Graph Planarity Testing with Hierarchical Embedding Constraints

Giuseppe Liotta

Alessandra Tappini

Ignaz Rutter

University of Passau, Germany

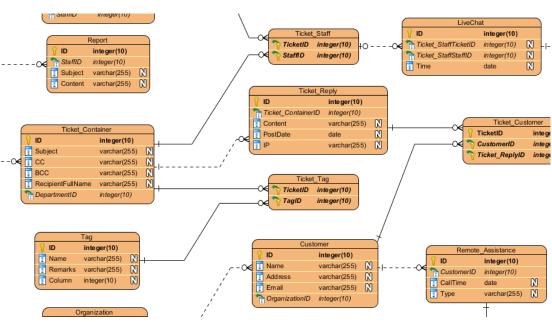
36th European Workshop on Computational Geometry March 16-18, 2020 - Würzburg, Germany

Constraints in Graph Drawings

- In many contexts, data can be represented as networks of interconnected elements
- Information visualization is often based on graph representations
- Graph representations need to take into account layout rules

Constraints in Graph Drawings

- In many contexts, data can be represented as networks of interconnected elements
- Information visualization is often based on graph representations
- Graph representations need to take into account layout rules



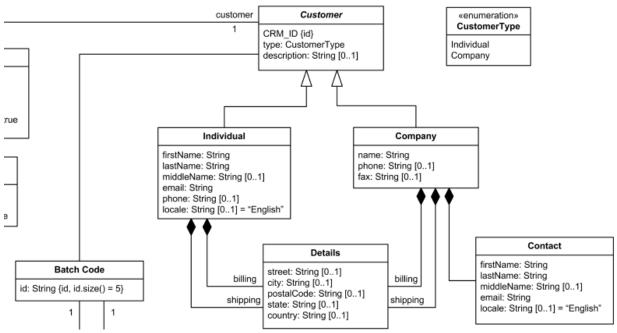
Database diagrams

links between attributes should enter the tables only at the left or right side

Image: https://www.visual-paradigm.com

Constraints in Graph Drawings

- In many contexts, data can be represented as networks of interconnected elements
- Information visualization is often based on graph representations
- Graph representations need to take into account layout rules



UML class diagrams

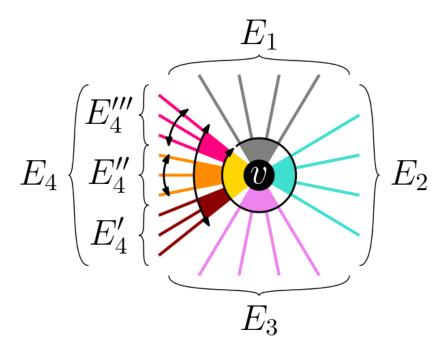
generalization edges should leave a class object at the top and enter a base class object at the bottom

Image: https://www.uml-diagrams.org/

• These layout rules impose restrictions on the admissible embeddings for a graph

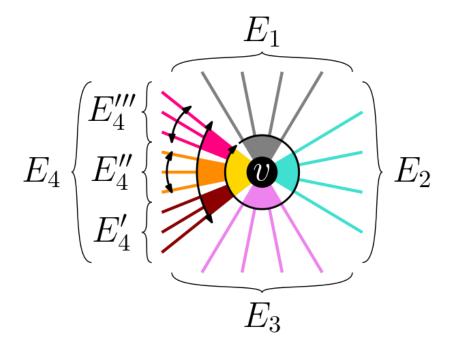
- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex

- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex

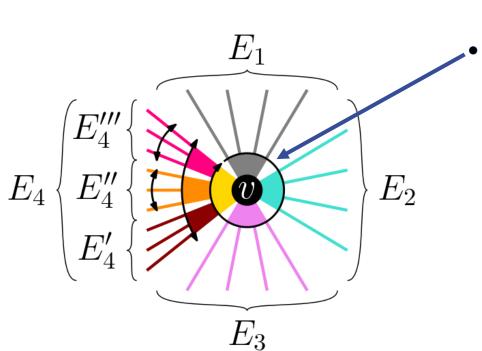


- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex

• Four sets: E_1 , E_2 , E_3 , E_4



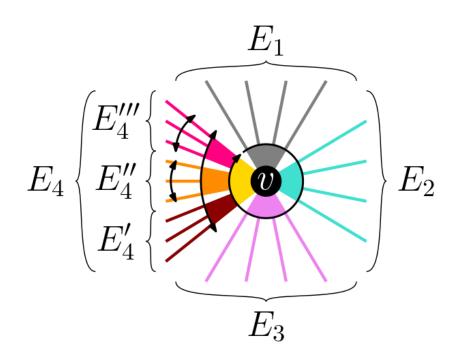
- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex



Four sets: E_1 , E_2 , E_3 , E_4

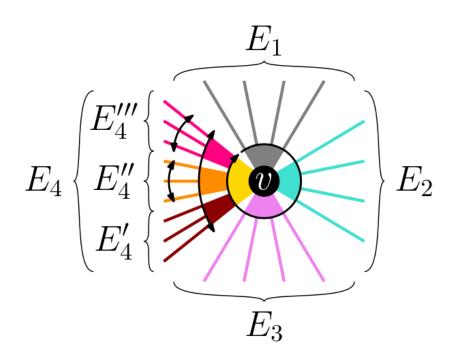
Fixed cyclic order: E_1 , E_2 , E_3 , E_4

- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex



- Four sets: E_1 , E_2 , E_3 , E_4
- Fixed cyclic order: E_1 , E_2 , E_3 , E_4
- The edges of E_1 , E_2 , E_3 can be arbitrarily permuted

- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex



- Four sets: E_1 , E_2 , E_3 , E_4
- Fixed cyclic order: E_1 , E_2 , E_3 , E_4
- The edges of E_1 , E_2 , E_3 can be arbitrarily permuted
- E_4 is partitioned into subsets E'_4 , E''_4 , E'''_4

- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex



• Four sets: E_1 , E_2 , E_3 , E_4

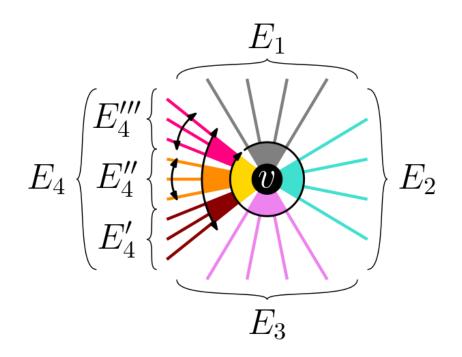
• Fixed cyclic order: E_1 , E_2 , E_3 , E_4

• The edges of E_1 , E_2 , E_3 can be arbitrarily permuted

ullet E_4 is partitioned into subsets E_4^\prime , $E_4^{\prime\prime\prime}$, $E_4^{\prime\prime\prime\prime}$

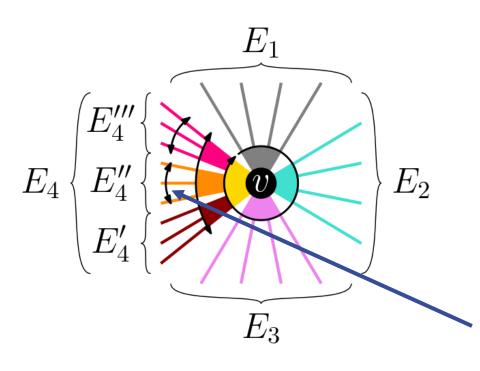
 $E_4^{\prime\prime}$ must appear between E_4^{\prime} and $E_4^{\prime\prime\prime}$

- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex



- Four sets: E_1 , E_2 , E_3 , E_4
- Fixed cyclic order: E_1 , E_2 , E_3 , E_4
- The edges of E_1 , E_2 , E_3 can be arbitrarily permuted
- E_4 is partitioned into subsets E_4^{\prime} , $E_4^{\prime\prime\prime}$, $E_4^{\prime\prime\prime}$
- $E_4^{\prime\prime}$ must appear between E_4^{\prime} and $E_4^{\prime\prime\prime}$
- The edges of E_4' can be arbitrarily permuted

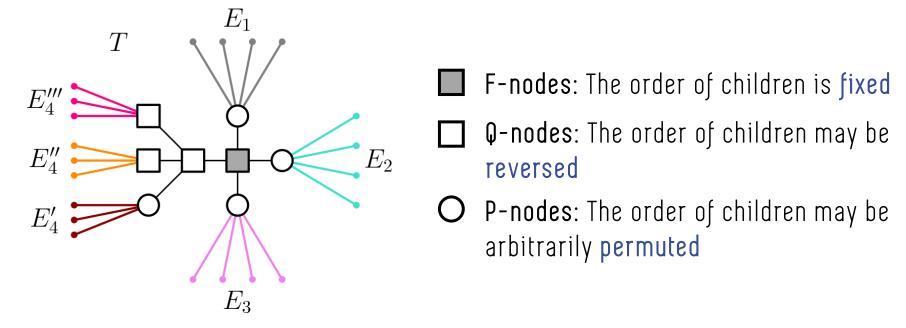
- These layout rules impose restrictions on the admissible embeddings for a graph
- We consider restrictions on allowed cyclic orders of the edges incident to a vertex



- Four sets: E_1 , E_2 , E_3 , E_4
- Fixed cyclic order: E_1 , E_2 , E_3 , E_4
- The edges of E_1 , E_2 , E_3 can be arbitrarily permuted
- E_4 is partitioned into subsets E_4' , E_4'' , E_4'''
- $E_4^{\prime\prime}$ must appear between E_4^{\prime} and $E_4^{\prime\prime\prime}$
- The edges of E_4^\prime can be arbitrarily permuted
- The edges of and $E_4^{\prime\prime}$ have only two possible orders that are the reverse of one another

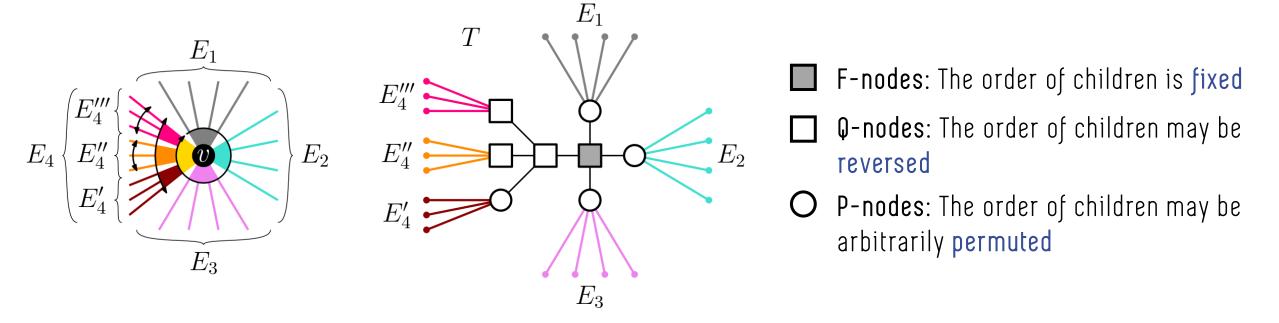
FPQ-trees

- Represent a family of permutations on a set of elements
 - Each element is a leaf



FPQ-trees

- Represent a family of permutations on a set of elements
 - Each element is a leaf



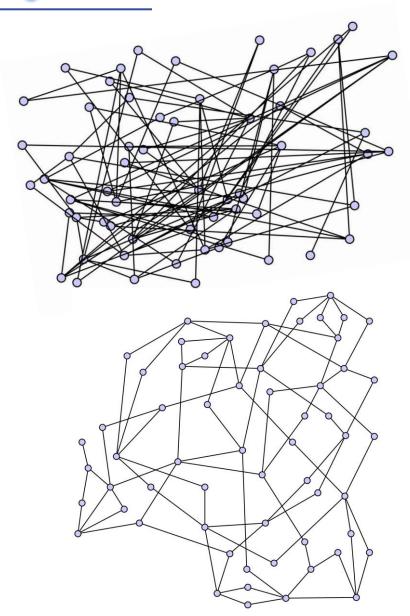
- Embeddings constraints are modeled by means of FPQ-trees
 - Represent the cyclic orders of the edges incident to a vertex
 - Each edge is a leaf in T

Graph Planarity Testing

• Edge crossings negatively affect the readability of graph representations

Cognitive experiments:

- Purchase 1997
- Purchase, Carrington, Allder 2002
- Ware, Purchase, Colpoys, McGill 2002



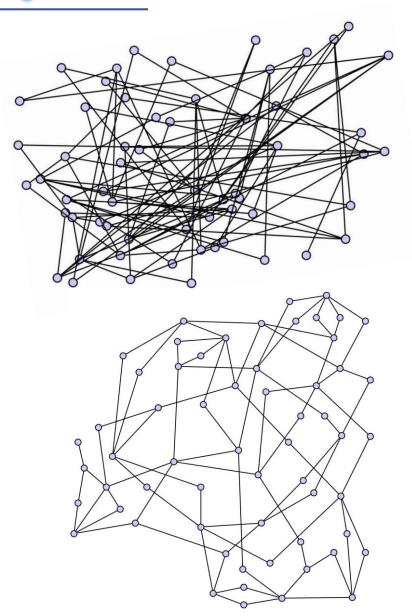
Graph Planarity Testing

• Edge crossings negatively affect the readability of graph representations

Cognitive experiments:

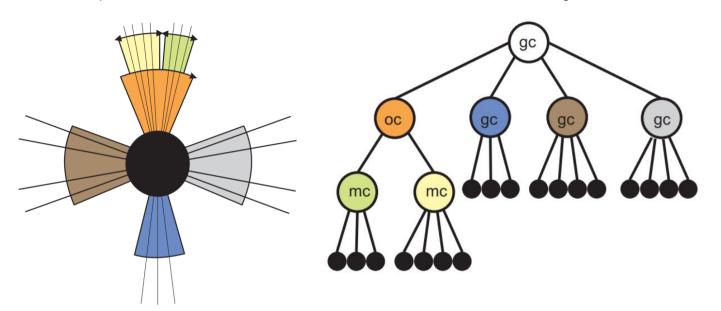
- Purchase 1997
- Purchase, Carrington, Allder 2002
- Ware, Purchase, Colpoys, McGill 2002

- The graph planarity testing problem is at the heart of graph algorithms and of their applications
 - Remark. Minimizing the total number of crossings in a graph drawing is NP-hard [Garey, Johnson - 1983]



Graph Planarity Testing + Embedding Constraints

- Introduced by [Gutwenger, Klein, Mutzel 2008]
- They model each hierarchical embedding constraint as a constraint tree



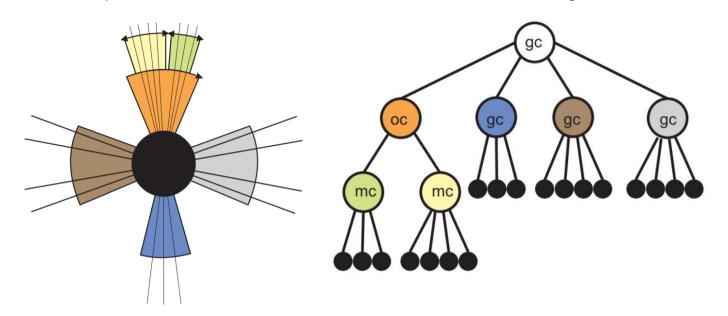
oc-nodes: The order of children is fixed

mc-nodes: The order of children may be reversed

gc-nodes: The order of children may be arbitrarily permuted

Graph Planarity Testing + Embedding Constraints

- Introduced by [Gutwenger, Klein, Mutzel 2008]
- They model each hierarchical embedding constraint as a constraint tree



Constrained planarity testing is linear-time solvable

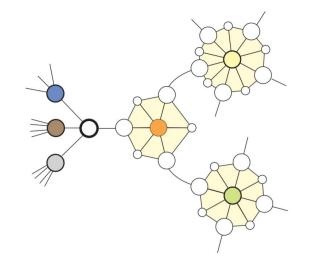
oc-nodes: The order of children is fixed

mc-nodes: The order of children may

be reversed

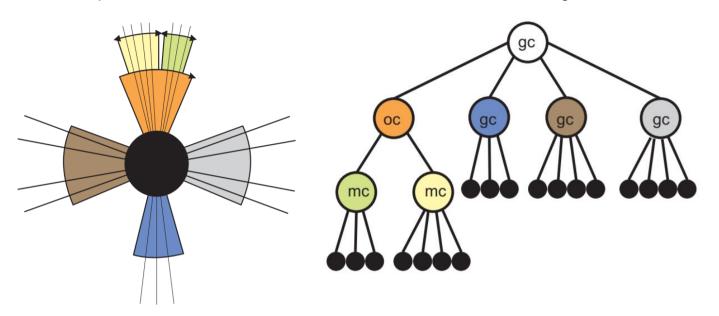
gc-nodes: The order of children may be

arbitrarily permuted



Graph Planarity Testing + Embedding Constraints

- Introduced by [Gutwenger, Klein, Mutzel 2008]
- They model each hierarchical embedding constraint as a constraint tree



oc-nodes: The order of children is fixed

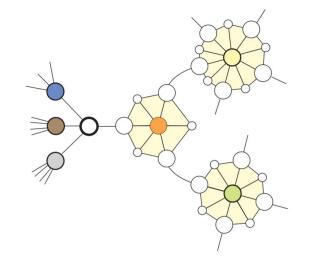
mc-nodes: The order of children may

be reversed

gc-nodes: The order of children may be

arbitrarily permuted

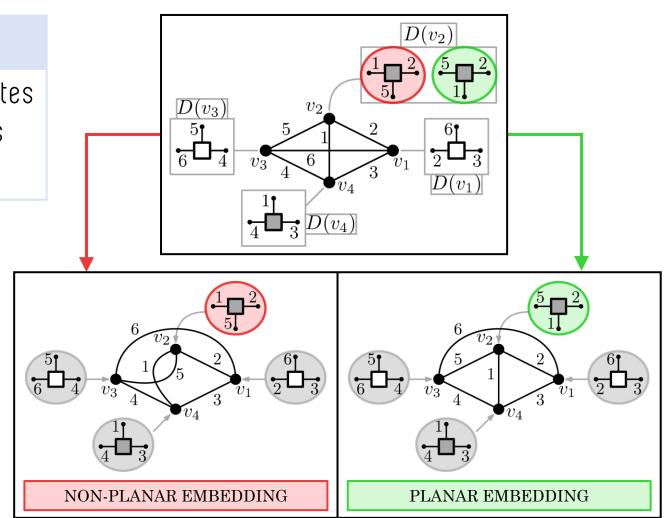
- Constrained planarity testing is linear-time solvable
- Constraint trees \equiv FPQ-trees



FPQ-Choosable Planarity Testing

FPQ-Choosable Graph

A (multi-)graph G and a mapping D that associates each vertex v of G with a set D(v) of FPQ-trees whose leaves represent the edges incident to v.



FPQ-Choosable Planarity Testing

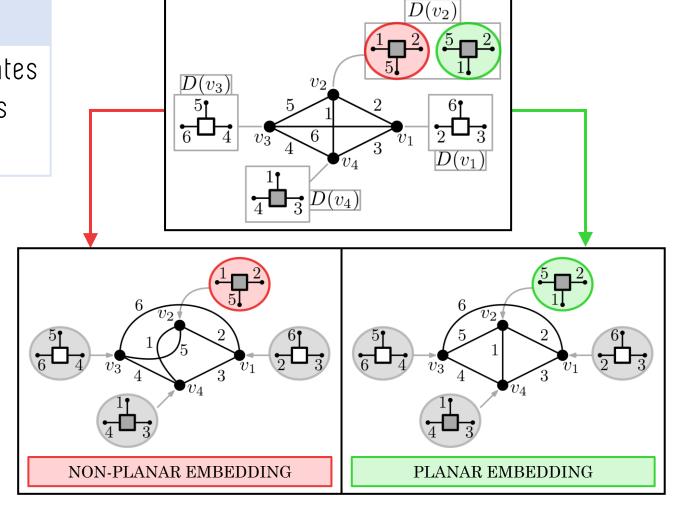
FPQ-Choosable Graph

A (multi-)graph G and a mapping D that associates each vertex v of G with a set D(v) of FPQ-trees whose leaves represent the edges incident to v.

FPQ-Choosable Planarity Testing

INPUT: An FPQ-choosable graph (G, D)

QUESTION: Does G admit a planar embedding such that, for each vertex v, the cyclic order of the edges incident to v is encoded by an FPQ-tree in D(v)?



FPQ-Choosable Planarity Testing

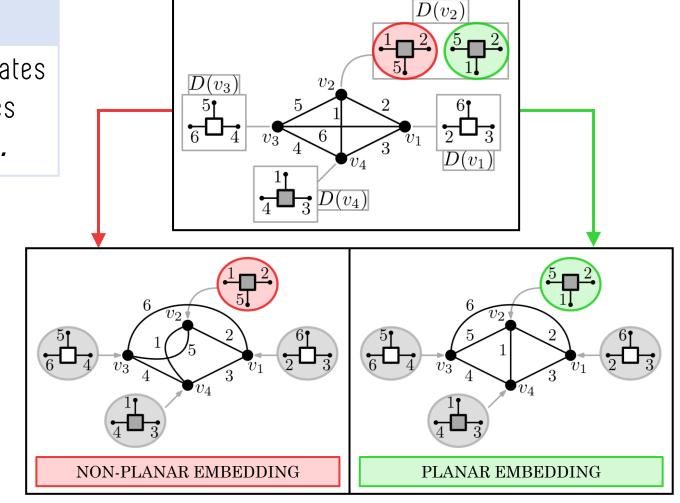
FPQ-Choosable Graph

A (multi-)graph G and a mapping D that associates each vertex v of G with a set D(v) of FPQ-trees whose leaves represent the edges incident to v.

FPQ-Choosable Planarity Testing

INPUT: An FPQ-choosable graph (G, D)

QUESTION: Does G admit a planar embedding such that, for each vertex v, the cyclic order of the edges incident to v is encoded by an FPQ-tree in D(v)?



Remark. If |D(v)| = 1 for each v, then the problem can be solved in linear time [Gutwenger et al. - 2008]

Our Results

Parameters	Complexity
D_{max}	NP-complete - (Theorem 1)
t	W[1]-hard - (Theorem 2)
D_{max} , t	FPT - (Theorem 3)

 D_{max} : Maximum number of

FPQ-trees per vertex

t: Treewidth of G

Our Results

Parameters	Complexity
D_{max}	NP-complete - (Theorem 1)
t	W[1]-hard - (Theorem 2)
D_{max} , t	FPT - (Theorem 3)

FPQ-Choosable Planarity Testing is not FPT if parameterized by $m{t}$ only or by $m{D_{max}}$ only

 D_{max} : Maximum number of FPQ-trees per vertex

t: Treewidth of G

Our Results

Parameters	Complexity
D_{max}	NP-complete - (Theorem 1)
t	W[1]-hard - (Theorem 2)
D_{max} , t	FPT - (Theorem 3)

FPQ-Choosable Planarity Testing is not FPT if parameterized by $oldsymbol{t}$ only or by D_{max} only

 D_{max} : Maximum number of FPQ-trees per vertex

t: Treewidth of G

Theorem 3. FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \to O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

FPQ-Choosable Planarity Testing with a bounded number of FPQ-trees per vertex (>1) is NP-complete. It remains NP-complete even whe the FPQ-trees have only P-nodes.

• Reduction from the 3-edge-coloring problem for triconnected cubic non-planar graphs

FPQ-Choosable Planarity Testing with a bounded number of FPQ-trees per vertex (>1) is NP-complete. It remains NP-complete even whe the FPQ-trees have only P-nodes.

• Reduction from the 3-edge-coloring problem for triconnected cubic non-planar graphs

Theorem 2

FPQ-Choosable Planarity Testing parameterized by treewidth is W[1]-hard. It remains W[1]-hard even when the FPQ-trees have only P-nodes.

• Parameterized reduction from the list coloring problem

FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \rightarrow O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \rightarrow O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \to O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

Proof outline:

1. Compute the SPQR-decomposition tree ${\mathcal T}$ of G rooted at an arbitrary Q-node

FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \to O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

- 1. Compute the SPQR-decomposition tree $\mathcal T$ of G rooted at an arbitrary Q-node
- 2. Visit ${\mathcal T}$ from the leaves to the root

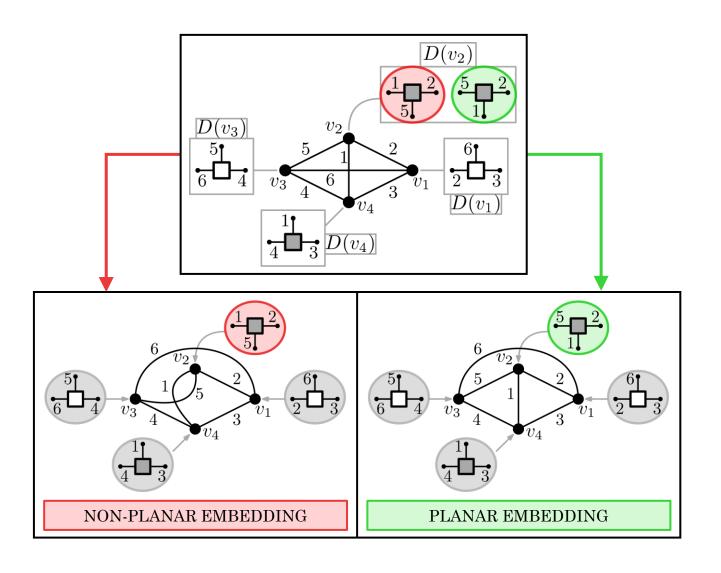
FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \to O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

- 1. Compute the SPQR-decomposition tree ${\mathcal T}$ of G rooted at an arbitrary Q-node
- 2. Visit \mathcal{T} from the leaves to the root
- 3. At each step of the visit, equip the current node μ with the set $\Psi(\mu)$ of admissible tuples

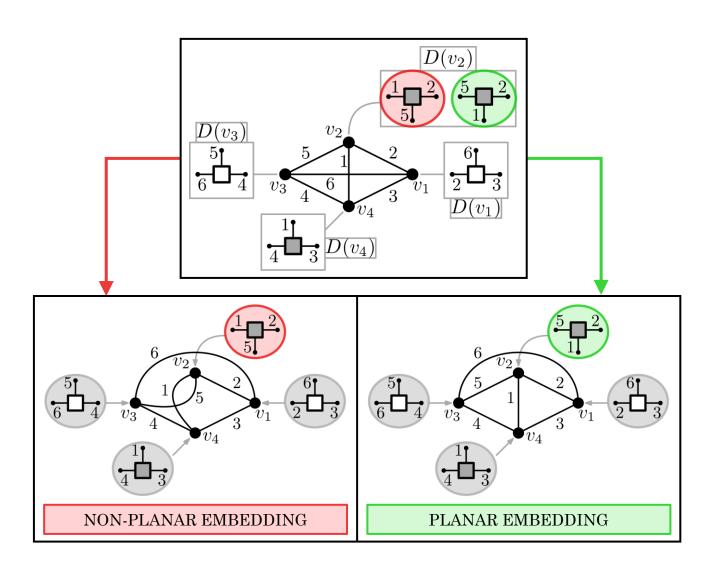
FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \rightarrow O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

- 1. Compute the SPQR-decomposition tree ${\mathcal T}$ of ${\mathcal G}$ rooted at an arbitrary Q-node
- 2. Visit \mathcal{T} from the leaves to the root
- 3. At each step of the visit, equip the current node μ with the set $\Psi(\mu)$ of admissible tuples
- 4. Do we reach the root?
 - YES \Rightarrow (G, D) is FPQ-choosable planar
 - NO: We find a node such that $\Psi(\mu) = \emptyset \Rightarrow (G,D)$ is **not** FPQ-choosable planar

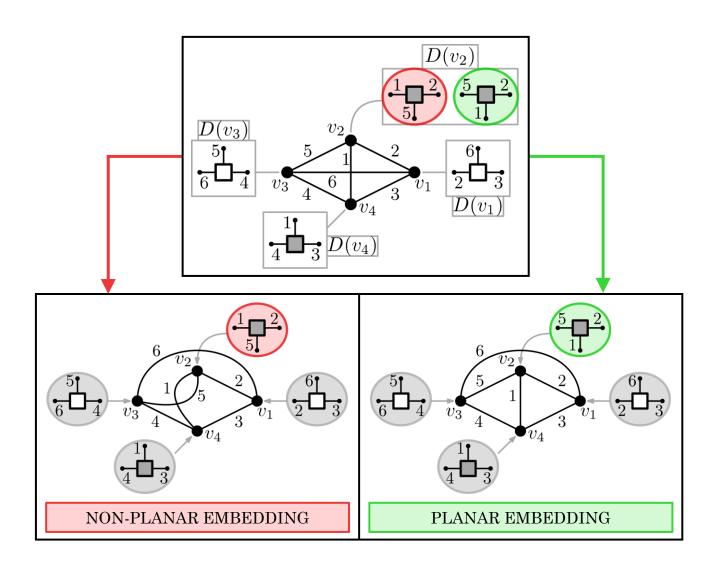
Admissible Tuple



• Assignment A is a function that assigns to each vertex v an FPQ-tree $T_v \in D(v)$



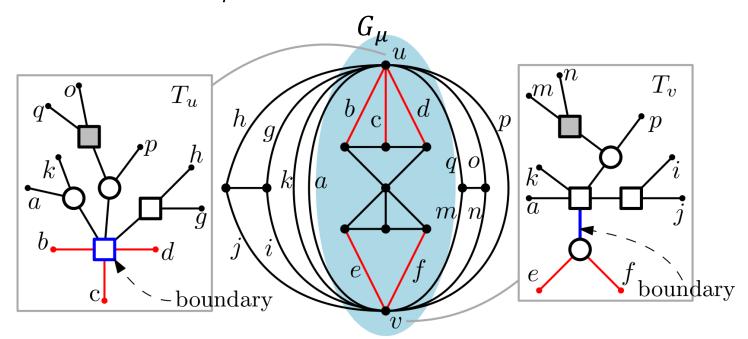
- Assignment A is a function that assigns to each vertex v an FPQ-tree $T_v \in D(v)$
- A is compatible with G if there exists a planar embedding \mathcal{E} such that, for each v, \mathcal{E} induces a cyclic order of its incident edges that is described by T_v



- Assignment A is a function that assigns to each vertex v an FPQ-tree $T_v \in D(v)$
- A is compatible with G if there exists a planar embedding \mathcal{E} such that, for each v, \mathcal{E} induces a cyclic order of its incident edges that is described by T_v
- A is consistent with \mathcal{E}

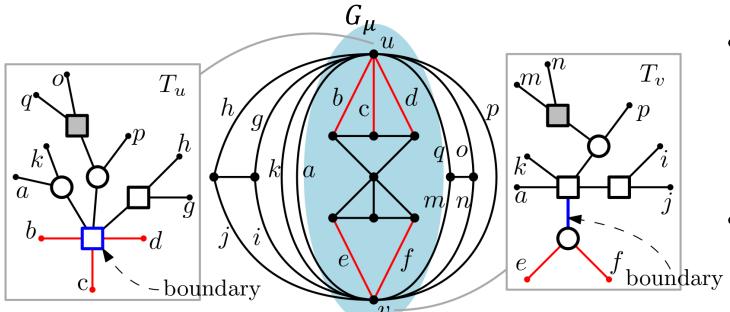
For each internal node μ of $\mathcal T$ with poles u and v:

- G_{μ} is the pertinent graph
- The boundary of T_u is the element that separates the edges that belong to G_μ and the edges that are external to G_μ
- The boundary can be either a Q-node (or F-node) or an edge



For each internal node μ of $\mathcal T$ with poles u and v:

- G_{μ} is the pertinent graph
- The boundary of T_u is the element that separates the edges that belong to G_μ and the edges that are external to G_μ
- The boundary can be either a Q-node (or F-node) or an edge



- If the boundary of T_u is a \mathbb{Q} (or F-) node, it imposes an orientation o_u that defines the permutation of its children
 - We establish a default orientation and we call it the clockwise orientation

Tuple of a node
$$\mu$$
: $\langle T_u, T_v, o_u, o_v \rangle \in D(u) \times D(v) \times \{0,1\} \times \{0,1\}$ clockwise

Tuple of a node μ : $\langle T_u, T_v, o_u, o_v \rangle \in D(u) \times D(v) \times \{0,1\} \times \{0,1\}$ clockwise counter-clockwise

A tuple is admissible for μ if there exists an assignment A_μ that is consistent with a planar embedding \mathcal{E}_μ of G_μ

Tuple of a node
$$\mu$$
: $\langle T_u, T_v, o_u, o_v \rangle \in D(u) \times D(v) \times \{0,1\} \times \{0,1\}$ clockwise counter-clockwise

A tuple is admissible for μ if there exists an assignment A_μ that is consistent with a planar embedding \mathcal{E}_μ of G_μ

• $\Psi(\mu)$ is the set of admissible tuples for μ

Tuple of a node
$$\mu$$
: $\langle T_u, T_v, o_u, o_v \rangle \in D(u) \times D(v) \times \{0,1\} \times \{0,1\}$ clockwise counter-clockwise

A tuple is admissible for μ if there exists an assignment A_μ that is consistent with a planar embedding \mathcal{E}_μ of G_μ

- $\Psi(\mu)$ is the set of admissible tuples for μ
- $\Psi(\mu)$ is computed from the set of admissible tuples of the children of μ
 - Depending on whether μ is an S-, P-, Q-, or R-node

Theorem 3

FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters are t and $D_{max} \rightarrow O(D_{max}^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm

Theorem 3

FPQ-Choosable Planarity Testing is FPT for biconnected graphs, where the parameters

are
$$t$$
 and $D_{max} o O(D_{max}^{\frac{9}{4}t}) n^2 + n^3$)-time algorithm

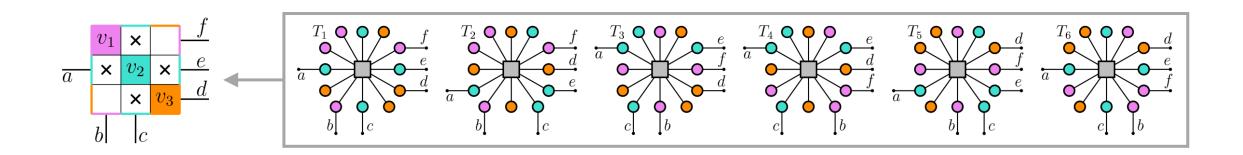
For R-nodes, in order to compute the set of admissible tuples:

- ullet We execute the sphere-cut decomposition of the skeleton of μ
 - It has branchwidth at most b (the branchwidth of G)
- For a graph G with treewidth t and branchwidth b>1, it holds

$$b-1 \le t \le \left|\frac{3}{2}b\right|-1$$
 [Robertson, Seymour - 1991]

Remarks

Let G be a clustered n-vertex graph whose clusters have size at most k. Let t be the treewidth of G. If the (multi-)graph obtained by collapsing each cluster of G into a vertex is biconnected, there exists an $O(k!^{\frac{9}{4}t} \cdot n^2 + n^3)$ -time algorithm to test whether G is NodeTrix planar with fixed sides.



Each FPQ-tree allows a possible permutation described by the matrix

Open Problems

- Theorem 1 is based on a reduction that associates 6 FPQ-trees to each vertex. What is the time complexity if $2 \le D_{max} \le 5$?
- Is it possible to extend Theorem 3 to simply connected graphs?
- Improve the time complexity of Theorem 3.
- Apply our approach to other hybrid representation models.

Thank you for your attention

alessandra.tappini@unipg.it