# Scheduling drones to cover outdoor events

O. Aichholzer<sup>1</sup>, L. E. Caraballo<sup>2</sup>, J.M. Díaz-Báñez<sup>2</sup>, R. Fabila-Monroy<sup>3</sup>, <u>I. Parada<sup>1,4</sup></u>, I. Ventura<sup>2</sup>, and B. Vogtenhuber<sup>1</sup>



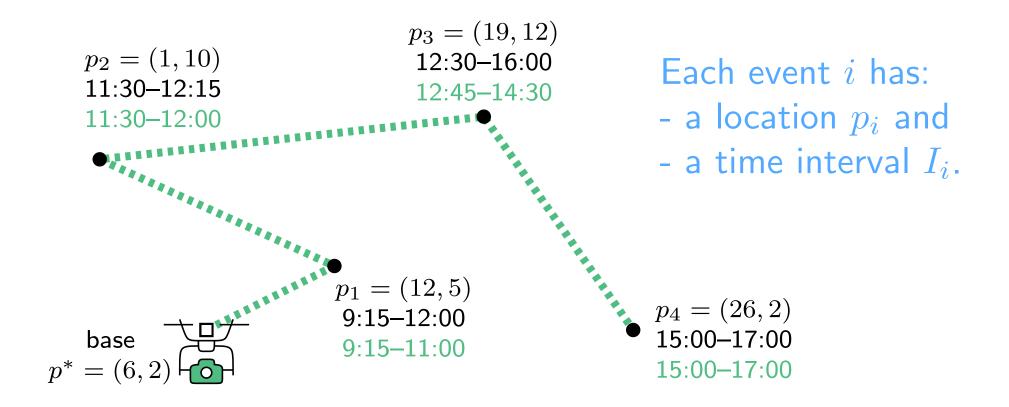
<sup>1</sup>Graz University of Technology, Austria <sup>2</sup>University of Seville, Spain <sup>3</sup>Cinvestav, Mexico <sup>3</sup>TU Eindhoven, The Netherlands







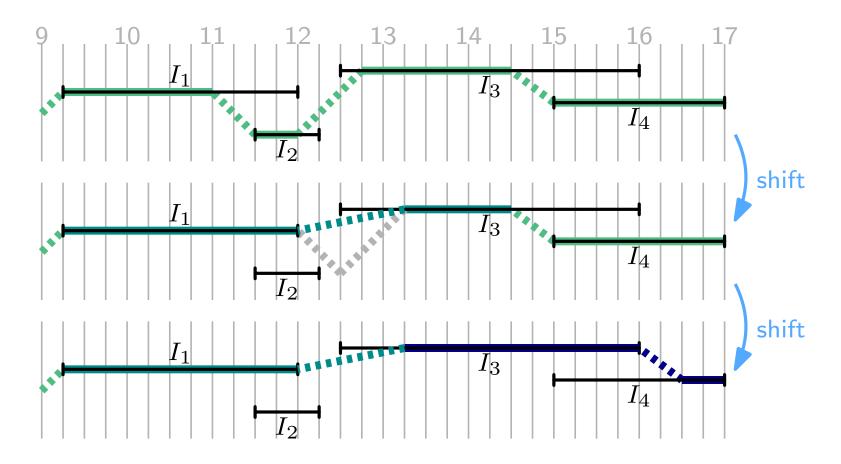
### One drone (unlimited battery)



Goal: Film as much (time) as possible.

Lemma: There is an optimal plan in which the drone does not leave an event before it has ended.

#### One drone (unlimited battery)



Goal: Film as much (time) as possible.

Lemma: There is an optimal plan in which the drone does not leave an event before it has ended.

### One drone (unlimited battery)

We construct a directed (acyclic) graph G = (V, E).

- V: base  $p^*$  and the points  $p_i$ .
- E:  $(p_i, p_j)$  iff a drone leaving  $p_i$  at the end of  $I_i$  can arrive to  $p_j$  at a time  $t \in I_j := [a, b]$ ; weight = b t. Every  $(p^*, p_i)$  is an edge with weight  $|I_i|$ .

We can compute E efficiently in  $O(n^{5/3} + |E|)$  time: (x,y) at time  $t \Rightarrow (x,y,t) \in \mathbb{R}^3 \Rightarrow (x,y,t,x^2,y^2,z^2) \in \mathbb{R}^6$  using halfspace reporting queries in  $\mathbb{R}^6$  we determine E.

Our problem translates to finding a directed path in G from  $p^*$  of max weight: topo. sort + dynamic programming.

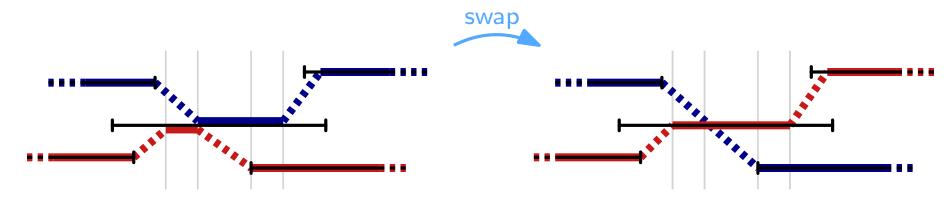
Optimal flight plan in  $O(n^{5/3} + |E|)$  time.

### k drones (unlimited battery)

Lemma: There is an optimal plan in which:

- a) no drone leaves an event before it has ended and
- b) no two drones film at the same point at the same time.

We introduce a second operation:



- Do shifts until every drone leaves an event either at the end or when another drone arrives.
- Do swaps until a) is satisfied.

#### k drones (unlimited battery)

Lemma: There is an optimal plan in which:

- a) no drone leaves an event before it has ended and
- b) no two drones film at the same point at the same time.

We construct the same DAG G = (V, E) as before.

Our problem translates to finding a set of k disjoint paths in G starting at  $p^*$  of max weight.

NP-complete for general graphs, but polynomial for DAGs.

Optimal flight plan in  $O(n^2(\log n + k) + n|E|)$  time.

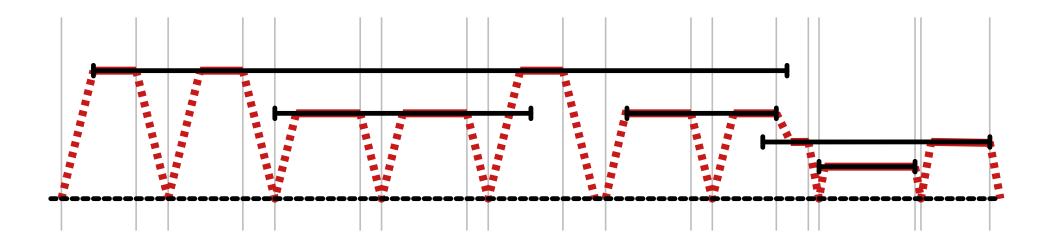
Min. # drones to cover it all in  $O(n^{5/3} + \sqrt{n}|E'|)$  time.

#### One drone with limited battery

The set of theoretically relevant event-times for an optimal solution can be discretized.

Moreover, an optimal solution can be encoded using a linear number of driving instructions.

Applying dynamic programming we can compute an optimal sequence of instructions in polynomial time.



#### Conclusions

We studied the problem of optimally scheduling drones to film n events happening at certain time intervals in different places.

- One drone with no battery constraints:  $O(n^{5/3} + |E|)$  algorithm, where  $|E| = O(n^2)$ .
- k drones with no battery constraints:  $O(n^2(\log n + k) + n|E|)$  algorithm, where  $|E| = O(n^2)$ .
- Polynomial algorithm for one drone with limited battery.
- NEW! k drones with limited battery: NP-hard.

## Thank you!