Between Two Shapes, Using the Hausdorff Distance

Marc van Kreveld, Till Miltzow, Tim Ophelders
Willem Sonke, Jordi Vermeulen
Directed Hausdorff distance $A \rightarrow B$.
Directed Hausdorff distance $A \rightarrow B$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig.png}
\caption{Directed Hausdorff distance between sets A and B.}
\end{figure}
Directed Hausdorff distance $A \rightarrow B$.
Directed Hausdorff distance $B \rightarrow A$.

![Diagram](image-url)
Directed Hausdorff distance $B \rightarrow A$.

![Diagram showing Directed Hausdorff distance](image-url)
Directed Hausdorff distance $B \rightarrow A$.
Undirected Hausdorff distance $A \leftrightarrow B$.
Undirected Hausdorff distance $A \leftrightarrow B$.

$d_H = 1$
Directed Hausdorff distance $B \rightarrow A$.
Directed Hausdorff distance $A \rightarrow B$.
Find S with minimal Hausdorff distance to A and B.

A \hspace{2cm} S \hspace{2cm} B
Find S with minimal Hausdorff distance to A and B.

Result: distance $1/2$ is always possible.
$d_H = 1$
\[A \oplus D_{1/2} \]
\[A \oplus D_{1/2} \]

\[B \oplus D_{1/2} \]

\[S_{1/2} \]
$A \oplus D_{3/4}$

$B \oplus D_{1/4}$

$S_{3/4}$
Claim:
- $d_H(A, S) = \alpha$
- $d_H(B, S) = 1 - \alpha$
Claim:
- $d_H(A, S) = \alpha$
- $d_H(B, S) = 1 - \alpha$

To show:
- $S \subseteq A \oplus D_\alpha$
- $S \subseteq B \oplus D_{1-\alpha}$
- $A \subseteq S \oplus D_\alpha$
- $B \subseteq S \oplus D_{1-\alpha}$
Claim:
- $d_H(A, S) = \alpha$
- $d_H(B, S) = 1 - \alpha$

To show:
- $S \subseteq A \oplus D_{\alpha}$
- $S \subseteq B \oplus D_{1 - \alpha}$
- $A \subseteq S \oplus D_{\alpha}$
- $B \subseteq S \oplus D_{1 - \alpha}$
Lemma: \(S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha}) \) has \(d_H(A, S_\alpha) = \alpha \) and \(d_H(B, S_\alpha) = 1 - \alpha \).
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$ ✓
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$ ✓
- $A \subseteq S_\alpha \oplus D_\alpha$
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$ \hfill ✓
- $A \subseteq S_\alpha \oplus D_\alpha$
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$ ✓
- $A \subseteq S_\alpha \oplus D_\alpha$
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$ ✓
- $A \subseteq S_\alpha \oplus D_\alpha$
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$
- $A \subseteq S_\alpha \oplus D_\alpha$
Lemma: $S_\alpha = (A \oplus D_\alpha) \cap (B \oplus D_{1-\alpha})$ has $d_H(A, S_\alpha) = \alpha$ and $d_H(B, S_\alpha) = 1 - \alpha$.

- $S_\alpha \subseteq A \oplus D_\alpha$ ✓
- $A \subseteq S_\alpha \oplus D_\alpha$ ✓
convex
convex
$O(n + m)$ complexity
non-convex

convex
non-convex connected \(O(n + m) \) complexity convex
non-convex

possibly disconnected

\(O(nm) \) complexity
maximal S
minimal S
$A \oplus D_{1/2}$

$B \oplus D_{1/2}$

$S_{1/2}$
\[A \oplus D_{3/4} \]

\[A \oplus D_{1/4} \]

\[S_{3/4} \]

\[B \oplus D_{1/4} \]
\[B \oplus D_{7/8} \]

\[B \oplus D_{1/8} \]
Conclusion:
Conclusion:

- We can compute a shape with $d_H(A, S) = \alpha$ and $d_H(B, S) = 1 - \alpha$
Conclusion:

- We can compute a shape with $d_H(A, S) = \alpha$ and $d_H(B, S) = 1 - \alpha$
- The shape has linear or quadratic complexity, depending on the convexity of A and B
Conclusion:

- We can compute a shape with $d_H(A, S) = \alpha$ and $d_H(B, S) = 1 - \alpha$
- The shape has linear or quadratic complexity, depending on the convexity of A and B
- The morph obtained by varying α is 1-Lipschitz continuous
Conclusion:

- We can compute a shape with $d_H(A, S) = \alpha$ and $d_H(B, S) = 1 - \alpha$
- The shape has linear or quadratic complexity, depending on the convexity of A and B
- The morph obtained by varying α is 1-Lipschitz continuous

Future work:

- Extend to more than two input sets
Conclusion:

- We can compute a shape with $d_H(A, S) = \alpha$ and $d_H(B, S) = 1 - \alpha$
- The shape has linear or quadratic complexity, depending on the convexity of A and B
- The morph obtained by varying α is 1-Lipschitz continuous

Future work:

- Extend to more than two input sets
 - Minimum required α may be 1
Conclusion:

- We can compute a shape with $d_H(A, S) = \alpha$ and $d_H(B, S) = 1 - \alpha$
- The shape has linear or quadratic complexity, depending on the convexity of A and B
- The morph obtained by varying α is 1-Lipschitz continuous

Future work:

- Extend to more than two input sets
 - Minimum required α may be 1
- Not yet clear how to do morphing between three shapes
Input sets \(\{A_1, \ldots, A_k\} \)
Input sets $\{A_1, \ldots, A_k\}$

Let $S_\alpha = \bigcap_i A_i \oplus D_\alpha$
Input sets $\{A_1, \ldots, A_k\}$

Let $S_\alpha = \bigcap_i A_i \oplus D_\alpha$

Find smallest α s.t. $A_i \subseteq S_\alpha \oplus D_\alpha$
Input sets \(\{A_1, \ldots, A_k\} \)

Let \(S_\alpha = \bigcap_{i} A_i \oplus D_\alpha \)

Find smallest \(\alpha \) s.t. \(A_i \subseteq S_\alpha \oplus D_\alpha \)
Input sets \(\{A_1, \ldots, A_k\} \)

Let \(S_\alpha = \bigcap_i A_i \oplus D_\alpha \)

Find smallest \(\alpha \) s.t. \(A_i \subseteq S_\alpha \oplus D_\alpha \)
Input sets \(\{A_1, \ldots, A_k\} \)

Let \(S_\alpha = \bigcap_i A_i \oplus D_\alpha \)

Find smallest \(\alpha \) s.t. \(A_i \subseteq S_\alpha \oplus D_\alpha \)
Input sets \(\{A_1, \ldots, A_k\} \)

Let \(S_\alpha = \bigcap_i A_i \oplus D_\alpha \)

Find smallest \(\alpha \) s.t. \(A_i \subseteq S_\alpha \oplus D_\alpha \)
Input sets \(\{A_1, \ldots, A_k\} \)

Let \(S_\alpha = \bigcap_i A_i \oplus D_\alpha \)

Find smallest \(\alpha \) s.t. \(A_i \subseteq S_\alpha \oplus D_\alpha \)
Input sets \(\{A_1, \ldots, A_k\} \)

Let \(S_\alpha = \bigcap_i A_i \oplus D_\alpha \)

Find smallest \(\alpha \) s.t. \(A_i \subseteq S_\alpha \oplus D_\alpha \)

Worst case: smallest \(\alpha = 1 \)
Input sets \(\{A_1, \ldots, A_k\} \)

Let \(S_\alpha = \bigcap_i A_i \oplus D_\alpha \)

Find smallest \(\alpha \) s.t. \(A_i \subseteq S_\alpha \oplus D_\alpha \)

Worst case: smallest \(\alpha = 1 \)