The Multivariate Schwartz-Zippel Lemma

M. Levent Doğan
Joint work with A. A. Ergür, J. D. Mundo and E. Tsigaridas

Technische Universität Berlin

EuroCG 2020

Würzburg - 18.03.2020

Table of Contents

Introduction and the Main Theorem

Applications

The Algorithm

There is a wide literature on counting number of zeroes of a polynomial on a finite grid thanks to its applications to Polynomial Identity Testing, Incidence Geometry and Extremal Combinatorics.

Theorem (The Schwartz-Zippel-DeMillo-Lipton Lemma)

Let \mathbb{F} be a field, let $S \subseteq \mathbb{F}$ be a finite set and let $0 \neq p \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial of degree d. Suppose $|S|>d$ and let $S^{n}:=S \times S \times \cdots \times S$. Then we have

$$
\left|Z(p) \cap S^{n}\right| \leq d|S|^{n-1}
$$

where $Z(p)=\left\{v \in \mathbb{F}^{n} \mid p(v)=0\right\}$ denotes the zero locus of p.

There is a wide literature on counting number of zeroes of a polynomial on a finite grid thanks to its applications to Polynomial Identity Testing, Incidence Geometry and Extremal Combinatorics.

Theorem (The Schwartz-Zippel-DeMillo-Lipton Lemma)

Let \mathbb{F} be a field, let $S \subseteq \mathbb{F}$ be a finite set and let $0 \neq p \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial of degree d. Suppose $|S|>d$ and let $S^{n}:=S \times S \times \cdots \times S$. Then we have

$$
\left|Z(p) \cap S^{n}\right| \leq d|S|^{n-1}
$$

where $Z(p)=\left\{v \in \mathbb{F}^{n} \mid p(v)=0\right\}$ denotes the zero locus of p.
A theorem on the same direction is given by Alon:

Theorem (Alon's Combinatorial Nullstellensatz)

Let $p \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial of degree $d=\sum_{i=1}^{n} d_{i}$ for some positive integers d_{i} and assume that the coefficient of the monomial $\prod_{i=1}^{n} x_{i}^{d_{i}}$ in p is non-zero. Let $S_{i} \subseteq \mathbb{F}$ be finite sets with $\left|S_{i}\right|>d_{i}$ and let $S:=S_{1} \times S_{2} \times \cdots \times S_{n}$. Then, there exists $v \in S$ such that

$$
p(v) \neq 0 .
$$

In this talk, we want to obtain similar results for multi-grids.

Notation

We call a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers a partition of n into m parts if $n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}$. In this case, we write $\lambda \stackrel{\vdash}{\vdash} n$. Given a partition $\lambda \stackrel{\vdash}{\vdash} n$, we introduce the notation $\overline{x_{1}}=\left(x_{1}, x_{2}, \ldots, x_{\lambda_{1}}\right), \overline{x_{2}}=\left(x_{\lambda_{1}+1}, x_{\lambda_{1}+2}, \ldots, x_{\lambda_{1}+\lambda_{2}}\right)$ and so on.
Given finite sets $S_{1} \subseteq \mathbb{F}^{\lambda_{1}}, S_{2} \subseteq \mathbb{F}^{\lambda_{2}}, \ldots, S_{m} \subseteq \mathbb{F}^{\lambda_{m}}$, we call the product

$$
S:=S_{1} \times S_{2} \times \cdots \times S_{m}
$$

the multi-grid defined by $S_{1}, S_{2}, \ldots, S_{m}$.

In this talk, we want to obtain similar results for multi-grids.

Notation

We call a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ of positive integers a partition of n into m parts if $n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}$. In this case, we write $\lambda \stackrel{\vdash}{\vdash} n$. Given a partition $\lambda \stackrel{\vdash}{\vdash_{m}} n$, we introduce the notation $\overline{x_{1}}=\left(x_{1}, x_{2}, \ldots, x_{\lambda_{1}}\right), \overline{x_{2}}=\left(x_{\lambda_{1}+1}, x_{\lambda_{1}+2}, \ldots, x_{\lambda_{1}+\lambda_{2}}\right)$ and so on.
Given finite sets $S_{1} \subseteq \mathbb{F}^{\lambda_{1}}, S_{2} \subseteq \mathbb{F}^{\lambda_{2}}, \ldots, S_{m} \subseteq \mathbb{F}^{\lambda_{m}}$, we call the product

$$
S:=S_{1} \times S_{2} \times \cdots \times S_{m}
$$

the multi-grid defined by $S_{1}, S_{2}, \ldots, S_{m}$.
Given a multivariate polynomial $p \in \mathbb{C}\left[\overline{\bar{x}_{1}}, \overline{x_{2}}, \ldots, \overline{x_{m}}\right]$, we want to bound number of zeros of p can have on a multi-grid S. It turns out that this task is impossible without imposing some conditions for p.

Example

Let $g_{1} \in \mathbb{C}\left[x_{1}, x_{2}\right] \backslash \mathbb{C}$ and $g_{2} \in \mathbb{C}\left[x_{3}, x_{4}\right] \backslash \mathbb{C}$. For $h_{1}, h_{2} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, set

$$
p=g_{1} h_{1}+g_{2} h_{2}
$$

Observe that $Z\left(g_{1}\right)$ and $Z\left(g_{2}\right)$ are planar curves in \mathbb{C}^{2} and $Z(p)$ contains $Z\left(g_{1}\right) \times Z\left(g_{2}\right)$. In particular, p can vanish on arbitrarily large Cartesian products!

Example

Let $g_{1} \in \mathbb{C}\left[x_{1}, x_{2}\right] \backslash \mathbb{C}$ and $g_{2} \in \mathbb{C}\left[x_{3}, x_{4}\right] \backslash \mathbb{C}$. For $h_{1}, h_{2} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, set

$$
p=g_{1} h_{1}+g_{2} h_{2}
$$

Observe that $Z\left(g_{1}\right)$ and $Z\left(g_{2}\right)$ are planar curves in \mathbb{C}^{2} and $Z(p)$ contains $Z\left(g_{1}\right) \times Z\left(g_{2}\right)$. In particular, p can vanish on arbitrarily large Cartesian products!

Definition

Let $\lambda \vdash_{m} n$. An affine variety $\mathcal{V} \subseteq \mathbb{C}^{n}$ is called λ-reducible if there exist positive dimensional varieties $\mathcal{V}_{i} \subseteq \mathbb{C}^{\lambda_{i}}$ such that

$$
\mathcal{V}_{1} \times \mathcal{V}_{2} \times \cdots \times \mathcal{V}_{m} \subseteq \mathcal{V}
$$

Otherwise, we say \mathcal{V} is λ-irreducible. A polynomial $p \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is said to be λ-reducible (resp. λ-irreducible) if the hypersurface $Z(p)$ defined by p is λ-reducible (resp. λ-irreducible).

The Main Theorem

Theorem (D., Ergür, Mundo, Tsigaridas)

Let $\lambda \vdash_{m} n$ be a partition of n into m parts and let $p \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a λ-irreducible polynomial of degree $d \geq 2$. Let $S_{i} \subseteq \mathbb{C}^{\lambda_{i}}$ and let $S:=S_{1} \times S_{2} \times \cdots \times S_{m}$ be the multi-grid defined by S_{i}. Then, for all $\varepsilon>0$, we have

$$
|Z(p) \cap S|=O_{n, \varepsilon}\left(d^{5} \prod_{i=1}^{m}\left|S_{i}\right|^{1-\frac{1}{\lambda_{i}+1}+\varepsilon}+d^{2 n^{4}} \sum_{i=1}^{m} \prod_{j \neq i}\left|S_{j}\right|\right)
$$

where $O_{n, \varepsilon}$ notation only hides constants depending on n and ε.

The Main Theorem

Theorem (D., Ergür, Mundo, Tsigaridas)

Let $\lambda \vdash_{m} n$ be a partition of n into m parts and let $p \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a λ-irreducible polynomial of degree $d \geq 2$. Let $S_{i} \subseteq \mathbb{C}^{\lambda_{i}}$ and let $S:=S_{1} \times S_{2} \times \cdots \times S_{m}$ be the multi-grid defined by S_{i}. Then, for all $\varepsilon>0$, we have

$$
|Z(p) \cap S|=O_{n, \varepsilon}\left(d^{5} \prod_{i=1}^{m}\left|S_{i}\right|^{1-\frac{1}{\lambda_{i}+1}+\varepsilon}+d^{2 n^{4}} \sum_{i=1}^{m} \prod_{j \neq i}\left|S_{j}\right|\right)
$$

where $O_{n, \varepsilon}$ notation only hides constants depending on n and ε.

Observation

As long as we check λ-irreducibility over \mathbb{C}, the bound works over any subfield of \mathbb{C}.

Table of Contents

Introduction and the Main Theorem

Applications

The Algorithm

Point-Line Incidences

Theorem (Szemerédi-Trotter)

Let P be a set of points and L be a set of lines in the real plane, \mathbb{R}^{2}. Let

$$
\mathcal{I}(P, L)=\{(p, I) \in P \times L \mid p \in I\}
$$

be the set of incidences between P and L. Then

$$
|\mathcal{I}(P, L)|=O\left(|P|^{2 / 3}|L|^{2 / 3}+|P|+|L|\right) .
$$

Point-Line Incidences

Theorem (Szemerédi-Trotter)

Let P be a set of points and L be a set of lines in the real plane, \mathbb{R}^{2}. Let

$$
\mathcal{I}(P, L)=\{(p, I) \in P \times L \mid p \in I\}
$$

be the set of incidences between P and L. Then

$$
|\mathcal{I}(P, L)|=O\left(|P|^{2 / 3}|L|^{2 / 3}+|P|+|L|\right) .
$$

The theorem holds if we replace \mathbb{R}^{2} with \mathbb{C}^{2}. To our knowledge, the complex version is first proven by Tóth. As our first application, we use the main theorem to recover the above bound, except for ε in the exponent:

Theorem (Cheap Szemerédi-Trotter Theorem)

Let P be a set of points and L be a set of lines in \mathbb{C}^{2} (or \mathbb{R}^{2}). Then, for any $\varepsilon>0$, there are at most

$$
O\left(|P|^{2 / 3+\varepsilon}|L|^{2 / 3+\varepsilon}+|P|+|L|\right)
$$

incidences between P and L.

Proof.

Let $p=x_{1}+x_{2} x_{3}+x_{4} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. It is straightforward to show that p is (2, 2)-irreducible: For $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in \mathbb{C}^{2}$, the equations

$$
\begin{aligned}
& p\left(u_{1}, u_{2}, x_{3}, x_{4}\right)=0 \\
& p\left(v_{1}, v_{2}, x_{3}, x_{4}\right)=0
\end{aligned}
$$

are (affine) linear in x_{3}, x_{4}, thus has at most one solution. We deduce that $Z(p)$ cannot contain a 2×2-multi-grid, which implies that p is (2,2)-irreducible. Observe that given a point $z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ and a line $I: x+a y+b=0$ with non-zero slope, we have $z \in I$ if and only if $p\left(z_{1}, z_{2}, a, b\right)=0$. Thus, using the main theorem, the number of incidences between points in P and lines in L with a non-zero slope is bounded by

$$
O\left(|P|^{2 / 3+\varepsilon}|L|^{2 / 3+\varepsilon}+|P|+|L|\right) .
$$

Note that there are at most $|P|$ incidences between points in P and lines in L with a zero slope, so the above bound works in general.

Unit Distance Problem

Erdős's Unit Distance Problem

Given a finite set P of points in \mathbb{R}^{2}, what is the maximum number of pairs $(u, v) \in P \times P$ with $\|u-v\|_{2}=1$?

Erdős conjectured that the number of pairs of points in P with Euclidean distance 1 apart is bounded by $O\left(|P|^{1+\varepsilon}\right)$ for all $\varepsilon>0$.

Unit Distance Problem

Erdős's Unit Distance Problem

Given a finite set P of points in \mathbb{R}^{2}, what is the maximum number of pairs $(u, v) \in P \times P$ with $\|u-v\|_{2}=1$?

Erdős conjectured that the number of pairs of points in P with Euclidean distance 1 apart is bounded by $O\left(|P|^{1+\varepsilon}\right)$ for all $\varepsilon>0$.

Theorem (Spencer, Szemerédi, Trotter)

Let P be a finite set of points in \mathbb{R}^{2}. Then, the number of pairs in P with Euclidean distance 1 apart is bounded by $O\left(|P|^{4 / 3}\right)$.

Unit Distance Problem

Erdős's Unit Distance Problem

Given a finite set P of points in \mathbb{R}^{2}, what is the maximum number of pairs $(u, v) \in P \times P$ with $\|u-v\|_{2}=1$?

Erdős conjectured that the number of pairs of points in P with Euclidean distance 1 apart is bounded by $O\left(|P|^{1+\varepsilon}\right)$ for all $\varepsilon>0$.

Theorem (Spencer, Szemerédi, Trotter)

Let P be a finite set of points in \mathbb{R}^{2}. Then, the number of pairs in P with Euclidean distance 1 apart is bounded by $O\left(|P|^{4 / 3}\right)$.

Tao and Solymosi studied the complex version of the problem and came up with a similar bound except for the ε in the exponent.

Theorem (Tao, Solymosi)

Let P be a finite set of points in \mathbb{C}^{2}. Then, for all $\varepsilon>0$, the cardinality of the set

$$
\left\{\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \in P \times P \mid\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}=1\right\}
$$

is bounded by $O\left(|P|^{4 / 3+\varepsilon}\right)$.

We reproduce the same bound using the main theorem:

Proof.

Let $p=\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}-1 \in \mathbb{C}\left[x_{1}, x_{2}, y_{1}, y_{2}\right]$. We first observe that $Z(p)$ contains no 3×3-multi-grid. For any triple $u, v, w \in \mathbb{C}^{2}$, the system

$$
\begin{aligned}
p\left(u_{1}, u_{2}, y_{1}, y_{2}\right) & =0, \\
p\left(v_{1}, v_{2}, y_{1}, y_{2}\right) & =0, \\
p\left(w_{1}, w_{2}, y_{1}, y_{2}\right) & =0
\end{aligned}
$$

has at most one solution: If u, v, w are on an affine (complex) line, then a direct computation shows that there is no solution. If not, then taking pairwise differences of the equations we get

$$
\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right] \cdot\left[\begin{array}{lll}
v_{1}-u_{1} & w_{1}-u_{1} & w_{1}-v_{1} \\
v_{2}-u_{2} & w_{2}-u_{2} & w_{2}-v_{2}
\end{array}\right]=0
$$

Since u, v, w are affinely independent, we deduce that $\left(y_{1}, y_{2}\right)=(0,0)$. Thus, p is $(2,2)$-irreducible and applying the main theorem to $\varepsilon / 2$ yields the result.

Table of Contents

Introduction and the Main Theorem

Applications

The Algorithm

We have a symbolic algorithm providing a solution to the following problem:

Problem

Set $\lambda=(k, k, \ldots, k) \stackrel{\vdash}{m} n$. Given a polynomial $p \in \mathbb{Q}\left[\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{m}}\right]$ of degree d, are there polynomials $g_{i} \in \mathbb{Q}\left[\overline{x_{i}}\right] \backslash \mathbb{Q}$ and polynomials $h_{i} \in \mathbb{Q}\left[\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{m}}\right]$ such that

$$
p=g_{1} h_{1}+g_{2} h_{2}+\cdots+g_{m} h_{m} ?
$$

Equivalently, given a hypersurface $\mathcal{V} \subseteq \mathbb{C}^{n}$, do there exist hypersurfaces $\mathcal{V}_{i} \subseteq \mathbb{C}^{k}, i=1, \ldots, m$ such that

$$
\mathcal{V}_{1} \times \mathcal{V}_{2} \times \cdots \times \mathcal{V}_{m} \subseteq \mathcal{V} ?
$$

We have a symbolic algorithm providing a solution to the following problem:

Problem

Set $\lambda=(k, k, \ldots, k) \stackrel{\vdash}{m} n$. Given a polynomial $p \in \mathbb{Q}\left[\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{m}}\right]$ of degree d, are there polynomials $g_{i} \in \mathbb{Q}\left[\overline{x_{i}}\right] \backslash \mathbb{Q}$ and polynomials $h_{i} \in \mathbb{Q}\left[\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{m}}\right]$ such that

$$
p=g_{1} h_{1}+g_{2} h_{2}+\cdots+g_{m} h_{m} ?
$$

Equivalently, given a hypersurface $\mathcal{V} \subseteq \mathbb{C}^{n}$, do there exist hypersurfaces
$\mathcal{V}_{i} \subseteq \mathbb{C}^{k}, i=1, \ldots, m$ such that

$$
\mathcal{V}_{1} \times \mathcal{V}_{2} \times \cdots \times \mathcal{V}_{m} \subseteq \mathcal{V} ?
$$

The algorithm detects whether a polynomial $p \in \mathbb{C}\left[\bar{x}_{1}, \ldots, \bar{x}_{m}\right]$ is λ-irreducible in the special case $\lambda=(k, k, \ldots, k) \stackrel{\vdash}{\not} n$. We leave detecting λ-irreducibility in the general case as an open problem. Suggestions and ideas are welcomed!

Thank you for your attention!

