Balanced Independent Sets on Colored Interval Graphs

Sujoy Bhore, Jan-Henrik Haunert, Fabian Klute, Guangping Li, Martin Nöllenburg
Boundary labeling

- labels are at the boundary of the focus region
- a leader connects a label with its corresponding POI
- task: select a large conflict-free labeling

Algorithms for labeling focus regions.
Boundary labeling

- labels represent objects of multiple categories
- task: select a good mixture of different object types
Model

input:

- a set of n colored axis-parallel unit squares touching a disk D
- rectangle: icon
Model

input:

- a set of n colored axis-parallel unit squares touching a disk D
- rectangle: icon

interval representation of its intersection model
Model

input:

- a set I of n intervals on the real line
- each interval is colored by a coloring $c: I \rightarrow \{1, \ldots, k\}$
Model

input:
- a set I of n intervals on the real line
- each interval is colored by a coloring $c: I \to \{1, \ldots, k\}$

goal: f-Balanced Independent Set (f-BIS)
- an independent set $M \subseteq I$
- M contains exactly f elements from each of k color classes
Model

input:

- a set I of n intervals on the real line
- each interval is colored by a coloring $c: I \rightarrow \{1, \ldots, k\}$

goal: f-Balanced Independent Set (f-BIS)

- an independent set $M \subseteq I$
- M contains exactly f elements from each of k color classes

1-BIS
1-BIS Problem: NP hardness
1-BIS Problem: NP hardness

reduction from 3-bounded 3SAT

Each variable \(x_i\) appears in \(\leq 3\) clauses

Each clause \(C_j\) has 2 or 3 literals

\[
(x_1 \lor x_2 \lor x_4) \land (x_1 \lor x_3 \lor x_4) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)
\]
1-BIS Problem: NP hardness

reduction from 3-bounded 3SAT

- each variable x_i appears in ≤ 3 clauses
- each clause C_j has 2 or 3 literals

- gadgets:

\[
\begin{align*}
C_1 & : (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor x_3 \lor x_4) \\
C_2 & : (x_1 \lor x_3 \lor x_4) \land (x_3 \lor x_4) \\
C_3 & : (\overline{x_1} \lor \overline{x_2} \lor x_3) \\
C_4 &
\end{align*}
\]
1-BIS Problem: NP hardness

reduction from 3-bounded 3SAT

- each variable x_i appears in ≤ 3 clauses
- each clause C_j has 2 or 3 literals

- gadgets:
 - clause: color

\[(x_1 \lor x_2 \lor x_4) \land (x_1 \lor x_3 \lor x_4) \land (x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3) \]
1-BIS Problem: NP hardness

reduction from 3-bounded 3SAT

- each variable x_i appears in ≤ 3 clauses
 - each clause C_j has 2 or 3 literals

- gadgets:
 - clause: color
 - variable: one (colored) interval for each occurrence
 - intersection: each pair of opposite literals

\[
\begin{align*}
\text{variable: } & x_1 \\
\text{clause: } & C_1 \\
\text{variable: } & x_2 \\
\text{clause: } & C_2 \\
\text{variable: } & x_3 \\
\text{clause: } & C_3 \\
\text{variable: } & x_4 \\
\text{clause: } & C_4
\end{align*}
\]

\[
\begin{align*}
& (x_1 \lor \overline{x_2} \lor x_4) \land (x_1 \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})
\end{align*}
\]
1-BIS Problem: NP hardness

reduction from 3-bounded 3SAT

- each variable x_i appears in ≤ 3 clauses
- each clause C_j has 2 or 3 literals

- gadgets:
 - clause: color
 - variable: one (colored) interval for each occurrence
 - intersection: each pair of opposite literals

\[
(x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)
\]

C_1 C_2 C_3 C_4
1-BIS Problem: NP hardness

reduction from 3-bounded 3SAT

- each variable x_i appears in ≤ 3 clauses
- each clause C_j has 2 or 3 literals

- gadgets:
 - clause: color
 - variable: one (colored) interval for each occurrence
 - intersection: each pair of opposite literals

\[
\begin{align*}
C_1 & : (x_1 \lor x_2 \lor x_4) \\
C_2 & : (x_1 \lor x_3 \lor x_4) \\
C_3 & : (x_3 \lor x_4) \\
C_4 & : (x_1 \lor x_2 \lor x_3)
\end{align*}
\]
1-BIS Problem: NP hardness

- Correctness

\[(x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})\]

- 1-BIS \implies:
1-BIS Problem: NP hardness

- **Correctness**

\[
\begin{align*}
(x_1 \lor \overline{x_2} \lor x_4) & \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) & \land (x_3 \lor x_4) & \land (\overline{x_1} \lor \overline{x_2} \lor x_3)
\end{align*}
\]

- **1-BIS**:\,

\[
\begin{align*}
C_1 & \\
C_2 & \\
C_3 & \\
C_4 & \\
\end{align*}
\]
1-BIS Problem: NP hardness

- **Correctness**

\[(x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)\]

- **1-BIS ⇒**: evaluate the chosen literals as true
1-BIS Problem: NP hardness

- **Correctness**

- **1-BIS** \(\Rightarrow\): evaluate the chosen literals as true

- **assignment:**
1-BIS Problem: NP hardness

Correctness

\[
\begin{align*}
C_1 & : (x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \\
C_2 & \\
C_3 & \\
C_4 &
\end{align*}
\]

1-BIS ⇒: evaluate the chosen literals as true

\[\{x_1: T, x_2: F, x_3: T, x_4: F\}\]
1-BIS Problem: NP hardness

Correctness

\[
\begin{align*}
(x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)
\end{align*}
\]

\(C_1\) \hspace{1cm} \(C_2\) \hspace{1cm} \(C_3\) \hspace{1cm} \(C_4\)

1-BIS \Rightarrow: evaluate the chosen literals as true

\(\Leftarrow\) assignment: choose a positive evaluated literal in each \(C_i\)

\(\{x_1: T, x_2: F, x_3: T, x_4: F\}\)
1-BIS Problem: NP hardness

- **Correctness**

\[(x_1 \lor \overline{x_2} \lor x_4) \land (x_1 \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3) \]

- **1-BIS** ⇒: evaluate the chosen literals as true

- \(\left\{ x_1: T, x_2: F, x_3: T, x_4: F \right\} \)
f-BIS: An \textit{FPT} Algorithm by (f, k)

- sorted set of intervals $\mathcal{I} = \{I_1, \ldots, I_n\}$ sorted by right-endpoints
f-BIS: An FPT Algorithm by (f, k)

- sorted set of intervals $\mathcal{I} = \{I_1, \ldots, I_n\}$

- $\text{pred}(I_j)$: rightmost interval completely left to I_j (if it exists)
f-BIS: An FPT Algorithm by (f, k)

- **sorted set of intervals** $\mathcal{I} = \{I_1, \ldots, I_n\}$

- **pred(I_j)**: rightmost interval completely left to I_j (if it exists)

- **cardinality vector** $C_{\mathcal{I}'}$: k-dimensional vector $(c_1, \ldots, c_i, \ldots, c_k)$
 - cardinality of intervals of color i in \mathcal{I}'

- $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
f-BIS: An FPT Algorithm by \((f, k)\)

- **sorted set of intervals** \(\mathcal{I} = \{I_1, \ldots, I_n\}\)

- **\(\text{pred}(I_j)\):** rightmost interval completely left to \(I_j\) (if it exists)

- **cardinality vector** \(C_{\mathcal{I}'}\): \(k\)-dimensional vector \((c_1, \ldots, c_i, \ldots, c_k)\)

 - cardinality of intervals of color \(i\) in \(\mathcal{I}'\)

 - \(C_{\mathcal{I}'}\) is valid: \(\mathcal{I}'\) is independent and \(c_i \leq f\)

- **\(U_j\):** union of valid cardinality vectors of \(\{I_1, \ldots, I_j\}\)

 - \(U_0 = \{(0, \ldots, 0)\}\)

 - \(U_j = U_{j-1} \cup \{u \oplus \hat{e}_c(I_j) \mid u \in U_{\text{pred}(I_j)}\}\)
f-BIS: An FPT Algorithm by \((f, k)\)

- **sorted set of intervals** \(\mathcal{I} = \{I_1, \ldots, I_n\}\)

- \(\text{pred}(I_j)\): rightmost interval completely left to \(I_j\) (if it exists)

- **cardinality vector** \(C_{\mathcal{I}'}\): \(k\)-dimensional vector \((c_1, \ldots, c_i, \ldots, c_k)\)

 cardinality of intervals of color \(i\) in \(\mathcal{I}'\)

- \(C_{\mathcal{I}'}\) is **valid**: \(\mathcal{I}'\) is independent and \(c_i \leq f\)

- **\(U_j\)**: union of valid cardinality vectors of \(\{I_1, \ldots, I_j\}\)

 - \(U_0 = \{(0, \ldots, 0)\}\)

 - \(U_j = U_{j-1} \cup \{u \oplus \hat{e}_{c(I_j)} \mid u \in U_{\text{pred}(I_j)}\}\)

 \((0, \ldots, 1, \ldots, 0)\)
f-BIS: An FPT Algorithm by \((f, k)\)

- sorted set of intervals \(\mathcal{I} = \{I_1, \ldots, I_n\}\)

- \(\text{pred}(I_j)\): rightmost interval completely left to \(I_j\) (if it exists)

- **cardinality vector** \(C_{\mathcal{I}'}\): \(k\)-dimensional vector \((c_1, \ldots, c_i, \ldots, c_k)\)

 - cardinality of intervals of color \(i\) in \(\mathcal{I}'\)

- \(C_{\mathcal{I}'}\) is valid: \(\mathcal{I}'\) is independent and \(c_i \leq f\)

- \(U_j\): union of valid cardinality vectors of \(\{I_1, \ldots, I_j\}\)

 - \(U_0 = \{(0, \ldots, 0)\}\)

 - \(U_j = U_{j-1} \cup \{u \oplus \hat{e}_c(I_j) \mid u \in U_{\text{pred}(I_j)}\}\)

- \(O(n \log n)\)
f-BIS: An FPT Algorithm by (f, k)

- sorted set of intervals $\mathcal{I} = \{I_1, \ldots, I_n\}$

$$O(n \log n)$$

- $\text{pred}(I_j)$: rightmost interval completely left to I_j (if it exists)

- **cardinality vector** $C_{\mathcal{I}'}$: k-dimensional vector $(c_1, \ldots, c_i, \ldots, c_k)$

 cardinality of intervals of color i in \mathcal{I}'

- $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$

- U_j: union of valid cardinality vectors of $\{I_1, \ldots, I_j\}$

 $$U_0 = \{(0, \ldots, 0)\}$$

 $$U_j = U_{j-1} \cup \{u \oplus \hat{e}_c(I_j) \mid u \in U_{\text{pred}(I_j)}\}$$

 $$O(|U_n| \times \alpha(|U_n|))$$

- $\text{pred}(I_j)$: rightmost interval completely left to I_j (if it exists)
\textit{f-BIS: An FPT Algorithm by (f, k)}

- sorted set of intervals $\mathcal{I} = \{I_1, \ldots, I_n\}$

- $\text{pred}(I_j)$: rightmost interval completely left to I_j (if it exists)

- \textit{cardinality vector} $C_{\mathcal{I}'}$: k-dimensional vector $(c_1, \ldots, c_i, \ldots, c_k)$

 \begin{itemize}
 \item $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
 \item U_j: union of valid cardinality vectors of $\{I_1, \ldots, I_j\}$ \quad $|U_j| = O(f^k)$
 \item $U_0 = \{(0, \ldots, 0)\}$
 \item $U_j = U_{j-1} \cup \{u \oplus \hat{e}_c(I_j) \mid u \in U_{\text{pred}(I_j)}\}$ \quad $O(|U_n| \times \alpha(|U_n|))$
 \end{itemize}
f-BIS: An FPT Algorithm by \((f, k)\)

- sorted set of intervals \(\mathcal{I} = \{I_1, \ldots, I_n\}\)

\慎重\(pred(I_j)\): rightmost interval completely left to \(I_j\) (if it exists)

- **cardinality vector** \(C_{\mathcal{I}'}\): \(k\)-dimensional vector \((c_1, \ldots, c_i, \ldots, c_k)\)

 - cardinality of intervals of color \(i\) in \(\mathcal{I}'\)

- \(C_{\mathcal{I}'}\) is valid: \(\mathcal{I}'\) is independent and \(c_i \leq f\)

- \(U_j\): union of valid cardinality vectors of \(\{I_1, \ldots, I_j\}\)

 \[|U_j| = O(f^k)\]

- \(U_0 = \{(0, \ldots, 0)\}\)

- \(U_j = U_{j-1} \cup \{u \oplus \hat{e}_{c(I_j)} \mid u \in U_{pred(I_j)}\}\)

 \[O(|U_n| \times \alpha(|U_n|))\]

- runtime: \(O(n \log n + nf^k \alpha(f^k))\)

Sujoy Bhore, Jan-Henrik Haunert, Fabian Klute, Guangping Li, Martin Nöllenburg · Balanced Independent and Dominating Sets on Colored Interval Graphs
Conclusion

- our results
 - f-Balanced Independent Set:
 - NP-hardness
 - FPT by (f, k)
Conclusion

- our results

 - f-Balanced Independent Set:
 - NP-hardness
 - FPT by (f, k)

 - FPT by the Vertex Cover Number

- relevant problems:
 - 2-approximation for 1-Max-Colored Independent Sets
 - NP-hardness of f-Balanced Dominating Set
Conclusion

- our results
 - f-Balanced Independent Set:
 - NP-hardness
 - FPT by (f, k)
 - FPT by the Vertex Cover Number

- relevant problems:
 - 2-approximation for 1-Max-Colored Independent Sets
 - NP-hardness of f-Balanced Dominating Set

- open problems:
 - balanced set on intersection graphs (e.g. boxicity graphs)
Conclusion

- our results
 - \(f \)-Balanced Independent Set:
 - \(\mathsf{NP} \)-hardness
 - \(\mathsf{FPT} \) by \((f, k)\)
 - \(\mathsf{FPT} \) by the Vertex Cover Number
- relevant problems:
 - 2-approximation for 1-Max-Colored Independent Sets
 - \(\mathsf{NP} \)-hardness of \(f \)-Balanced Dominating Set
- open problems:
 - balanced set on intersection graphs (e.g. boxicity graphs)

guangping@ac.tuwien.ac.at