Julius-Maximilians- Chair for X .
I UNIVERSITAT INFORMATICS | ||||| | fl
WURZBURG Efficient Algorithms and

Knowledge-Based Systems Institute for Informatics

The Complexity of Finding Tangles

Oksana Firman, Philipp Kindermann,
Alexander Wolff, Johannes Zink

7 Alexander Ravsky Stefan Felsner .'E

Introduction

Given an ordered set
of n y-monotone wires

Introduction
1<i<j<n

Given an ordered set .
swap ij

of n y-monotone wires
I

\

Introduction
1<i<j<n

Given an ordered set .
swap ij

of n y-monotone wires

L \

disjoint swaps

Introduction

1<i<j<n

Given an ordered set .
swap ij

of n y-monotone wires
disjoint swaps

L K adjacent

permutations

Introduction

1<i<j<n

Given an ordered set .
swap ij

of n y-monotone wires
disjoint swaps

L K adjacent

permutations

\ multiple swaps

Introduction

1<i<j<n

Given an ordered set .
swap ij

of n y-monotone wires
disjoint swaps

1
L K adjacent

72 permutations
T3 \ multiple swaps
T4) tangle T of
s (height h(T)

Introduction

: 1<i<j<n
Given an ordered set swap i
of n y-monotone wires p1J
1 2 -+ n disjoint swaps

1
L K adjacent
T2

permutations

73 \k multiple swaps
T4) tangle T of
T (height h(T)

Introduction

Given an ordered set
of n y-monotone wires

1<i<j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

...and given a list L
of swaps

Introduction

Given an ordered set
of n y-monotone wires

1<i<j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

...and given a list L
of swaps

as a multiset (¢;;)
1X
3X
1 X
2 X
1 X
1 X

Introduction

: 1<i<j<n
Given an ordered setand given a list L
of n y-monotone wires WP U of swaps
12 -+ n disjoint swaps
1 k as a multiset (¢;;)
adjacent 1
T2 permutations ; .
\
3 \ multiple swaps 1 %
T4) tangle T of 2 X
rs ¢ height h(T) L X
\ / 1X

Tangle T realizes list L.

Introduction

_ 1<i<j<n
Given an ordered setand given a list L
swap ij

of n y-monotone wires of swaps
disjoint swaps

1 2 « o n
. K as a multiset (¢;;)
adjacent ><
D, permutations 3 :
T3 multiple swaps 1 X
T4) tangle T of 2 X
s height h(T) L X

Tangle T realizes list L.

Introduction

_ 1<i<j<n
Given an ordered set

of n y-monotone wires
disjoint swaps

Tangle T realizes list L.

swap I/

- 12 ... n

S adjacent
2 permutations
T3 multiple swaps
74) tangle T of
T (height h(T)

and given a list L
of swaps

as a multiset (¢;;)
3X
1 X
2 X
1 X

1 X
not feasible

Introduction

_ 1<i<j<n
Given an ordered setand given a list L
of n y-monotone wires >Wap 1 of swaps
12 -+ n disjoint swaps
1 k as a multiset (¢;;)
adjacent 1
T2 permutations ; .
\
3 \k multiple swaps 1 %
T4) tangle T of 2 X
rs ¢ height h(T) L X
\ / 1X

T ——)

Tangle T realizes list L.

A list L of swaps is feasible if there exists a tangle that realizes L.
There may be multiple tangles realizing the same list of swaps.

Introduction

_ 1<i<j<n
Given an ordered setand given a list L
of n y-monotone wires >Wap 1 of swaps
1 2 -+ n disjoint swaps
1 k k as a multiset (¢;;)
adjacent 1
T2 \k permutations 3 “
\
3) multiple swaps 1 %
T4 tangle T of 2 X
. height h(T) L X
\ / 1X

T ——)

Tangle T realizes list L.

A list L of swaps is feasible if there exists a tangle that realizes L.
There may be multiple tangles realizing the same list of swaps.

Related Work

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Related Work “Et

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Related Work “ﬁt

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Exp.-time algorithm for
finding optimal-height tangles

Related Work “ﬁt

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Exp.-time algorithm for
finding optimal-height tangles

Complexity ?

Related Work “ﬁt

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Exp.-time algorithm for
finding optimal-height tangles

Complexity ?

e Sado and Igarashi: A function for evaluating
the computing time of a bubbling system.

TCS 1987

Gi _initial and
VEN- final permutations

Related Work “ﬁt

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Exp.-time algorithm for
finding optimal-height tangles

Complexity ?

e Sado and Igarashi: A function for evaluating
the computing time of a bubbling system.

TCS 1987

Gi _initial and
VEN- final permutations

e Bereg et al.: Drawing Permutations with Few Corners.

GD 2013 . .. minimize
ObJeCtlve' the number of bends

Related Work “ﬁt

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Exp.-time algorithm for
finding optimal-height tangles

Complexity ?

e Sado and Igarashi: A function for evaluating
the computing time of a bubbling system.

TCS 1987

Gi _initial and
VEN- final permutations

e Bereg et al.: Drawing Permutations with Few Corners.

GD 2013 . .. minimize
ObJeCtlve' the number of bends

o FKRW/Z: Computing optimal-height tangles faster.
GD 2019

Related Work “ﬁt

o (Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Exp.-time algorithm for
finding optimal-height tangles

Complexity ?

e Sado and Igarashi: A function for evaluating

the computing time of a bubbling system.
TCS 1987

Gi _initial and
VEN- final permutations

e Bereg et al.: Drawing Permutations with Few Corners.

GD 2013 . .. minimize
ObJeCtlve' the number of bends

o FKRW/Z: Computing optimal-height tangles faster.
GD 2019

Faster exp.-time algorithm for
finding optimal-height tangles

Related Work “ﬁt

o Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

Exp.-time algorithm for
finding optimal-height tangles

Complexity ?

e Sado and Igarashi: A function for evaluating
the computing time of a bubbling system.

TCS 1987

Gi _initial and
VEN- final permutations

e Bereg et al.: Drawing Permutations with Few Corners.

GD 2013 . .. minimize
ObJeCtlve' the number of bends

o FKRW/Z: Computing optimal-height tangles faster.

GD 2019 Faster exp.-time algorithm for Finding optimal-height

finding optimal-height tangles tangles is NP-hard

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.
Reduction from POSITIVE NOT-ALL-EQUAL 3-SAT

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.
Reduction from POSITIVE NOT-ALL-EQUAL |3-SAT

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.
Reduction from POSITIVE NOT-ALL-EQUAL |3-SAT

(FweharF]

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.

Reduction from POSITIVE INOT-ALL-EQUAL 3-SAT

(FweharF]

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.

Reduction from POSITIVE INOT-ALL-EQUAL 3-SAT

(FoehrT)
(To==tT)

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.

Reduction from |[POSITIVE NOT-ALL-EQUAL 3-SAT

(FoehrT)
(To==tT)

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.

Reduction from |[POSITIVE NOT-ALL-EQUAL 3-SAT

(FoehrT)
(To==tT)

Negatrre=itrals

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Proof.
Reduction from POSITIVE NOT-ALL-EQUAL 3-SAT

ldea

e Two wires build 4 loops that we consider

ldea

e Two wires build 4 loops that we consider

ldea

AN

e [wo wires build 4-that we consider

ldea

e Two wires build 4 loops that we consider

e Two loops represent true,

ldea

e Two wires build 4 loops that we consider

e Two loops represent true,

ldea

e Two wires build 4 loops that we consider

e Two loops represent true,
the other two false

ldea

e Two wires build 4 loops that we consider

e Two loops represent true,
the other two false

ldea

e Two wires build 4 loops that we consider
e Two loops represent true,
the other two false

e For each clause, there is a wire with
an arm in each of the 4 loops.

ldea

e Two wires build 4 loops that we consider
e Two loops represent true,
the other two false

e For each clause, there is a wire with
an arm in each of the 4 loops.

Ci

ldea

e Two wires build 4 loops that we consider
e Two loops represent true,
the other two false

e For each clause, there is a wire with
an arm in each of the 4 loops.

Ci

ldea

e Two wires build 4 loops that we consider
e Two loops represent true,

the other two false
e For each clause, there is a wire with

an arm in each of the 4 loops.

e For each variable, there is a wire entering
either both true or both false loops.

ldea

e Two wires build 4 loops that we consider
e Two loops represent true,

the other two false
e For each clause, there is a wire with

an arm in each of the 4 loops.

e For each variable, there is a wire entering
either both true or both false loops.

ldea

e Two wires build 4 loops that we consider
e Two loops represent true,

the other two false
e For each clause, there is a wire with

an arm in each of the 4 loops.

e For each variable, there is a wire entering
either both true or both false loops.

Vi Vk

0

Vj Vk

ldea

e Two wires build 4 loops that we consider AR A

e Two loops represent true,
the other two false

e For each clause, there is a wire with
an arm in each of the 4 loops.

e For each variable, there is a wire entering
either both true or both false loops.

N Eifs

AN Vi Vi Vi

ldea

e Two wires build 4 loops that we consider AR A

e Two loops represent true,
the other two false

e For each clause, there is a wire with
an arm in each of the 4 loops.

e For each variable, there is a wire entering
either both true or both false loops.

e Each clause wire meets precisely its
three corresponding variable wires —
each one in a different loop.

N Eifs

AN Vi Vi Vi

ldea

e Two wires build 4 loops that we consider i /’\L)‘L A
e Two loops represent true, T
the other two false [—
e For each clause, there is a wire with I
an arm in each of the 4 loops. T
e For each variable, there is a wire entering —

either both true or both false loops. II

e Each clause wire meets precisely its F
three corresponding variable wires —

each one in a different loop. I

Ci AN Vi Vk Ve

ldea

e Two wires build 4 loops that we consider i /’\LL e
e Two loops represent true, T
the other two false [-
e For each clause, there is a wire with I
an arm in each of the 4 loops. T
e For each variable, there is a wire entering —

either both true or both false loops. I:I

e Each clause wire meets precisely its F
three corresponding variable wires —

each one in a different loop. I

Ci AN Vi Vk Ve

ldea

e Two wires build 4 loops that we consider

e Two loops represent true,
the other two false

e For each clause, there is a wire with
an arm in each of the 4 loops.

e For each variable, there is a wire entering
either both true or both false loops.

e Each clause wire meets precisely its
three corresponding variable wires —
each one in a different loop.

Vi Vi Vy

Vi Vi Vg

ldea

e Two wires build 4 loops that we consider i /’\LL T
e Two loops represent true, T
the other two false (—
e For each clause, there is a wire with I
an arm in each of the 4 loops. T
e For each variable, there is a wire entering —

either both true or both false loops. I:I

e Each clause wire meets precisely its F
three corresponding variable wires —

each one in a different loop. I

Ci AN Vi Vk Ve

ldea

e Two wires build 4 loops that we consider i /ALL A
e Two loops represent true, T
the other two false (— -
e For each clause, there is a wire with I
an arm in each of the 4 loops. T
e For each variable, there is a wire entering —

either both true or both false loops. II

e Each clause wire meets precisely its F
three corresponding variable wires —

each one in a different loop. I

e Only 2 true loops and 2 false loops —

= clause wires meet all their variable =
wires iff POSITIVE NOT-ALL-EQUAL TT

3-SAT formula satisfiable Ci ANV v

Variable Gadget

A

A, M. central loop structure

=hBtEEs

Variable Gadget

A

]
-

=R

AN

Vi .

central loop structure

variable wire of j-th variable

Variable Gadget

/

AN q Vj

A, M. central loop structure

vj: variable wire of j-th variable

AVl

LA UL

Variable Gadget

/

: / :
Qj A A ;i Vj

=
R=

AVl

A, A1 central loop structure

Vi .

Oéj,

variable wire of j-th variable

/. .
o;: make v; appear only in

true or in false loops

Variable Gadget

) / /)
0% A A Oéj Vj

A, A1 central loop structure

vj: variable wire of j-th variable

/. .
7.;8 aj, O : make v; appear only in

true or in false loops

Variable Gadget

Clause Gadget

AN

T

A, M. central loop structure

AN

Clause Gadget

Cj AN
1]
A, M. central loop structure
— T c;: clause wire of /-th clause

Clause Gadget

Cj AN
1]
A, M. central loop structure
— T c;: clause wire of /-th clause

Clause Gadget

Ci AN Vj
— /
A, A" central loop structure
[T ci: clause wire of i-th clause

>: vj: variable wire of j-th variable

Clause Gadget

i Ci

AN

[

\\

(it

A, M. central loop structure
c;: clause wire of /-th clause

vj: variable wire of j-th variable

v/ protects the arm of ¢;
that intersects v; from
other variable wires

Clause Gadget

Vi Gi

AN

-
|t

s
1T

AN

A, M. central loop structure
c;: clause wire of /-th clause

vj: variable wire of j-th variable

v/ protects the arm of ¢;
that intersects v; from
other variable wires

Open Problems

Problem 1
Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L7

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L7

Problem 2

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L7

Problem 2

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 3
] k | A list Is non-separable

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L7

Problem 2

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 3
] k | A list Is non-separable

necessary

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L7

Problem 2

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 3
] k | A list Is non-separable

f VI'</<<_/'Z (f,’k — gkj =0 implies Z,-j — 0)
necessary

For lists where all entries are even, is this sufficient?

Open Problems T/’ank
J’Ou!

Problem 1

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L7

Problem 2

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 3
] k | A list Is non-separable

‘ if Vi<k<j: (€ix = Lij = O implies £;; = 0).

necessary

For lists where all entries are even, is this sufficient?

	Introduction
	Related Work
	Contribution
	Open Problems

