Smallest Universal Covers for Families of Triangles

Ji-won Park, Otfried Cheong

Introduction

Def. A *universal cover* for a given family of objects is a *convex* set that contains a *congruent copy* of each object in the family. That is, translations, rotations, and reflections are allowed.

Aim. Given a family of objects, find a smllest universal cover, i.e., a universal cover of smallest *area*.

In general, finding a smallest universal cover is hard:

- Sets of unit diameter (a.k.a. Lebesgue's Universal Cover Problem)
- Unit curves
- Unit convex curves
- Sets of unit perimeter

Introduction

Thm. The smallest universal cover for the family of all triangles of unit diameter is a triangle and it is unique.

[K83]

Thm. The same is true for the family of all triangles of unit perimeter. [FW00]

Conj. For any family \mathcal{T} of triangles of bounded diameter, there is a triangle Z that is a smallest universal cover for \mathcal{T} .

Results

Conj. For any family $\mathcal T$ of triangles of bounded diameter, there is a triangle Z that is a smallest universal cover for $\mathcal T$.

Thm. For any two triangles, there is a triangle that is a smallest universal cover.

Thm. For triangles of unit circumradius, the unique smallest universal cover is a triangle.

Thm. There exist three triangles whose smallest universal cover is not determined by any two of them.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S,T\}$.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. S' = the smallest triangle similar to S s.t. T fits into S'.

If S' = S done; otherwise:

Lemma. If a convex set X maximally fits into a convex set Y, then there are at least four incidences between vertices of X and edges of Y. [AAS98]

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. S' = the smallest triangle similar to S s.t. T fits into S'. If S' = S done; otherwise:

Lemma. Let \mathcal{T} be a family of triangles, and let Z be a universal cover for \mathcal{T} . Let $S \in \mathcal{T}$, and let S' be the smallest universal cover for \mathcal{T} that is similar to S. If $\frac{|S'|}{|S|} = \left(\frac{|Z|}{|S|}\right)^2$, then Z is a smallest universal cover for \mathcal{T} .

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. S' = the smallest triangle similar to S s.t. T fits into S'. If S' = S done; otherwise:

Lemma. Let \mathcal{T} be a family of triangles, and let Z be a universal cover for \mathcal{T} . Let $S \in \mathcal{T}$, and let S' be the smallest universal cover for \mathcal{T} that is similar to S. If $\frac{|S'|}{|S|} = \left(\frac{|Z|}{|S|}\right)^2$, then Z is a smallest universal cover for \mathcal{T} .

 T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

 $T_1(\theta)$ = the isosceles triangle of base angle θ .

 $T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.

 T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

 $T_1(\theta)$ = the isosceles triangle of base angle θ .

 $T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.

For some $75^{\circ} < \theta_m < 80^{\circ}$, if $60^{\circ} \le \theta \le \theta_m$ or $\theta \ge 80^{\circ}$:

 T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

 $T_1(\theta)$ = the isosceles triangle of base angle θ .

 $T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.

For some $75^{\circ} < \theta_m < 80^{\circ}$, if $\theta_m \le \theta \le 80^{\circ}$:

 T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

 $T_1(\theta)$ = the isosceles triangle of base angle θ .

 $T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.

When $\theta = 80^{\circ}$:

 T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

 $T_1(\theta)$ = the isosceles triangle of base angle θ .

 $T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.

 $T^* = T(80^\circ)$ is the largest one.

Thm. T^* is the smallest universal cover for the family \mathcal{T} of triangles of unit ciricumradius.

 T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

 $T_1(\theta)$ = the isosceles triangle of base angle θ .

 $T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.

 $T^* = T(80^\circ)$ is the largest one.

Thm. T^* is the smallest universal cover for the family $\mathcal T$ of triangles of unit ciricumradius.

Sketch. 1) T^* covers every triangle of unit circumradius.

 T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

 $T_1(\theta)$ = the isosceles triangle of base angle θ .

 $T(\theta) =$ the smallest universal cover for T_0 and $T_1(\theta)$.

 $T^* = T(80^\circ)$ is the largest one.

Thm. T^* is the smallest universal cover for the family \mathcal{T} of triangles of unit ciricumradius.

Sketch. 1) T^* covers every triangle of unit circumradius.

2) T^* is a smallest universal cover for \mathcal{T} .

 T^* is the smallest universal cover for T_0 and $T_1(80^\circ)$.

- T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).
- $T_1(\theta)$ = the isosceles triangle of base angle θ .
- $T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.
- $T^* = T(80^\circ)$ is the largest one.
- Thm. T^* is the smallest universal cover for the family $\mathcal T$ of triangles of unit ciricumradius.
- Sketch. 1) T^* covers every triangle of unit circumradius.
- 2) T^* is a smallest universal cover for \mathcal{T} .
- T^* is the smallest universal cover for T_0 and $T_1(80^\circ)$.
- 3) T^* is the unique smallest universal cover for \mathcal{T} .
- T: Any smallest universal cover for $\{T_1(\theta)\}$ should be congruent to T^* .

Three Triangles

Thm. There exist three triangles whose universal cover is not determined by any two of them.

Conj. Z is the smallest universal cover for these three triangles.