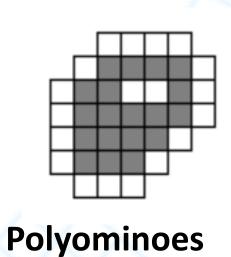
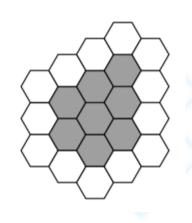
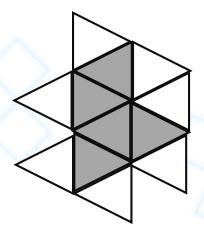
On Minimal-Perimeter Latice Animals

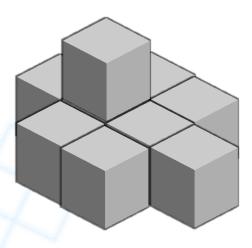
Gill Barequet, <u>Gil Ben-Shachar</u>
Dept. of Computer Science, Technion, Haifa
EuroCG 2020, Würzburg, Germany

What is a Lattice Animal?







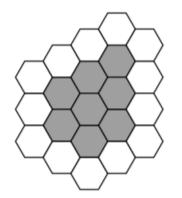


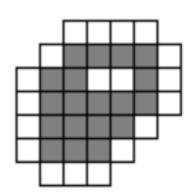
Polyhexes

Polyiamonds

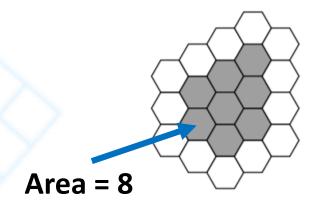
Polycubes

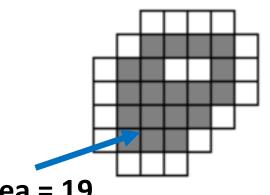
Term	Definition	Notation
Lattice Animal	A set of connected cells on some lattice	Q



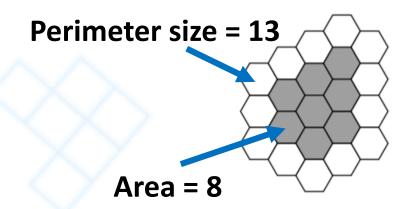


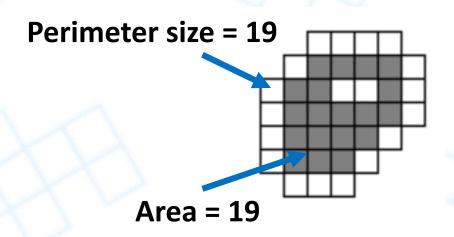
Term	Definition	Notation
Lattice Animal	A set of connected cells on some lattice	Q
Area	The number of cells	Q



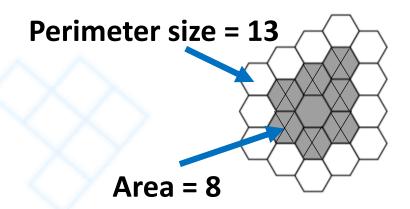


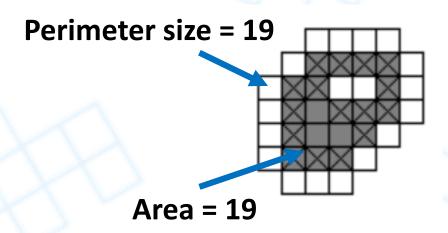
Term	Definition	Notation
Lattice Animal	A set of connected cells on some lattice	Q
Area	The number of cells	Q
Perimeter	Empty adjacent cells	$\mathcal{P}(Q)$





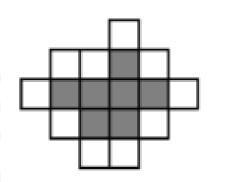
Term	Definition	Notation
Lattice Animal	A set of connected cells on some lattice	Q
Area	The number of cells	Q
Perimeter	Empty adjacent cells	$\mathcal{P}(Q)$
Border	Lattice animal cells with empty adjacent cells	$\mathcal{B}(Q)$

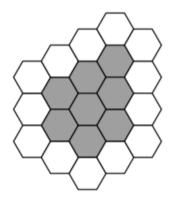


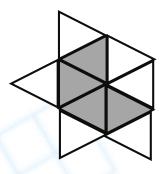


Minimal-Perimeter Lattice Animals

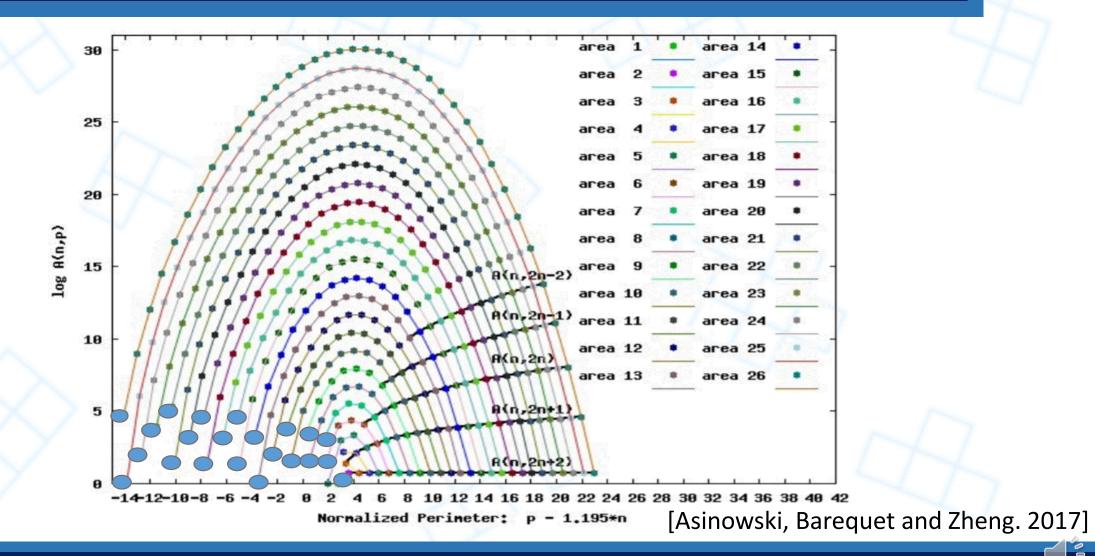
- **Definition:** a minimal-perimeter lattice animal (MPA) is a lattice animal which have the minimum possible perimeter from within all lattice animals of the same size.
- Examples:



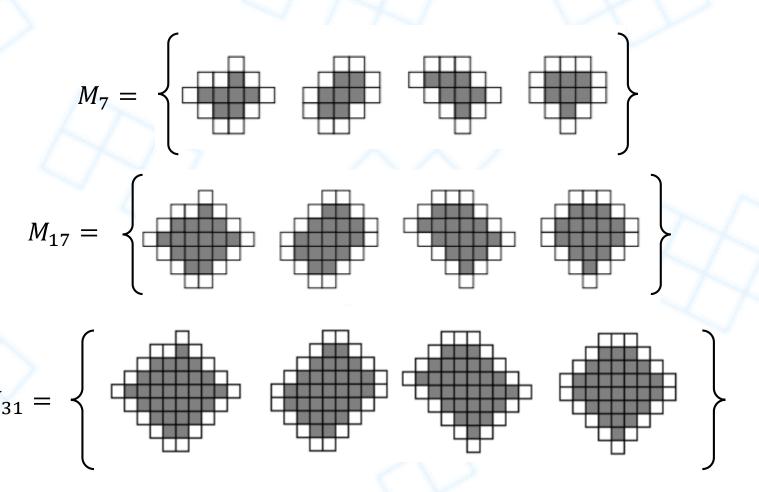




Motivation



Minimal-Perimeter Lattice Animals



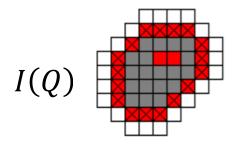
Inflation of Polyominoes

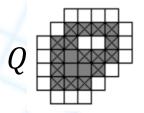
Inflation of a polyomino Q, I(Q), is

$$I(Q) = Q \cup \mathcal{P}(Q)$$

The deflated polyomino D(Q) is

$$D(Q) = Q \backslash \mathcal{B}(Q)$$





Inflation of Polyominoes

• Theorem: For $n \ge 3$ and any $k \in N$, $|M_n| = |M_{n+k\epsilon(n)+2k(k-1)}|$

$$M_7 = \left\{ \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right\}$$

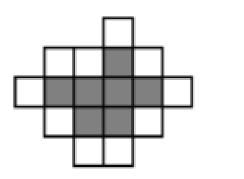
$$M_{17} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$$

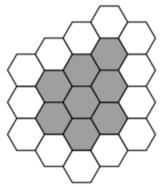
$$M_{31} = \left\{ \begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array} \right\}$$

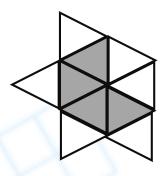
$$|M_{2477537}| = 4$$

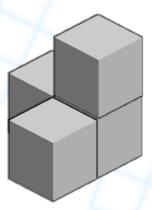
Minimal-Perimeter Lattice Animals

- **Definition:** a minimal-perimeter lattice animal (MPA) is a lattice animal which have the minimum possible perimeter from within all lattice animals of the same size.
- Examples:









Genralization to Lattice Animals

- Does inflation induce a bijection in other lattices?
- The following set of conditions are sufficient:
- 1) The minimal perimeter size is monotonically increasing (w.r.t the area)
- 2) $|\mathcal{P}(Q)| = |\mathcal{B}(Q)| + c$ for some c Heaviest requirements
- 3) Deflation of a MPA creates a valid lattice animal

Proof structure

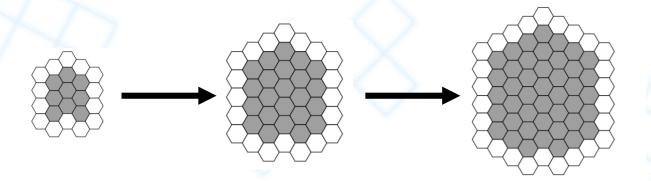
- The idea is to show a bijection between sets of MPAs.
- First direction: Inflation of an MPA creates a new (unique) MPA.
- Second direction: If one MPA of area n is created by an inflation, then any MPA of area n can be deflated to a smaller MPA.

Proof: First direction

- **Theorem:** For a minimal-perimeter animal Q, I(Q) is a minimal-perimeter animal as well.
- Proof idea
- Assume I(Q) is not minimal-perimeter animal.
- $\exists Q'$ s.t. |Q'| = I(Q) and $|\mathcal{P}(Q')| < |\mathcal{P}(I(Q))|$
- After some calculations (using condition #2) |D(Q')| > |Q|, and $|\mathcal{P}(Q')| < |\mathcal{P}(Q)|$
- Contradicts condition #1.
- lacksquare $\Rightarrow Q$ is not a minimal-perimeter animal.

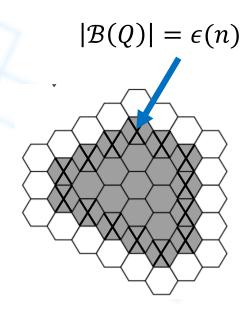
First direction: Corollary

• Inflation of MPAs creates an infinite chain of new MPAs.



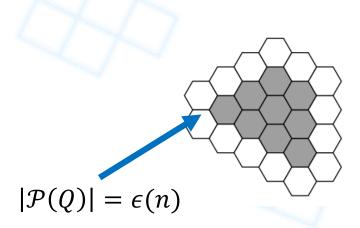
Second direction

- Lemma: If $Q \in M_{n+\epsilon(n)}$ then $D(Q) \in M_n$
- Proof:
- Let $Q \in M_{n+\epsilon(n)}$
- $|\mathcal{B}(Q)| = \epsilon(n)$, thus |D(Q)| = n.



Second direction

- Lemma: If $Q \in M_{n+\epsilon(n)}$ then $D(Q) \in M_n$
- Proof:
- Let $Q \in M_{n+\epsilon(n)}$
- $|\mathcal{B}(Q)| = \epsilon(n)$, thus |D(Q)| = n.
- $|\mathcal{P}(D(Q))| \ge \epsilon(n)$ and $\mathcal{P}(D(Q)) \subseteq \mathcal{B}(Q)$
- $\mathcal{P}(D(Q)) = \mathcal{B}(Q) \Rightarrow I(D(Q)) = Q.$
- $\Rightarrow |M_n| \ge |M_{n+\epsilon(n)}|$



Genralization to Lattice Animals

- Does inflation induce a this bijection in other lattices?
- The following set of conditions are sufficient:
- 1) The minimal perimeter size is monotonically increasing
- 2) $|\mathcal{P}(Q)| = |\mathcal{B}(Q)| + c$ for some c Heaviest requirements
- 3) Deflation of a MPA creates a valid lattice animal

- 1) The minimal perimeter size is monotonically increasing Known [Vainsencher and Bruckstein, 2008]
- 2) $|\mathcal{P}(Q)| = |\mathcal{B}(Q)| + c$ for some c
- 3) Deflation of a minimal-perimeter polyhex creates a valid polyhex

Easy to see...

- How to prove that $\mathcal{P}(Q) = \mathcal{B}(Q) + c$?
- Classify each cell or perimeter cell to one of the following patterns:

Regular cells:

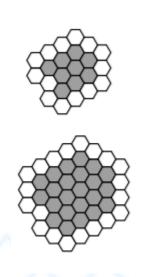
Perimeter cells: State S

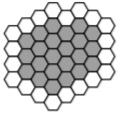
• Show that:
$$\mathcal{P}(Q) = \mathcal{B}(Q) + 3 \cdot \# \textcircled{+} + 2 \cdot \# \textcircled{+} + \# \textcircled{+$$

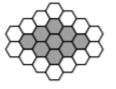
- How to prove that $\mathcal{P}(Q) = \mathcal{B}(Q) + c$?
- Show that: $\mathcal{P}(Q) = \mathcal{B}(Q) + 3 \cdot \# \Leftrightarrow + 2 \cdot \# \Leftrightarrow + \# \Leftrightarrow -$
- Use some calculations to get:

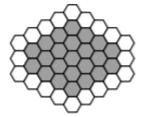
$$\mathcal{P}(Q) = \mathcal{B}(Q) + 6$$

• (For polyominoes it is $\mathcal{P}(Q) = \mathcal{B}(Q) + 4$)



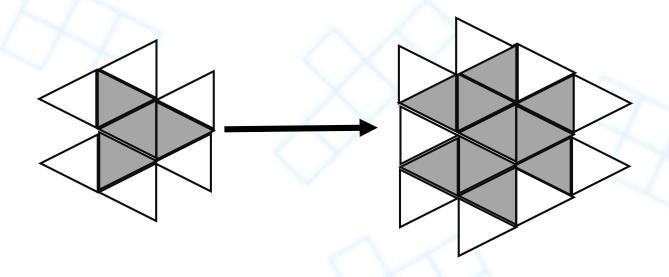




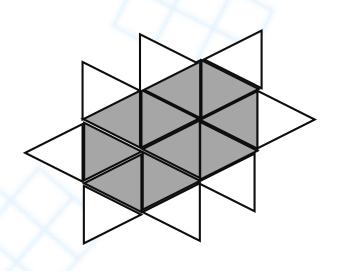




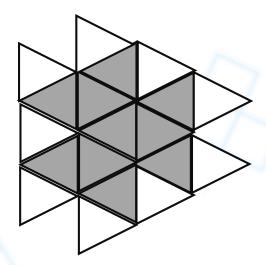
Polyiamonds



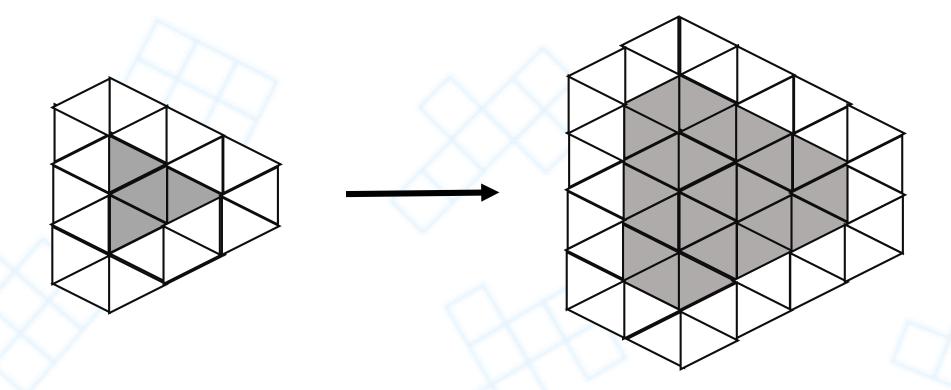
Polyiamonds



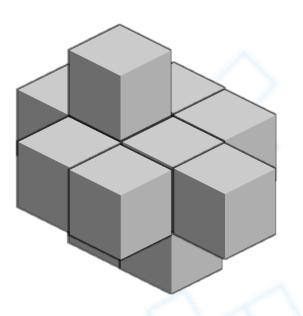
VS.



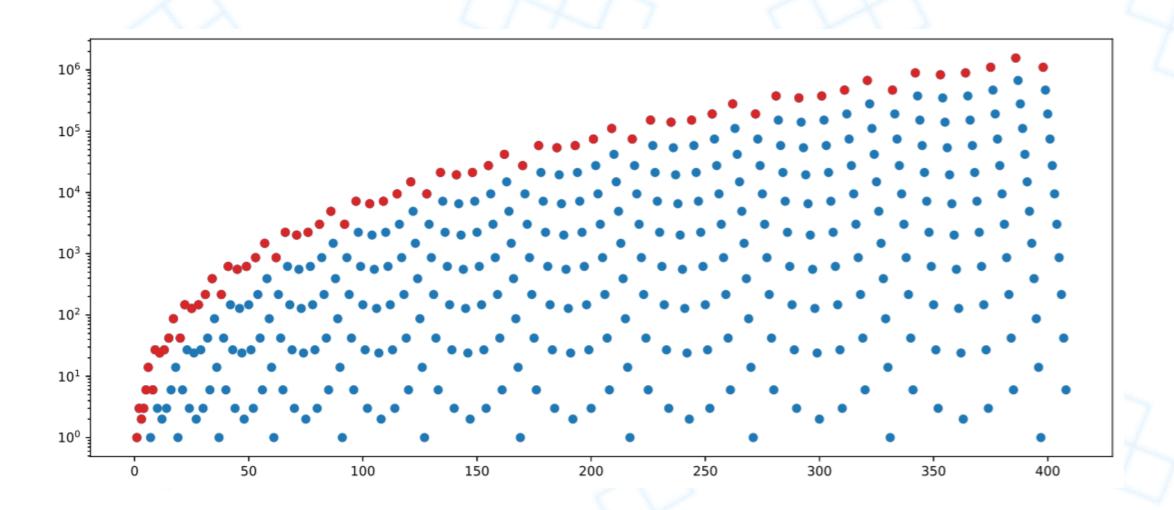
Polyiamonds



Polycubes

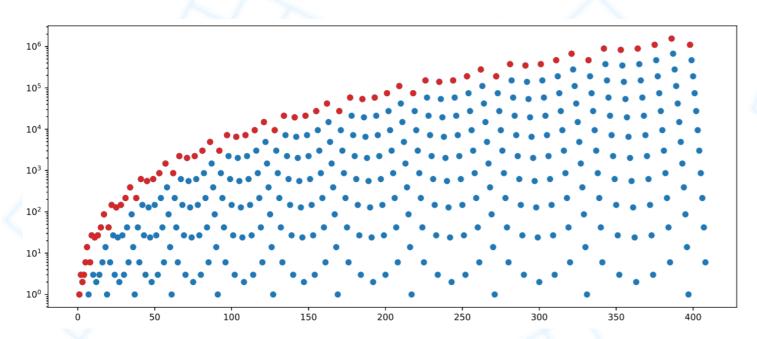


Counting Minimal-Perimeter Polyhexes



Questions

- Is there a bijection between sets of minimal-perimeter polycubes?
- Are all the conditions are necessary?



Thank you!

