Smallest Universal Covers for Families of Triangles

Ji-won Park, Otfried Cheong
Introduction

Def. A *universal cover* for a given family of objects is a *convex* set that contains a *congruent copy* of each object in the family. That is, translations, rotations, and reflections are allowed.

Aim. Given a family of objects, find a smallest universal cover, i.e., a universal cover of smallest *area*.

In general, finding a smallest universal cover is hard:
- Sets of unit diameter (a.k.a. Lebesgue’s Universal Cover Problem)
- Unit curves
- Unit convex curves
- Sets of unit perimeter
Introduction

Thm. The smallest universal cover for the family of all triangles of unit diameter is a triangle and it is unique. \[K83\]

Thm. The same is true for the family of all triangles of unit perimeter. \[FW00\]

 Conj. For any family \mathcal{T} of triangles of bounded diameter, there is a triangle Z that is a smallest universal cover for \mathcal{T}.

![Diagram of triangle cover](image)
Results

Conj. For any family \mathcal{T} of triangles of bounded diameter, there is a triangle Z that is a smallest universal cover for \mathcal{T}.

Thm. For any two triangles, there is a triangle that is a smallest universal cover.

Thm. For triangles of unit circumradius, the unique smallest universal cover is a triangle.

Thm. There exist three triangles whose smallest universal cover is not determined by any two of them.
Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.
Two Triangles

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = $ the smallest triangle similar to S s.t. T fits into S'. If $S' = S$ done; otherwise:

Lemma. If a convex set X maximally fits into a convex set Y, then there are at least four incidences between vertices of X and edges of Y. [AAS98]
Two Triangles

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family \{\(S, T\)\}.

Pf. S' = the smallest triangle similar to S s.t. T fits into S'. If $S' = S$ done; otherwise:
Two Triangles

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = \text{the smallest triangle similar to } S \text{ s.t. } T \text{ fits into } S'$. If $S' = S$ done; otherwise:
Two Triangles

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = $ the smallest triangle similar to S s.t. T fits into S'. If $S' = S$ done; otherwise:
Two Triangles

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = \text{the smallest triangle similar to } S \text{ s.t. } T \text{ fits into } S'$. If $S' = S$ done; otherwise:

\[\text{Diagram:} \]
Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = \text{the smallest triangle similar to } S \text{ s.t. } T \text{ fits into } S'$. If $S' = S$ done; otherwise:
Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = $ the smallest triangle similar to S s.t. T fits into S'. If $S' = S$ done; otherwise:
Two Triangles

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = \text{the smallest triangle similar to } S \text{ s.t. } T \text{ fits into } S'$. If $S' = S$ done; otherwise:

Lemma. Let \mathcal{T} be a family of triangles, and let Z be a universal cover for \mathcal{T}. Let $S \in \mathcal{T}$, and let S' be the smallest universal cover for \mathcal{T} that is similar to S. If $\frac{|S'|}{|S|} = \left(\frac{|Z|}{|S|}\right)^2$, then Z is a smallest universal cover for \mathcal{T}.
Two Triangles

Thm. Let S and T be triangles. Then there is a triangle Z that is a smallest universal cover for the family $\{S, T\}$.

Pf. $S' = \text{the smallest triangle similar to } S \text{ s.t. } T \text{ fits into } S'$.

If $S' = S$ done; otherwise:

Lemma. Let \mathcal{T} be a family of triangles, and let Z be a universal cover for \mathcal{T}. Let $S \in \mathcal{T}$, and let S' be the smallest universal cover for \mathcal{T} that is similar to S. If $\frac{|S'|}{|S|} = \left(\frac{|Z|}{|S|}\right)^2$, then Z is a smallest universal cover for \mathcal{T}.

![Diagram of triangles and their relationship](image.png)
Triangles of Unit Circumradius

\(T_0 \) = the equilateral triangle (i.e., \(T_1(60^\circ) = T_0 \)).

\(T_1(\theta) \) = the isosceles triangle of base angle \(\theta \).

\(T(\theta) \) = the smallest universal cover for \(T_0 \) and \(T_1(\theta) \).
Triangles of Unit Circumradius

\(T_0 \) = the equilateral triangle (i.e., \(T_1(60^\circ) = T_0 \)).

\(T_1(\theta) \) = the isosceles triangle of base angle \(\theta \).

\(T(\theta) \) = the smallest universal cover for \(T_0 \) and \(T_1(\theta) \).

For some \(75^\circ < \theta_m < 80^\circ \), if \(60^\circ \leq \theta \leq \theta_m \) or \(\theta \geq 80^\circ \):
Triangles of Unit Circumradius

T_0 = the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

$T_1(\theta)$ = the isosceles triangle of base angle θ.

$T(\theta)$ = the smallest universal cover for T_0 and $T_1(\theta)$.

For some $75^\circ < \theta_m < 80^\circ$, if $\theta_m \leq \theta \leq 80^\circ$:
Triangles of Unit Circumradius

\(T_0 = \) the equilateral triangle (i.e., \(T_1(60^\circ) = T_0 \)).

\(T_1(\theta) = \) the isosceles triangle of base angle \(\theta \).

\(T(\theta) = \) the smallest universal cover for \(T_0 \) and \(T_1(\theta) \).

When \(\theta = 80^\circ \):
Triangles of Unit Circumradius

$T_0 = \text{the equilateral triangle (i.e., } T_1(60^\circ) = T_0\).

$T_1(\theta) = \text{the isosceles triangle of base angle } \theta.$

$T(\theta) = \text{the smallest universal cover for } T_0 \text{ and } T_1(\theta).$

$T^* = T(80^\circ)$ is the largest one.

Thm. T^* is the smallest universal cover for the family \mathcal{T} of triangles of unit circumradius.
Triangles of Unit Circumradius

\(T_0 = \) the equilateral triangle (i.e., \(T_1(60^\circ) = T_0 \)).

\(T_1(\theta) = \) the isosceles triangle of base angle \(\theta \).

\(T(\theta) = \) the smallest universal cover for \(T_0 \) and \(T_1(\theta) \).

\(T^* = T(80^\circ) \) is the largest one.

Thm. \(T^* \) is the smallest universal cover for the family \(\mathcal{T} \) of triangles of unit circumradius.

Sketch. 1) \(T^* \) covers every triangle of unit circumradius.
Triangles of Unit Circumradius

$T_0 =$ the equilateral triangle (i.e., $T_1(60^\circ) = T_0$).

$T_1(\theta) =$ the isosceles triangle of base angle θ.

$T(\theta) =$ the smallest universal cover for T_0 and $T_1(\theta)$.

$T^* = T(80^\circ)$ is the largest one.

Thm. T^* is the smallest universal cover for the family \mathcal{T} of triangles of unit circumradius.

Sketch. 1) T^* covers every triangle of unit circumradius.

2) T^* is a smallest universal cover for \mathcal{T}.

$\therefore T^*$ is the smallest universal cover for T_0 and $T_1(80^\circ)$.
Triangles of Unit Circumradius

\[T_0 = \text{the equilateral triangle (i.e., } T_1(60^\circ) = T_0). \]

\[T_1(\theta) = \text{the isosceles triangle of base angle } \theta. \]

\[T(\theta) = \text{the smallest universal cover for } T_0 \text{ and } T_1(\theta). \]

\[T^* = T(80^\circ) \] is the largest one.

Thm. \(T^* \) is the smallest universal cover for the family \(\mathcal{T} \) of triangles of unit circumradius.

Sketch. 1) \(T^* \) covers every triangle of unit circumradius.

2) \(T^* \) is a smallest universal cover for \(\mathcal{T} \).
\[\therefore \] \(T^* \) is the smallest universal cover for \(T_0 \) and \(T_1(80^\circ) \).

3) \(T^* \) is the unique smallest universal cover for \(\mathcal{T} \).
\[\therefore \] Any smallest universal cover for \(\{T_1(\theta)\} \) should be congruent to \(T^* \).
Thm. There exist three triangles whose universal cover is not determined by any two of them.

Conj. Z is the smallest universal cover for these three triangles.