

Graph Distance - Optimal Mappings

Bernhard Kilgus joint work with Maike Buchin

RUHR-UNIVERSITÄT BOCHUM

Comparing Embedded Graphs

Motivation: road networks reconstructed from trajectory data

Our approach

Map one graph on part of the other and compare geometrically

A map $s: G_1 \to G_2$ is a graph mapping if it maps

- ullet each vertex $v \in V_1$ to a point s(v) on an edge of G_2 , and
- ullet each edge $\{u,v\}\in E_1$ to a simple path from s(u) to s(v) in G_2

Our approach

Map one graph on part of the other and compare geometrically

A map $s: G_1 \to G_2$ is a graph mapping if it maps

- ullet each vertex $v \in V_1$ to a point s(v) on an edge of G_2 , and
- ullet each edge $\{u,v\}\in E_1$ to a simple path from s(u) to s(v) in G_2

Our approach

Map one graph on part of the other and compare geometrically

A map $s: G_1 \to G_2$ is a graph mapping if it maps

- ullet each vertex $v \in V_1$ to a point s(v) on an edge of G_2 , and
- ullet each edge $\{u,v\}\in E_1$ to a simple path from s(u) to s(v) in G_2

We define the (weak) directed graph distance as

$$\vec{\delta}_{(w)G}(G_1, G_2) := \inf_{s:G_1 \to G_2} \max_{e \in E_1} \delta_{(w)F}(e, s(e)),$$

where s ranges over all graph mappings from G_1 to G_2 and $\delta_{(w)F}$ denotes the (weak) Fréchet distance.

Fréchet Distance

Definition:

 $P,Q\colon [0,n] \to \mathbb{R}^d$ parameterised curves

$$\delta_F(P,Q) := \inf_{\sigma:[0,n] \to [0,n]} \quad \max_{x \in [0,n]} \quad d(P(x),Q(\sigma(x)))$$
 homeomorphism

Fréchet distance equals shortest leash length

Fréchet Distance

Definition:

 $P,Q\colon [0,n] \to \mathbb{R}^d$ parameterised curves

$$\delta_F(P,Q) := \inf_{\sigma:[0,n] \to [0,n]} \max_{x \in [0,n]} \ d(P(x),Q(\sigma(x)))$$
 homeomorphism

Fréchet distance equals shortest leash length

Previous Results

	Directed Weak Graph Distance	Directed Graph Distance
General Graphs	NP-Hard	NP-Hard
Plane Graphs	P	NP-Hard
G_1 : Tree	P	Р

Steps to to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements

Steps to to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements

Steps to to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements

Steps to to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements

Steps to to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements

Steps to to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements

Locally Optimal Mappings

Locally Optimal Mappings

Definition:

A valid (w.r.t. an initial value $\varepsilon > 0$) mapping $s: G_1 \to G_2$ is a mapping realizing the min-sum graph distance if for any other valid mapping $\hat{s}: G_1 \to G_2$:

$$\sum_{e \in E_1} \delta_{(w)F}(e, \hat{s}(e)) \ge \sum_{e \in E_1} \delta_{(w)F}(e, s(e))$$

Example:

Computation:

- Compute min-sum graph distance bottom-up
- Invariant: Subgraphs are mapped optimally w.r.t. a root-placement

Computation:

• Compute reachability graph H of the vertex placements. Edges weighted by the (weak) Fréchet distance.

Computation:

• Compute reachability graph H of the vertex placements. Edges weighted by the (weak) Fréchet distance.

Computation:

• Compute reachability graph H of the vertex placements. Edges weighted by the (weak) Fréchet distance.

Computation:

• Compute reachability graph H of the vertex placements. Edges weighted by the (weak) Fréchet distance.

Computation:

• Compute reachability graph H of the vertex placements. Edges weighted by the (weak) Fréchet distance.

Computation:

• Set w(p) = 0 for all placements p of vertices of G_1

Computation:

- Set w(p) = 0 for all placements p of vertices of G_1
- Let u be a vertex of G_1 with leaf-children only

$$w(C_u) = \sum_{u': u' \text{ is child of } u} \min_{C_{u'} \in P(u')} (w(C_{u'}) + w_H(C_u, C_{u'})),$$

where $w_H(C_u,C_{u'})$ is the weight of a minimum weight shortest path P between C_u and $C_{u'}$ in H

Computation:

- Set w(p) = 0 for all placements p of vertices of G_1
- Let u be a vertex of G_1 with leaf-children only

$$w(C_u) = \sum_{u': u' \text{ is child of } u} \min_{C_{u'} \in P(u')} (w(C_{u'}) + w_H(C_u, C_{u'})),$$

where $w_H(C_u,C_{u'})$ is the weight of a minimum weight shortest path P between C_u and $C_{u'}$ in H

• Store mapping realizing $w(C_u)$, delete subtree of G_1 rooted in u and iterate

Computation:

Computation:

Computation:

Computation:

Computation:

Result:

Theorem: If G_1 is a tree, we can compute a mapping s realizing the min-sum graph distance in $O(n_1m_2^3)$ time and $O(n_1m_2^2)$ space.

Lexicographic Graph Distance

Definition and Example:

A mapping $s\colon G_1\to G_2$ is a mapping realizing the lexicographic graph distance if any local optimization induces a larger bottleneck distance compared to s.

Lexicographic Graph Distance

Definition and Example:

A mapping $s: G_1 \to G_2$ is a mapping realizing the lexicographic graph distance if any local optimization induces a larger bottleneck distance compared to s.

Lexicographic: Optimally ordering the bottleneck distances between G_1 and a mapping in G_2 .

Lexicographic Graph Distance

Computation:

Iteratively compute graph distance and update graph

Computation:

Iteratively compute graph distance and update graph

Computation:

- Iteratively compute graph distance and update graph
- ullet Update: Snap point of G_2 onto edge of G_1
- bottleneck \rightarrow distance zero

Computation:

- Iteratively compute graph distance and update graph
- ullet Update: Snap point of G_2 onto edge of G_1
- bottleneck \rightarrow distance zero

• Core observation: Any valid mapping must pass through w_1 .

Computation:

- Iteratively compute graph distance and update graph
- ullet Update: Snap point of G_2 onto edge of G_1
- ullet bottleneck o distance zero

- ullet Core observation: Any valid mapping must pass through w_1 .
- Manipulating G_2 does not change the reachability information between placements.

Computation:

- Iteratively compute graph distance and update graph
- ullet Update: Snap point of G_2 onto edge of G_1
- bottleneck \rightarrow distance zero

Snapped points define a unique mapping.

Result:

Theorem: Given plane graphs G_1 , G_2 one can compute a lexicographic graph mapping $s\colon G_1\to G_2$ in $O(n_1^2n_2^2\log(n_1+n_2))$ time using $O(n_1n_2)$ space.

No locally optimal mapping for graphs

- No locally optimal mapping for graphs
- Additional optimality criteria improve the mappings locally

- No locally optimal mapping for graphs
- Additional optimality criteria improve the mappings locally
- Min-sum graph distance computable in polynomial time, if G_1 is a tree. For plane graphs probably NP-hard to compute.

- No locally optimal mapping for graphs
- Additional optimality criteria improve the mappings locally
- Min-sum graph distance computable in polynomial time, if G_1 is a tree. For plane graphs probably NP-hard to compute.
- Lexicographic graph distance based on the weak graph distance computable in polynomial time if both graphs are planar embedded