4
m∑
i=1

∏
j 6=i

|Sj |)

where On,ε notation only hides constants depending on n and ε.

Observation

As long as we check λ-irreducibility over C, the bound works over any subfield of C.



Introduction and the Main Theorem Applications The Algorithm

Table of Contents

Introduction and the Main Theorem

Applications

The Algorithm



Introduction and the Main Theorem Applications The Algorithm

Point-Line Incidences

Theorem (Szemerédi-Trotter)

Let P be a set of points and L be a set of lines in the real plane, R2. Let

I(P, L) = {(p, l) ∈ P × L | p ∈ l}

be the set of incidences between P and L. Then

|I(P, L)| = O(|P|2/3|L|2/3 + |P|+ |L|).

The theorem holds if we replace R2 with C2. To our knowledge, the complex version is

first proven by Tóth. As our first application, we use the main theorem to recover the

above bound, except for ε in the exponent:

Theorem (Cheap Szemerédi-Trotter Theorem)

Let P be a set of points and L be a set of lines in C2 (or R2). Then, for any ε > 0,

there are at most

O(|P|2/3+ε|L|2/3+ε + |P|+ |L|)

incidences between P and L.
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Proof.

Let p = x1 + x2x3 + x4 ∈ C[x1, x2, x3, x4]. It is straightforward to show that p is

(2, 2)-irreducible: For u = (u1, u2), v = (v1, v2) ∈ C2, the equations

p(u1, u2, x3, x4) = 0,

p(v1, v2, x3, x4) = 0

are (affine) linear in x3, x4, thus has at most one solution. We deduce that Z(p) cannot

contain a 2× 2-multi-grid, which implies that p is (2, 2)-irreducible.

Observe that given a point z = (z1, z2) ∈ C2 and a line l : x + ay + b = 0 with

non-zero slope, we have z ∈ l if and only if p(z1, z2, a, b) = 0. Thus, using the main

theorem, the number of incidences between points in P and lines in L with a non-zero

slope is bounded by

O(|P|2/3+ε|L|2/3+ε + |P|+ |L|).

Note that there are at most |P| incidences between points in P and lines in L with a

zero slope, so the above bound works in general.
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Unit Distance Problem

Erdős’s Unit Distance Problem

Given a finite set P of points in R2, what is the maximum number of pairs

(u, v) ∈ P × P with ‖u − v‖2 = 1?

Erdős conjectured that the number of pairs of points in P with Euclidean distance 1

apart is bounded by O(|P|1+ε) for all ε > 0.

Theorem (Spencer, Szemerédi, Trotter)

Let P be a finite set of points in R2. Then, the number of pairs in P with Euclidean

distance 1 apart is bounded by O(|P|4/3).

Tao and Solymosi studied the complex version of the problem and came up with a

similar bound except for the ε in the exponent.

Theorem (Tao, Solymosi)

Let P be a finite set of points in C2. Then, for all ε > 0, the cardinality of the set

{((u1, u2), (v1, v2)) ∈ P × P | (u1 − v1)2 + (u2 − v2)2 = 1}

is bounded by O(|P|4/3+ε).
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We reproduce the same bound using the main theorem:

Proof.

Let p = (x1 − y1)2 + (x2 − y2)2 − 1 ∈ C[x1, x2, y1, y2]. We first observe that Z(p)

contains no 3× 3-multi-grid. For any triple u, v ,w ∈ C2, the system

p(u1, u2, y1, y2) = 0,

p(v1, v2, y1, y2) = 0,

p(w1,w2, y1, y2) = 0

has at most one solution: If u, v ,w are on an affine (complex) line, then a direct

computation shows that there is no solution. If not, then taking pairwise differences of

the equations we get

[
y1 y2

]
·
[
v1 − u1 w1 − u1 w1 − v1

v2 − u2 w2 − u2 w2 − v2

]
= 0.

Since u, v ,w are affinely independent, we deduce that (y1, y2) = (0, 0). Thus, p is

(2, 2)-irreducible and applying the main theorem to ε/2 yields the result.
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We have a symbolic algorithm providing a solution to the following problem:

Problem

Set λ = (k, k, . . . , k)
m̀
n. Given a polynomial p ∈ Q[x1, x2, . . . , xm] of degree d , are

there polynomials gi ∈ Q[xi ] \ Q and polynomials hi ∈ Q[x1, x2, . . . , xm] such that

p = g1h1 + g2h2 + · · ·+ gmhm?

Equivalently, given a hypersurface V ⊆ Cn, do there exist hypersurfaces

Vi ⊆ Ck , i = 1, . . . ,m such that

V1 × V2 × · · · × Vm ⊆ V?

The algorithm detects whether a polynomial p ∈ C[x1, . . . , xm] is λ-irreducible in the

special case λ = (k, k, . . . , k)
m̀
n. We leave detecting λ-irreducibility in the general

case as an open problem. Suggestions and ideas are welcomed!

Thank you for your attention!
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