Graph Distance - Optimal Mappings

Bernhard Kilgus
joint work with Maike Buchin
Comparing Embedded Graphs

Motivation: road networks reconstructed from trajectory data
Our approach

Map one graph on part of the other and compare geometrically

A map \(s : G_1 \rightarrow G_2 \) is a graph mapping if it maps
- each vertex \(v \in V_1 \) to a point \(s(v) \) on an edge of \(G_2 \), and
- each edge \(\{u, v\} \in E_1 \) to a simple path from \(s(u) \) to \(s(v) \) in \(G_2 \)
Our approach

Map one graph on part of the other and compare geometrically

A map $s : G_1 \rightarrow G_2$ is a graph mapping if it maps
- each vertex $v \in V_1$ to a point $s(v)$ on an edge of G_2, and
- each edge $\{u, v\} \in E_1$ to a simple path from $s(u)$ to $s(v)$ in G_2.
Our approach

Map one graph on part of the other and compare geometrically

A map \(s : G_1 \to G_2 \) is a **graph mapping** if it maps
- each vertex \(v \in V_1 \) to a point \(s(v) \) on an edge of \(G_2 \), and
- each edge \(\{u, v\} \in E_1 \) to a simple path from \(s(u) \) to \(s(v) \) in \(G_2 \)

We define the **(weak) directed graph distance** as

\[
\vec{\delta}_G(w)(G_1, G_2) := \inf_{s: G_1 \to G_2} \max_{e \in E_1} \delta_F(e, s(e)),
\]

where \(s \) ranges over all graph mappings from \(G_1 \) to \(G_2 \) and \(\delta_F \) denotes the (weak) Fréchet distance.
Fréchet Distance

Definition:

\[P, Q : [0, n] \rightarrow \mathbb{R}^d \] parameterised curves

\[\delta_F(P, Q) := \inf_{\sigma : [0, n] \rightarrow [0, n]} \max_{x \in [0, n]} d(P(x), Q(\sigma(x))) \]

homeomorphism

Illustration: Man & Dog

Fréchet distance equals shortest leash length
Fréchet Distance

Definition:

\[P, Q : [0, n] \rightarrow \mathbb{R}^d \text{ parameterised curves} \]

\[\delta_F(P, Q) := \inf_{\sigma : [0,n] \rightarrow [0,n]} \max_{x \in [0,n]} d(P(x), Q(\sigma(x))) \]

homeomorphism

Illustration: Man & Dog

Fréchet distance equals shortest leash length
Previous Results

<table>
<thead>
<tr>
<th></th>
<th>Directed Weak Graph Distance</th>
<th>Directed Graph Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Graphs</td>
<td>NP-Hard</td>
<td>NP-Hard</td>
</tr>
<tr>
<td>Plane Graphs</td>
<td>P</td>
<td>NP-Hard</td>
</tr>
<tr>
<td>G_1: Tree</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>
Algorithmic Approach

Steps to decide the (weak) graph distance:

• compute placements of vertices
• compute reachability between placements
• delete all dead-end placements
• construct mapping based on remaining placements
Algorithmic Approach

Steps to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements
Algorithmic Approach

Steps to decide the (weak) graph distance:

• compute placements of vertices
• compute reachability between placements
• delete all dead-end placements
• construct mapping based on remaining placements
Algorithmic Approach

Steps to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements
Algorithmic Approach

Steps to decide the (weak) graph distance:

• compute placements of vertices
• compute reachability between placements
• delete all dead-end placements
• construct mapping based on remaining placements
Algorithmic Approach

Steps to decide the (weak) graph distance:

- compute placements of vertices
- compute reachability between placements
- delete all dead-end placements
- construct mapping based on remaining placements
Locally Optimal Mappings
Locally Optimal Mappings

\[G_2 \rightarrow s_1 \rightarrow e_1 \rightarrow s_1 \rightarrow G_1 \]

\[G_2 \rightarrow s_2 \rightarrow e_2 \rightarrow s_2 \]
Min-Sum Graph Distance for Trees

Definition:

A valid (w.r.t. an initial value $\varepsilon > 0$) mapping $s : G_1 \to G_2$ is a mapping realizing the min-sum graph distance if for any other valid mapping $\hat{s} : G_1 \to G_2$:

$$\sum_{e \in E_1} \delta(w)F(e, \hat{s}(e)) \geq \sum_{e \in E_1} \delta(w)F(e, s(e))$$
Min-Sum Graph Distance for Trees

Example:
Min-Sum Graph Distance for Trees

Computation:

- Compute min-sum graph distance \textit{bottom-up}
- Invariant: Subgraphs are mapped optimally w.r.t. a root-placement
Min-Sum Graph Distance for Trees

Computation:

- Compute *reachability graph* H of the vertex placements. Edges weighted by the (weak) Fréchet distance.
Min-Sum Graph Distance for Trees

Computation:

• Compute *reachability graph* H of the vertex placements. Edges weighted by the (weak) Fréchet distance.
Min-Sum Graph Distance for Trees

Computation:

- Compute *reachability graph* H of the vertex placements. Edges weighted by the (weak) Fréchet distance.
Min-Sum Graph Distance for Trees

Computation:

• Compute *reachability graph* H of the vertex placements. Edges weighted by the (weak) Fréchet distance.
Min-Sum Graph Distance for Trees

Computation:

- Compute *reachability graph* H of the vertex placements. Edges weighted by the (weak) Fréchet distance.
Min-Sum Graph Distance for Trees

Computation:

• Set $w(p) = 0$ for all placements p of vertices of G_1
Min-Sum Graph Distance for Trees

Computation:

- Set \(w(p) = 0 \) for all placements \(p \) of vertices of \(G_1 \)
- Let \(u \) be a vertex of \(G_1 \) with leaf-children only

\[
w(C_u) = \sum_{u' : u' \text{ is child of } u} \min_{C_{u'} \in P(u')} \left(w(C_{u'}) + w_H(C_u, C_{u'}) \right),
\]

where \(w_H(C_u, C_{u'}) \) is the weight of a minimum weight shortest path \(P \) between \(C_u \) and \(C_{u'} \) in \(H \)
Min-Sum Graph Distance for Trees

Computation:

- Set $w(p) = 0$ for all placements p of vertices of G_1
- Let u be a vertex of G_1 with leaf-children only

$$w(C_u) = \sum_{u': u' is child of u} \min_{C_{u'} \in P(u')} (w(C_{u'}) + w_H(C_u, C_{u'})),$$

where $w_H(C_u, C_{u'})$ is the weight of a minimum weight shortest path P between C_u and $C_{u'}$ in H

- Store mapping realizing $w(C_u)$, delete subtree of G_1 rooted in u and iterate
Min-Sum Graph Distance for Trees

Computation:
Min-Sum Graph Distance for Trees

Computation:
Min-Sum Graph Distance for Trees

Computation:

[Diagram of two graphs]
Min-Sum Graph Distance for Trees

Computation:
Min-Sum Graph Distance for Trees

Computation:

winning mapping starts in C_2
Min-Sum Graph Distance for Trees

Result:

Theorem: If G_1 is a tree, we can compute a mapping s realizing the min-sum graph distance in $O(n_1m^3_2)$ time and $O(n_1m^2_2)$ space.
Lexicographic Graph Distance

Definition and Example:
A mapping $s : G_1 \to G_2$ is a mapping realizing the lexicographic graph distance if any local optimization induces a larger bottleneck distance compared to s.
Lexicographic Graph Distance

Definition and Example:
A mapping \(s : G_1 \to G_2 \) is a mapping realizing the lexicographic graph distance if any local optimization induces a larger bottleneck distance compared to \(s \).

Lexicographic: Optimally ordering the bottleneck distances between \(G_1 \) and a mapping in \(G_2 \).
Lexicographic Graph Distance

Computation:

• Iteratively compute graph distance and update graph
Lexicographic Graph Distance

Computation:

• Iteratively compute graph distance and update graph

\[
G_2 \rightarrow G_1 \ \text{with} \ \omega_1
\]
Lexicographic Graph Distance

Computation:

• Iteratively compute graph distance and update graph
• Update: Snap point of G_2 onto edge of G_1
• bottleneck \rightarrow distance zero
Lexicographic Graph Distance

Computation:

• Iteratively compute graph distance and update graph
• Update: Snap point of G_2 onto edge of G_1
• bottleneck \rightarrow distance zero

• Core observation: Any valid mapping must pass through w_1.

G2

G1

w1
Lexicographic Graph Distance

Computation:

• Iteratively compute graph distance and update graph
• Update: Snap point of G_2 onto edge of G_1
• bottleneck \rightarrow distance zero

• Core observation: Any valid mapping must pass through w_1.
• Manipulating G_2 does not change the reachability information between placements.
Lexicographic Graph Distance

Computation:

• Iteratively compute graph distance and update graph
• Update: Snap point of G_2 onto edge of G_1
• bottleneck \rightarrow distance zero

![Diagram of graph distance computation](image)
Lexicographic Graph Distance

\[G_2 \quad \text{and} \quad G_1 \]

\[w_1 \]
Lexicographic Graph Distance
Lexicographic Graph Distance

G_2

G_1

w_1

w_2

w_7

w_6

w_8

w_5
Lexicographic Graph Distance

G_2

G_1

w_1

w_2

w_5

w_6

w_7

u

w'_1

w'_2

w'_3

w'_5

w'_8

w'_7
Lexicographic Graph Distance

Snapped points define a unique mapping.
Lexicographic Graph Distance

Result:

Theorem: Given plane graphs G_1, G_2 one can compute a lexicographic graph mapping $s: G_1 \rightarrow G_2$ in $O(n_1^2n_2^2 \log(n_1 + n_2))$ time using $O(n_1n_2)$ space.
Summary

• No locally optimal mapping for graphs
Summary

• No locally optimal mapping for graphs

• Additional optimality criteria improve the mappings locally
Summary

- No locally optimal mapping for graphs
- Additional optimality criteria improve the mappings locally
- Min-sum graph distance computable in polynomial time, if G_1 is a tree. For plane graphs probably NP-hard to compute.
Summary

• No locally optimal mapping for graphs
• Additional optimality criteria improve the mappings locally
• Min-sum graph distance computable in polynomial time, if G_1 is a tree. For plane graphs probably NP-hard to compute.
• Lexicographic graph distance based on the weak graph distance computable in polynomial time if both graphs are planar embedded