The Complexity of Finding Tangles

> Oksana Firman, Philipp Kindermann, Alexander Wolff, Johannes Zink

Julius-Maximilians-Universität Würzburg,
Germany

Alexander Ravsky

Pidstryhach Institute for Applied Problems
of Mechanics and Mathematics,
National Academy of Sciences of Ukraine,
Lviv, Ukraine

Stefan Felsner
TU Berlin, Germany

Introduction

Given an ordered set of $n y$-monotone wires

Introduction

Given an ordered set of $n y$-monotone wires

$$
\begin{aligned}
& \quad 1 \leq i<j \leq n \\
& \operatorname{swap} i j
\end{aligned}
$$

Introduction

Given an ordered set of $n y$-monotone wires

$$
\begin{aligned}
& \quad 1 \leq i<j \leq n \\
& \operatorname{swap} i j
\end{aligned}
$$

disjoint swaps

Introduction

Given an ordered set of $n y$-monotone wires

$$
1 \leq i<j \leq n
$$

swap ij
disjoint swaps
adjacent permutations

Introduction

Given an ordered set of $n y$-monotone wires

$$
\begin{aligned}
& \qquad 1 \leq i<j \leq n \\
& \text { swap } i j \\
& \text { disjoint swaps } \\
& \text { adjacent } \\
& \text { permutations } \\
& \text { multiple swaps }
\end{aligned}
$$

Introduction

Given an ordered set of $n y$-monotone wires

$$
\begin{aligned}
& \qquad 1 \leq i<j \leq n \\
& \text { swap } i j \\
& \text { disjoint swaps } \\
& \text { adjacent } \\
& \text { permutations } \\
& \text { multiple swaps } \\
& \text { tangle } T \text { of } \\
& \text { height } h(T)
\end{aligned}
$$

Introduction

Given an ordered set of $n y$-monotone wires

$$
\begin{aligned}
& \qquad 1 \leq i<j \leq n \\
& \text { swap } i j \\
& \text { disjoint swaps } \\
& \text { adjacent } \\
& \text { permutations } \\
& \text { multiple swaps } \\
& \text { tangle } T \text { of } \\
& \text { height } h(T)
\end{aligned}
$$

Introduction

Given an ordered set of $n y$-monotone wires

....and given a list L of swaps
disjoint swaps
adjacent permutations
multiple swaps
tangle T of
height $h(T)$

Introduction

Given an ordered set of $n y$-monotone wires

... and given a list L of swaps
as a multiset $\left(\ell_{i j}\right)$
1 K
$3 x$
1 x
$2 X$
$1 \times$
1 X

Introduction

Given an ordered set of $n y$-monotone wires

$$
1 \leq i<j \leq n
$$

... and given a list L of swaps
disjoint swaps as a multiset $\left(\ell_{i j}\right)$
$1 x$
$3 x$
1 X
$2 x$
$1 \times$
$1 \times$
Tangle T realizes list L.

Introduction

Given an ordered set of $n y$-monotone wires

$$
1 \leq i<j \leq n
$$

... and given a list L of swaps
disjoint swaps
adjacent
permutations
multiple swaps
tangle T of
height $h(T)$
as a multiset $\left(\ell_{i j}\right)$

Tangle T realizes list L.

Introduction

Given an ordered set of $n y$-monotone wires

$$
1 \leq i<j \leq n
$$

.... and given a list L of swaps
disjoint swaps
adjacent
permutations
multiple swaps
tangle T of
height $h(T)$
as a multiset $\left(\ell_{i j}\right)$

not feasible

Tangle T realizes list L.

Introduction

Given an ordered set of $n y$-monotone wires

$1 \leq i<j \leq n$
swap $i j$$\quad \ldots$ and given a list L
as a multiset $\left(\ell_{i j}\right)$

Tangle T realizes list L.

A list L of swaps is feasible if there exists a tangle that realizes L. There may be multiple tangles realizing the same list of swaps.

Introduction

Given an ordered set of $n y$-monotone wires

$1 \leq i<j \leq n$
swap $i j$$\quad \ldots$ and given a list L
as a multiset $\left(\ell_{i j}\right)$

Tangle T realizes list L.

A list L of swaps is feasible if there exists a tangle that realizes L. There may be multiple tangles realizing the same list of swaps.

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018

Exp.-time algorithm for finding optimal-height tangles

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018

Exp.-time algorithm for finding optimal-height tangles

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018
Exp.-time algorithm for finding optimal-height tangles

Complexity

- Sado and lgarashi: A function for evaluating the computing time of a bubbling system. TCS 1987

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018

Exp.-time algorithm for finding optimal-height tangles

Complexity

- Sado and Igarashi: A function for evaluating the computing time of a bubbling system. TCS 1987

Given: initial and
 Given: final permutations

- Bereg et al.: Drawing Permutations with Few Corners. GD 2013

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018

Exp.-time algorithm for finding optimal-height tangles

Complexity

- Sado and Igarashi: A function for evaluating the computing time of a bubbling system. TCS 1987

Given: initial and
 Given: final permutations

- Bereg et al.: Drawing Permutations with Few Corners. GD 2013

Objective: minimize

the number of bends

- FKRWZ: Computing optimal-height tangles faster. GD 2019

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018
Exp.-time algorithm for finding optimal-height tangles

Complexity

- Sado and Igarashi: A function for evaluating the computing time of a bubbling system. TCS 1987

Given: initial and
 Given: final permutations

- Bereg et al.: Drawing Permutations with Few Corners. GD 2013

Objective: minimize the number of bends

- FKRWZ: Computing optimal-height tangles faster. GD 2019

Faster exp.-time algorithm for finding optimal-height tangles

Related Work

- Olszewski et al.: Visualizing the template of a chaotic attractor. GD 2018
Exp.-time algorithm for finding optimal-height tangles

Complexity

- Sado and Igarashi: A function for evaluating the computing time of a bubbling system. TCS 1987

Given: initial and
Given: final permutations

- Bereg et al.: Drawing Permutations with Few Corners. GD 2013

Objective: minimize the number of bends

- FKRWZ: Computing optimal-height tangles faster. GD 2019

Faster exp.-time algorithm for finding optimal-height tangles

Finding optimal-height tangles is NP-hard

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-All-Equal 3-SAT

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-All-Equal 3-SAT

Contribution

Theorem.

Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-All-Equal 3-SAT

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-All-EQual 3-SAT

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-All-EQUAL 3-SAT

(T)TI

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-AlL-EQUAL 3-SAT

$T \not T \nabla T$

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-AlL-EQUAL 3-SAT
$(F \vee F \vee F)$
$T \sim T \forall T)$
negaiverals

Contribution

Theorem.
Deciding whether a given list of swaps is feasible is NP-hard.
Proof.
Reduction from Positive Not-All-Equal 3-SAT

Idea

- Two wires build 4 loops that we consider

Idea

- Two wires build 4 loops that we consider

Idea

- Two wires build 4 loops that we consider

Idea

- Two wires build 4 loops that we consider
- Two loops represent true,

Idea

- Two wires build 4 loops that we consider
- Two loops represent true,

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

Idea

- Two wires build 4 loops that we consider
- Two loops represent true, the other two false
- For each clause, there is a wire with an arm in each of the 4 loops.
- For each variable, there is a wire entering either both true or both false loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.
- Only 2 true loops and 2 false loops \Rightarrow clause wires meet all their variable wires iff Positive Not-All-Equal 3-SAT formula satisfiable

Variable Gadget

$\lambda, \lambda^{\prime}$: central loop structure

Variable Gadget

$\lambda, \lambda^{\prime}$: central loop structure v_{j} : variable wire of j-th variable

Variable Gadget

$\lambda, \lambda^{\prime}$: central loop structure v_{j} : variable wire of j-th variable

Variable Gadget

$\lambda, \lambda^{\prime}$: central loop structure
v_{j} : variable wire of j-th variable
$\alpha_{j}, \alpha_{j}^{\prime}$: make v_{j} appear only in true or in false loops

Variable Gadget

$\lambda, \lambda^{\prime}$: central loop structure
v_{j} : variable wire of j-th variable
$\alpha_{j}, \alpha_{j}^{\prime}$: make v_{j} appear only in true or in false loops

Variable Gadget

Clause Gadget

$\lambda, \lambda^{\prime}$: central loop structure

Clause Gadget

$\lambda, \lambda^{\prime}$: central loop structure
c_{i} : clause wire of i-th clause

Clause Gadget

$\lambda, \lambda^{\prime}$: central loop structure
c_{i} : clause wire of i-th clause

Clause Gadget

$\lambda, \lambda^{\prime}$: central loop structure
c_{i} : clause wire of i-th clause
v_{j} : variable wire of j-th variable

Clause Gadget

$\lambda, \lambda^{\prime}$: central loop structure
c_{i} : clause wire of i-th clause
v_{j} : variable wire of j-th variable
γ_{i}^{j} : protects the arm of c_{i} that intersects v_{j} from other variable wires

Clause Gadget

$\lambda, \lambda^{\prime}$: central loop structure
c_{i} : clause wire of i-th clause
v_{j} : variable wire of j-th variable
γ_{i}^{j} : protects the arm of c_{i} that intersects v_{j} from other variable wires

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an optimal-height tangle of L ?

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an optimal-height tangle of L ?

Problem 2

For lists where all entries are 0 or 1 , we can find a tangle that has height at most OPT +1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an optimal-height tangle of L ?

Problem 2

For lists where all entries are 0 or 1 , we can find a tangle that has height at most OPT+ 1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

Problem 3

A list is non-separable
if $\forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0\right.$ implies $\left.\ell_{i j}=0\right)$.

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an optimal-height tangle of L ?

Problem 2

For lists where all entries are 0 or 1 , we can find a tangle that has height at most OPT+ 1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

Problem 3

A list is non-separable
if $\forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0\right.$ implies $\left.\ell_{i j}=0\right)$.

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an optimal-height tangle of L ?

Problem 2

For lists where all entries are 0 or 1 , we can find a tangle that has height at most OPT+ 1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

Problem 3

A list is non-separable

$$
\text { if } \forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0 \text { implies } \ell_{i j}=0\right) .
$$

For lists where all entries are even, is this sufficient?

Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an optimal-height tangle of L ?

Problem 2

For lists where all entries are 0 or 1 , we can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

Problem 3

A list is non-separable
if $\forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0\right.$ implies $\left.\ell_{i j}=0\right)$.

For lists where all entries are even, is this sufficient?

