
The Complexity of Finding Tangles

Oksana Firman, Philipp Kindermann,
Alexander Wolff, Johannes Zink
Julius-Maximilians-Universität Würzburg,

Germany

Alexander Ravsky
Pidstryhach Institute for Applied Problems

of Mechanics and Mathematics,
National Academy of Sciences of Ukraine,

Lviv, Ukraine

Stefan Felsner
TU Berlin,

Germany



Introduction

Given an ordered set
of n y -monotone wires



Introduction

Given an ordered set
of n y -monotone wires

1 ≤ i < j ≤ n

swap i j

i j



Introduction

Given an ordered set
of n y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps



Introduction

Given an ordered set
of n y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps

adjacent
permutations



Introduction

Given an ordered set
of n y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps

multiple swaps

adjacent
permutations



Introduction

Given an ordered set
of n y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

adjacent
permutations

π4

π5



Introduction

Given an ordered set
of n y -monotone wires

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

adjacent
permutations

π4

π5



Introduction

Given an ordered set
of n y -monotone wires

. . . and given a list L
of swaps

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

adjacent
permutations

π4

π5



Introduction

Given an ordered set
of n y -monotone wires

as a multiset (`i j)

. . . and given a list L
of swaps

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

1
3
1
2
1

adjacent
permutations

π4

π5 1



Introduction

Given an ordered set
of n y -monotone wires

as a multiset (`i j)

. . . and given a list L
of swaps

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

1
3
1
2
1

Tangle T realizes list L.

adjacent
permutations

π4

π5 1



Introduction

Given an ordered set
of n y -monotone wires

as a multiset (`i j)

. . . and given a list L
of swaps

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

1
3
1
2
1

Tangle T realizes list L.

adjacent
permutations

π4

π5 1



Introduction

Given an ordered set
of n y -monotone wires

as a multiset (`i j)

. . . and given a list L
of swaps

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

1
3
1
2
1

Tangle T realizes list L.

adjacent
permutations

not feasible

π4

π5 1



Introduction

Given an ordered set
of n y -monotone wires

as a multiset (`i j)

. . . and given a list L
of swaps

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

A list L of swaps is feasible if there exists a tangle that realizes L.
There may be multiple tangles realizing the same list of swaps.

1
3
1
2
1

Tangle T realizes list L.

adjacent
permutations

π4

π5 1



Introduction

Given an ordered set
of n y -monotone wires

as a multiset (`i j)

. . . and given a list L
of swaps

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T )

π1

π2

π3

π6

A list L of swaps is feasible if there exists a tangle that realizes L.
There may be multiple tangles realizing the same list of swaps.

1
3
1
2
1

Tangle T realizes list L.

adjacent
permutations

π4

π5 1



Related Work
• Olszewski et al.: Visualizing the template of a chaotic attractor.

GD 2018



Related Work
• Olszewski et al.: Visualizing the template of a chaotic attractor.

GD 2018

m
list



Related Work
• Olszewski et al.: Visualizing the template of a chaotic attractor.

GD 2018

m
list

Exp.-time algorithm for
finding optimal-height tangles



Related Work
• Olszewski et al.: Visualizing the template of a chaotic attractor.

GD 2018

m
list

Exp.-time algorithm for
finding optimal-height tangles Complexity ??



Related Work
• Olszewski et al.: Visualizing the template of a chaotic attractor.

GD 2018

m
list

• Sado and Igarashi : A function for evaluating
the computing time of a bubbling system.
TCS 1987

Given:
initial and
final permutations

Exp.-time algorithm for
finding optimal-height tangles Complexity ??



Related Work
• Olszewski et al.: Visualizing the template of a chaotic attractor.

GD 2018

m
list

• Sado and Igarashi : A function for evaluating
the computing time of a bubbling system.
TCS 1987

Given:
initial and
final permutations

Objective: minimize
the number of bends

• Bereg et al.: Drawing Permutations with Few Corners.
GD 2013

Exp.-time algorithm for
finding optimal-height tangles Complexity ??



Related Work
• Olszewski et al.: Visualizing the template of a chaotic attractor.

GD 2018

m
list

• Sado and Igarashi : A function for evaluating
the computing time of a bubbling system.
TCS 1987

Given:
initial and
final permutations

Objective: minimize
the number of bends

• Bereg et al.: Drawing Permutations with Few Corners.
GD 2013

Exp.-time algorithm for
finding optimal-height tangles Complexity ??

• FKRWZ : Computing optimal-height tangles faster.
GD 2019



Related Work

Faster exp.-time algorithm for
finding optimal-height tangles

• Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

m
list

• Sado and Igarashi : A function for evaluating
the computing time of a bubbling system.
TCS 1987

Given:
initial and
final permutations

Objective: minimize
the number of bends

• Bereg et al.: Drawing Permutations with Few Corners.
GD 2013

Exp.-time algorithm for
finding optimal-height tangles Complexity ??

• FKRWZ : Computing optimal-height tangles faster.
GD 2019



Related Work

Faster exp.-time algorithm for
finding optimal-height tangles

• Olszewski et al.: Visualizing the template of a chaotic attractor.
GD 2018

m
list

• Sado and Igarashi : A function for evaluating
the computing time of a bubbling system.
TCS 1987

Given:
initial and
final permutations

Objective: minimize
the number of bends

• Bereg et al.: Drawing Permutations with Few Corners.
GD 2013

Exp.-time algorithm for
finding optimal-height tangles Complexity ??

• FKRWZ : Computing optimal-height tangles faster.
GD 2019

Finding optimal-height
tangles is NP-hard



Contribution

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.

(F ∨ F ∨ F )



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.

(F ∨ F ∨ F )



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.

(T ∨ T ∨ T )

(F ∨ F ∨ F )



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.

(T ∨ T ∨ T )

(F ∨ F ∨ F )



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.

(T ∨ T ∨ T )

(F ∨ F ∨ F )

negative literals



Contribution

Reduction from Positive Not-All-Equal 3-SAT

Deciding whether a given list of swaps is feasible is NP-hard.
Theorem.

Proof.



Idea

• Two wires build 4 loops that we consider



Idea

• Two wires build 4 loops that we consider
λ λ′

λ′λ



Idea

• Two wires build 4 loops that we consider
λ λ′

λ′λ



Idea

• Two wires build 4 loops that we consider
λ λ′

λ′λ

• Two loops represent true,
the other two false



Idea

• Two wires build 4 loops that we consider

T

T

λ λ′

λ′λ

• Two loops represent true,
the other two false



Idea

• Two wires build 4 loops that we consider

T

T

λ λ′

λ′λ

• Two loops represent true,
the other two false



Idea

• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false



Idea

• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.



Idea

• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

ci

ci



Idea

• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

ci

ci



Idea

• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

• For each variable, there is a wire entering
either both true or both false loops.



Idea
vj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

• For each variable, there is a wire entering
either both true or both false loops.

vj



Idea
vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

• For each variable, there is a wire entering
either both true or both false loops.

vj vk



Idea
v`vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

• For each variable, there is a wire entering
either both true or both false loops.

vj vk v`



Idea
v`vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

• For each variable, there is a wire entering
either both true or both false loops.

vj vk v`

• Each clause wire meets precisely its
three corresponding variable wires –
each one in a different loop.



Idea
v`vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

ci

ci

• For each variable, there is a wire entering
either both true or both false loops.

vj vk v`

• Each clause wire meets precisely its
three corresponding variable wires –
each one in a different loop.



Idea
v`vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

ci

ci

• For each variable, there is a wire entering
either both true or both false loops.

vj vk v`

• Each clause wire meets precisely its
three corresponding variable wires –
each one in a different loop.



Idea
v`vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

ci

ci

• For each variable, there is a wire entering
either both true or both false loops.

vj vk v`

• Each clause wire meets precisely its
three corresponding variable wires –
each one in a different loop.



Idea
v`vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

ci

ci

• For each variable, there is a wire entering
either both true or both false loops.

vj vk v`

• Each clause wire meets precisely its
three corresponding variable wires –
each one in a different loop.



Idea
v`vkvj• Two wires build 4 loops that we consider

T

T

F

F

λ λ′

λ′λ

• Two loops represent true,
the other two false

• For each clause, there is a wire with
an arm in each of the 4 loops.

ci

ci

• For each variable, there is a wire entering
either both true or both false loops.

vj vk v`

• Each clause wire meets precisely its
three corresponding variable wires –
each one in a different loop.

• Only 2 true loops and 2 false loops
⇒ clause wires meet all their variable
wires iff Positive Not-All-Equal
3-SAT formula satisfiable



Variable Gadget

T

T

F

F

λ λ′

λ′λ

λ,λ′ : central loop structure



Variable Gadget

T

T

F

F

λ λ′

λ′λ

vj

vj

vj : variable wire of j-th variable

λ,λ′ : central loop structure



Variable Gadget

T

T

F

F

λ λ′

λ′λ

vjα′
j

vjα′
j

vj : variable wire of j-th variable

λ,λ′ : central loop structure



Variable Gadget

T

T

F

F

λ λ′

λ′λ

vjα′
jαj

αj vjα′
j

vj : variable wire of j-th variable

λ,λ′ : central loop structure

αj ,α
′
j : make vj appear only in

true or in false loops



Variable Gadget

T

T

F

F

λ λ′

λ′λ

vjα′
jαj

αj vjα′
j

vj : variable wire of j-th variable

λ,λ′ : central loop structure

αj ,α
′
j : make vj appear only in

true or in false loops



Variable Gadget

T

T

F

F

λ λ′

λ′λ

vjα′
j

T

T

F

F

αj

αj vjα′
j

λ λ′ vjα′
jαj

λ′λαj vjα′
j



Clause Gadget

T

T

F

F

λ λ′

λ λ′

λ,λ′ : central loop structure



Clause Gadget

T

T

F

F

λ λ′

λ λ′

ci

ci

ci : clause wire of i-th clause

λ,λ′ : central loop structure



Clause Gadget

T

T

F

F

λ λ′

λ λ′

ci

ci

ci : clause wire of i-th clause

λ,λ′ : central loop structure



Clause Gadget

T

T

F

F

λ λ′

λ λ′

vj

vj

ci

ci

ci : clause wire of i-th clause

vj : variable wire of j-th variable

λ,λ′ : central loop structure



Clause Gadget

T

T

F

F

λ λ′

λ λ′

vj

vj

ci

ci

γ j
i

ci : clause wire of i-th clause

vj : variable wire of j-th variable

λ,λ′ : central loop structure

γji : protects the arm of ci
that intersects vj from
other variable wires



Clause Gadget

T

T

F

F

λ λ′

λ λ′

vj

vj

ci

ci

γ j
i

ci : clause wire of i-th clause

vj : variable wire of j-th variable

λ,λ′ : central loop structure

γji : protects the arm of ci
that intersects vj from
other variable wires

T

T

F

F

λ λ′

λ λ′

γ j
i

γ j
i



Open Problems

Problem 1

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L?



Open Problems

Problem 1

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 2

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L?



Open Problems

Problem 1

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 2

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L?

Problem 3
A list is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j



Open Problems

Problem 1

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 2

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L?

Problem 3
A list is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

necessary



Open Problems

Problem 1

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 2

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L?

Problem 3

For lists where all entries are even, is this sufficient?

A list is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

necessary



Open Problems

Problem 1

For lists where all entries are 0 or 1, we can find a tangle that
has height at most OPT+ 1 in polynomial time. Can we also
always find a tangle of height OPT efficiently?

Problem 2

Can we decide the feasibility of a list L faster than finding an
optimal-height tangle of L?

Problem 3

For lists where all entries are even, is this sufficient?

A list is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

necessary

Thank you!


	Introduction
	Related Work
	Contribution
	Open Problems

