All Simple Drawings of $K_{m,n}$ Contain Shooting Stars

Oswin Aichholzer¹, Alfredo García², Irene Parada³, Birgit Vogtenhuber¹, and <u>Alexandra Weinberger</u>¹

¹Graz University of Technology, Austria

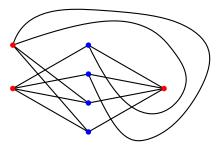
²University of Zaragoza, Spain

³Eindhoven University of Technology, Netherlands

EuroCG2020, Würzburg

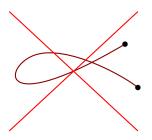
Simple drawings (also called good drawings or simple topological graphs) are drawings of graphs on the sphere or in the Euclidean plane where:

▶ Vertices drawn as distinct points; edges drawn as arcs.



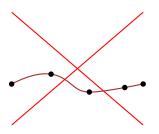
- ▶ Vertices drawn as distinct points; edges drawn as arcs.
- ► Edges are non-self-crossing.

- ▶ Vertices drawn as distinct points; edges drawn as arcs.
- ► Edges are non-self-crossing.

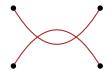


- ▶ Vertices drawn as distinct points; edges drawn as arcs.
- ► Edges are non-self-crossing.
- ► Edges don't pass through other vertices.

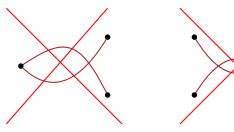
- ▶ Vertices drawn as distinct points; edges drawn as arcs.
- ► Edges are non-self-crossing.
- ► Edges don't pass through other vertices.



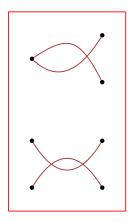
- ▶ Vertices drawn as distinct points; edges drawn as arcs.
- ► Edges are non-self-crossing.
- ► Edges don't pass through other vertices.
- ► Any pair of edges intersects at most once.



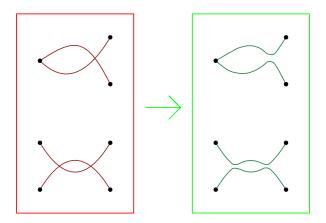
- ▶ Vertices drawn as distinct points; edges drawn as arcs.
- ► Edges are non-self-crossing.
- ► Edges don't pass through other vertices.
- ► Any pair of edges intersects at most once.



► Any pair of edges intersects at most once.



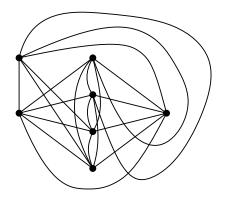
▶ Any pair of edges intersects at most once.



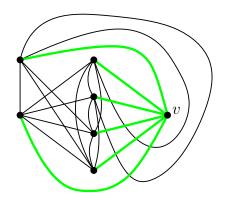
Question

Do all simple drawings of $K_{m,n}$ contain plane spanning trees?

Complete graphs (e.g. K_7)

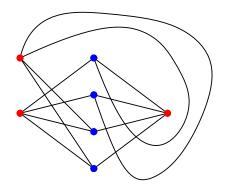


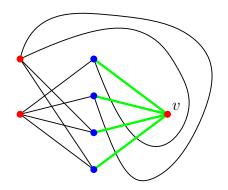
Complete graphs (e.g. K_7)

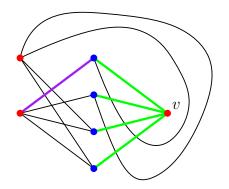


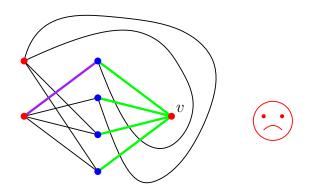
Definition

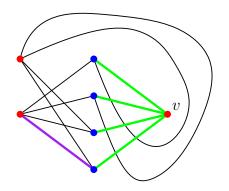
Star of v ... all edges incident to v.

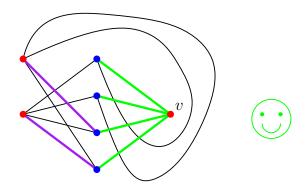


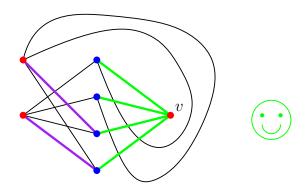












Definition

A shooting star rooted at v is a plane spanning tree that contains the star of vertex v, i.e., all edges incident to v.

Question

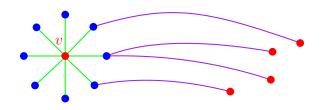
Do all simple drawings of $K_{m,n}$ contain plane spanning trees?

Question

Do all simple drawings of $K_{m,n}$ contain plane spanning trees?

Theorem

Let D be a simple drawing of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.

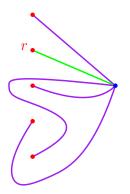


Let D be a simple drawing of $K_{m,n}$, with sides of the bipartiton R and R;

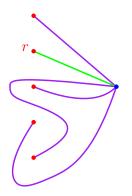
Show: There is a shooting star rooted at $r \in \mathbb{R}$;

Induction on |B| = n;

Induction Base n = 1:



Induction Base n = 1:



Assumption:

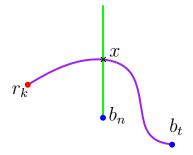
Every simple drawing of $K_{m,n'}$ with n' < n contains a shooting stars and the root can be arbitrarily chosen (we will choose r).

Induction Step $(n-1) \to n$

Stereographic projection from r;

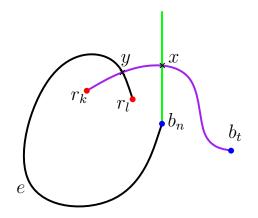
Induction Step $(n-1) \to n$

Stereographic projection from r;



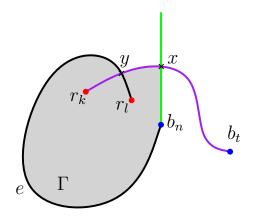
Induction Step $(n-1) \rightarrow n$

Stereographic projection from r;



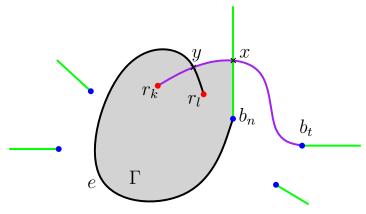
Induction Step $(n-1) \rightarrow n$

Stereographic projection from r;



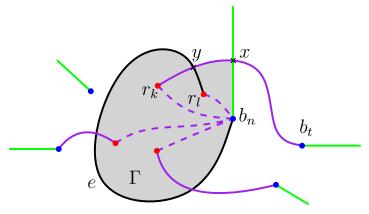
Induction Step $(n-1) \rightarrow n$

Stereographic projection from r;



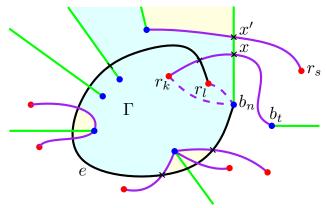
Induction Step $(n-1) \rightarrow n$

Stereographic projection from r;



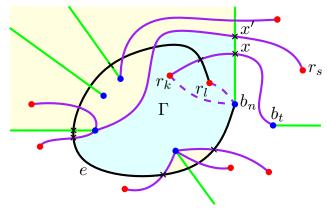
Induction Step $(n-1) \rightarrow n$

Stereographic projection from r;



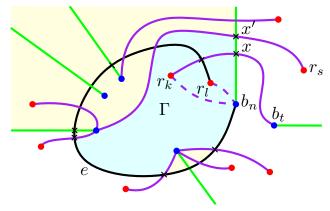
Induction Step $(n-1) \rightarrow n$

Stereographic projection from r;



Induction Step $(n-1) \rightarrow n$

Stereographic projection from r;



Tightness

Theorem

Let D be a simple drawing of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.

Tightness

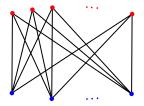
Theorem

Let D be a simple drawing of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.

Tightness

Theorem

Let D be a simple drawing of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.



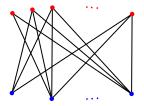
In some simple drawings of $K_{m,n}$ any plane structure has at most as many edges as a shooting star.

Theorem

Let D be a simple drawing of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.

Theorem

Let D be a simple drawing of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.



Some simple drawings of $K_{m,n}$ minus one edge do not contain plane spanning trees.

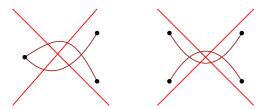
Theorem

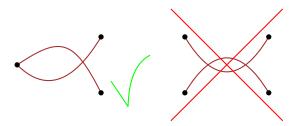
Let D be a <u>simple drawing</u> of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.

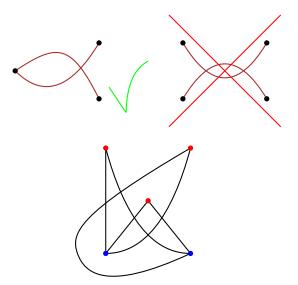
Theorem

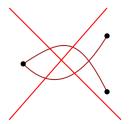
Let D be a <u>simple drawing</u> of $K_{m,n}$ and v be a vertex of D. Then D contains a shooting star rooted at v.

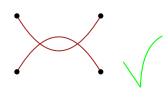
▶ Any pair of edges intersects at most once.

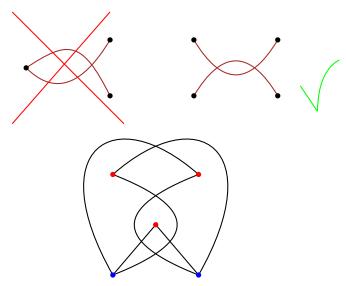












Summary

- ▶ All simple drawings of $K_{m,n}$ contain plain spanning trees, even shooting stars rooted at arbitrary v.
- Requirements are necessary.Maximum plane subdrawings can be trees.

