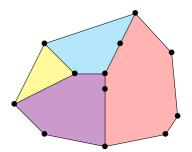
Minimum Convex Partition of Degenerate Point Sets is NP-Hard

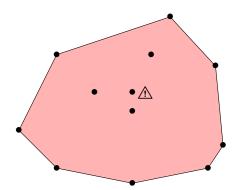
Nicolas Grelier, ETH Zürich

March 2020

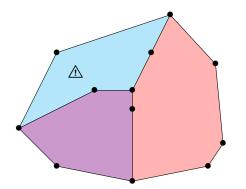


- ▶ The union of the polygons is the convex hull of *P*,
- ► The interiors of the polygons are pairwise disjoint,
- ▶ No polygon contains a point of *P* in its interior.

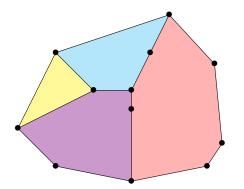
- ▶ The union of the polygons is the convex hull of *P*,
- ▶ The interiors of the polygons are pairwise disjoint,
- ▶ No polygon contains a point of *P* in its interior.



- ▶ The union of the polygons is the convex hull of *P*,
- ▶ The interiors of the polygons are pairwise disjoint,
- ▶ No polygon contains a point of *P* in its interior.



- ▶ The union of the polygons is the convex hull of *P*,
- ► The interiors of the polygons are pairwise disjoint,
- ▶ No polygon contains a point of *P* in its interior.



Gives a plane graph G = (V = P, E) with set of bounded faces F



Objective is to minimise |F| (or equivalently |E|) Remarks:

- ► $|F| = 1 \Leftrightarrow$ points in convex position
- ▶ |F| < 2|P| 4 (take a triangulation)

Assume general position: no three points on a line

Lemma (Knauer and Spillner '06)

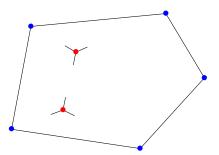
If one can compute a convex partition with at most $\lambda |P|$ faces, then there exists a 2λ -approximation algorithm.

Assume general position: no three points on a line

Lemma (Knauer and Spillner '06)

If one can compute a convex partition with at most $\lambda |P|$ faces, then there exists a 2λ -approximation algorithm.

Proof: The points not on the convex hull have degree ≥ 3 . Use Euler's formula \rightarrow lower bound on |F|.



Assume general position: no three points on a line

Lemma (Knauer and Spillner '06)

If one can compute a convex partition with at most $\lambda |P|$ faces, then there exists a 2λ -approximation algorithm.

Proof: The points not on the convex hull have degree ≥ 3 . Use Euler's formula \rightarrow lower bound on |F|.

- Nauer and Spillner '06: It is possible to compute in quadratic time a convex partition with at most $\frac{15|P|-24}{11}$ faces.
- ► Sakai and Urrutia '19: same but with at most $\frac{4|P|}{3}$ 2 faces.

Assume general position: no three points on a line

Lemma (Knauer and Spillner '06)

If one can compute a convex partition with at most $\lambda |P|$ faces, then there exists a 2λ -approximation algorithm.

Proof: The points not on the convex hull have degree ≥ 3 . Use Euler's formula \rightarrow lower bound on |F|.

- Nauer and Spillner '06: It is possible to compute in quadratic time a convex partition with at most $\frac{15|P|-24}{11}$ faces.
- ► Sakai and Urrutia '19: same but with at most $\frac{4|P|}{3}$ -2 faces.

Theorem (García-Lopez and Nicolás '13)

There exists point sets s.t. any convex partition has at least $\frac{35}{32}|P| - \frac{3}{2}$ convex faces.

Theorem

Minimum convex partition of degenerate point sets is NP-hard.

Theorem

Minimum convex partition of degenerate point sets is NP-hard.

Theorem (Lingas '82)

The two following problems are NP-hard:

- Minimum Rectangular Partition for rectangles with point holes
- Minimum Convex Partition for polygons with polygon holes

Theorem

Minimum convex partition of degenerate point sets is NP-hard.

Theorem (Lingas '82)

The two following problems are NP-hard:

- Minimum Rectangular Partition for rectangles with point holes
- Minimum Convex Partition for polygons with polygon holes

Lingas' proof: Reduction from a modified version of Planar 3SAT

- ▶ Given a Boolean formula $F \rightarrow$ construct a polygon with holes Π
- ▶ F is satisfiable $\Leftrightarrow \exists$ a partition of Π with at most k convex faces

Theorem

Minimum convex partition of degenerate point sets is NP-hard.

Theorem (Lingas '82)

The two following problems are NP-hard:

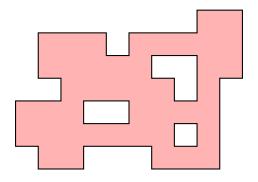
- Minimum Rectangular Partition for rectangles with point holes
- Minimum Convex Partition for polygons with polygon holes

Lingas' proof: Reduction from a modified version of Planar 3SAT

- ▶ Given a Boolean formula $F \rightarrow$ construct a polygon with holes Π
- ▶ F is satisfiable $\Leftrightarrow \exists$ a partition of Π with at most k convex faces

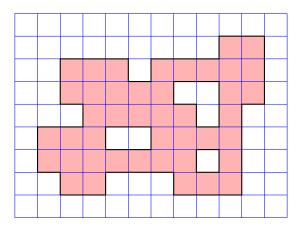
Our proof: Use Lingas' construction and transform $\boldsymbol{\Pi}$ into a point set

- ightharpoonup Given a Boolean formula F o construct a polygon with holes Π
- ▶ F is satisfiable $\Leftrightarrow \exists$ a partition of Π with at most k convex faces



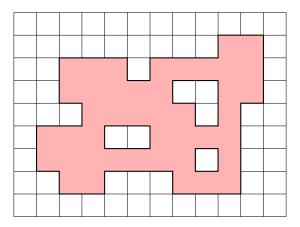
Lingas' reduction → axis-parallel segments

- ▶ Given a Boolean formula $F \rightarrow$ construct a polygon with holes Π
- ▶ F is satisfiable $\Leftrightarrow \exists$ a partition of Π with at most k convex faces



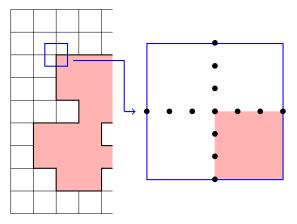
Can even construct Π on a grid

- ▶ Given a Boolean formula $F \rightarrow$ construct a polygon with holes Π
- ▶ F is satisfiable $\Leftrightarrow \exists$ a partition of Π with at most k convex faces



We keep all segments outside of Π

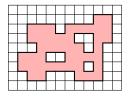
- ▶ Given a Boolean formula $F \rightarrow$ construct a polygon with holes Π
- ▶ F is satisfiable $\Leftrightarrow \exists$ a partition of Π with at most k convex faces



Replace each unit segment by x points

Lemma (Lingas '82)

F is satisfiable $\Leftrightarrow \exists$ a partition of \blacksquare with at most *k* convex faces.



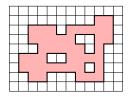
Transform Π into a point set P. k' := # unit squares outside Π .

Lemma

In a minimum convex partition of P, the convex sets do not cross the "segments".

Lemma (Lingas '82)

F is satisfiable $\Leftrightarrow \exists$ a partition of \blacksquare with at most *k* convex faces.



Transform Π into a point set P. k' := # unit squares outside Π .

Lemma

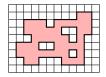
In a minimum convex partition of P, the convex sets do not cross the "segments".

Theorem

F is satisfiable $\Leftrightarrow \exists$ a partition of *P* with at most k + k' convex faces.

Lemma

In a minimum convex partition, the convex sets do not cross the "segments".

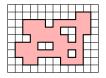


Sketch of proof:

- ► For each unit square u, \exists a convex set $\mathscr C$ s.t. $Area(u \cap \mathscr C)$ is big,
- ▶ If $Area(u \cap \mathscr{C})$ is big, then $Area(u' \cap \mathscr{C})$ is small for any other unit square u',

Lemma

In a minimum convex partition, the convex sets do not cross the "segments".

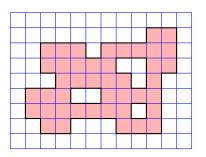


Sketch of proof:

- ► For each unit square u, \exists a convex set \mathscr{C} s.t. $Area(u \cap \mathscr{C})$ is big,
- ▶ If $Area(u \cap \mathscr{C})$ is big, then $Area(u' \cap \mathscr{C})$ is small for any other unit square u',
- ightarrow Each unit square contains its own convex set Remains to deal with the inside of Π

For each unit square there is a convex set

x := # of points that replace a unit segment U := # of unit squares in the blue grid, take x > 2U



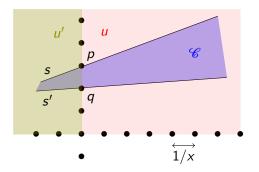
Lemma

In a minimum convex partition, for each unit square u, \exists a convex set $\mathscr C$ s.t. Area $(u \cap \mathscr C) > \frac{1}{U} > \frac{1}{x}$.

For each convex set there is a unit square

Lemma

If $Area(u \cap \mathscr{C}) > 1/x$ where u is on one side of a "segment", then $Area(u' \cap \mathscr{C}) \le 1/x$ where u' is on the other side.



If $Area(u \cap \mathscr{C}) > 1/x$, the two lines spawned by s and s' intersect on the left side.

Conclusion

Theorem

Minimum convex partition of degenerate point sets is NP-hard.

Open questions:

- What about point sets in general position?
- Is there a good approximation algorithm for degenerate point sets?

