On the Number of Delaunay Triangles occurring in all Contiguous Subsequences

Felix Weitbrecht
Department of Computer Science
Universität Stuttgart

joined work with S. Funke
Motivation

- Subcomplexes of the Delaunay triangulation useful for representing the shape of objects from discrete samples
 - α-shapes, β-skeleton, the crust
Motivation

- Subcomplexes of the Delaunay triangulation useful for representing the shape of objects from discrete samples
 - α-shapes, β-skeleton, the crust
- Restrict temporal samples to shorter time intervals
 - α-shapes used to visualize the regions of storm events

[Bonerath et al. '19]
Motivation

- Subcomplexes of the Delaunay triangulation useful for representing the shape of objects from discrete samples
 - α-shapes, β-skeleton, the crust
- Restrict temporal samples to shorter time intervals
 - α-shapes used to visualize the regions of storm events

- Precompute all Delaunay triangles occurring in all contiguous subsequences & index them w.r.t. time, possibly some other parameter (α value, ...) for faster retrieval

[Bonerath et al. ’19]
Some Delaunay Triangulations

- \(P = \{p_1, p_2, \ldots, p_n\} \), \(P_{i,j} := \{p_i, p_{i+1}, \ldots, p_j\} \)
- Example: Incremental construction of \(DT(P) \) via the sequence \(DT(P_{1,3}), DT(P_{1,4}), \ldots DT(P_{1,n}) \)
Some Delaunay Triangulations

- \(P = \{p_1, p_2, \ldots, p_n\} \), \(P_{i,j} := \{p_i, p_{i+1}, \ldots, p_j\} \)
- Example: Incremental construction of \(DT(P) \) via the sequence \(DT(P_{1,3}), DT(P_{1,4}), \ldots DT(P_{1,n}) \)

\[DT(P_{1,3}) \]
Some Delaunay Triangulations

- \(P = \{p_1, p_2, \ldots, p_n\} \), \(P_{i,j} := \{p_i, p_{i+1}, \ldots, p_j\} \)
- Example: Incremental construction of \(DT(P) \) via the sequence \(DT(P_{1,3}), DT(P_{1,4}), \ldots DT(P_{1,n}) \)

\[
DT(P_{1,4})
\]

![Delaunay Triangulation Diagram](image)
Some Delaunay Triangulations

- \(P = \{p_1, p_2, \ldots, p_n\}, \ P_{i,j} := \{p_i, p_{i+1}, \ldots, p_j\} \)
- Example: Incremental construction of \(DT(P) \) via the sequence \(DT(P_{1,3}), DT(P_{1,4}), \ldots DT(P_{1,n}) \)

\[
DT(P_{1,5})
\]
Some Delaunay Triangulations

- $P = \{p_1, p_2, \ldots, p_n\}$, $P_{i,j} := \{p_i, p_{i+1}, \ldots, p_j\}$
- Example: Incremental construction of $DT(P)$ via the sequence $DT(P_{1,3}), DT(P_{1,4}), \ldots DT(P_{1,n})$

$$DT(P_{2,5})$$
Some Delaunay Triangulations

- $P = \{p_1, p_2, \ldots, p_n\}$, $P_{i,j} := \{p_i, p_{i+1}, \ldots, p_j\}$
- Example: Incremental construction of $DT(P)$ via the sequence $DT(P_{1,3}), DT(P_{1,4}), \ldots DT(P_{1,n})$

$$DT(P_{2,5})$$

- $T_{i,j}$: triangles of $DT(P_{i,j})$
- $T := \bigcup_{i<j} T_{i,j}$
- $|T| = ?$
Some Delaunay Triangulations

- \(P = \{p_1, p_2, \ldots, p_n\} \), \(P_{i,j} := \{p_i, p_{i+1}, \ldots, p_j\} \)
- Another example with \(|T| \in \Theta(n^2)|

\[\begin{array}{c}
 p_1 p_2 p_3 \\
 p_{n/2} \\
 p_n \\
 p_{n/2} + 1 \\
 p_n + 2
\end{array} \]
What is the expected number of Delaunay triangles in contiguous subsequences for arbitrary point sets P ordered uniformly at random?
Counting Delaunay Edges and Triangles

• Let $E_T := \{e \mid \exists t \in T : e \text{ edge of } t\}$
• Assume non-degeneracy of P
 – No 4 co-circular points, no 3 co-linear points
• Proof:
 1. Bound the expected number of Delaunay edges
 2. Show linear dependence between the number of Delaunay triangles and Delaunay edges
Lemma 1: Any $e = \{p_i, p_j\} \in E_T$ appears in $DT(P_{i,j})$

There exists some triangle $t \in T$ which uses e, so for suitable $a \leq i, b \geq j$, e appears in $DT(P_{a,b})$:

$DT(P_{a,b})$
Lemma 1: Any $e = \{p_i, p_j\} \in E_T$ appears in $DT(P_{i,j})$

There exists some triangle $t \in T$ which uses e, so for suitable $a \leq i, b \geq j$, e appears in $DT(P_{a,b})$:
Lemma 1: Any $e = \{p_i, p_j\} \in E_T$ appears in $DT(P_{i,j})$

There exists some triangle $t \in T$ which uses e, so for suitable $a \leq i, b \geq j$, e appears in $DT(P_{a,b})$:
Lemma 1: Any \(e = \{p_i, p_j\} \in E_T \) appears in \(DT(P_{i,j}) \).

There exists some triangle \(t \in T \) which uses \(e \), so for suitable \(a \leq i, b \geq j \), \(e \) appears in \(DT(P_{a,b}) \):

\[\Rightarrow e \in DT(P_{i,j}) \]
Lemma 2: For $j > i + 1$: $\Pr[e \in DT(P_{i,j})] < \frac{6}{j-i}$

- $DT(P_{i,j})$ is a planar graph with $j - i + 1$ nodes
 - Euler’s formula: $\leq 3(j - i + 1) - 6$ edges
Lemma 2: For $j > i + 1$: $Pr[e \in DT(P_{i,j})] < \frac{6}{j-i}$

- $DT(P_{i,j})$ is a planar graph with $j - i + 1$ nodes
 - Euler’s formula: $\leq 3(j - i + 1) - 6$ edges
- $DT(P_{i,j})$ does not depend on ordering of points within $P_{i,j}$
Lemma 2: For $j > i + 1$: $Pr[e \in DT(P_{i,j})] < \frac{6}{j-i}$

- $DT(P_{i,j})$ is a planar graph with $j - i + 1$ nodes
 - Euler’s formula: $\leq 3(j - i + 1) - 6$ edges
- $DT(P_{i,j})$ does not depend on ordering of points within $P_{i,j}$
- All points in $P_{i,j}$ are equally likely to be p_i/p_j
Lemma 2: For \(j > i + 1 \): \(\Pr[e \in DT(P_{i,j})] < \frac{6}{j-i} \)

- \(DT(P_{i,j}) \) is a planar graph with \(j - i + 1 \) nodes
 - Euler’s formula: \(\leq 3(j - i + 1) - 6 \) edges
- \(DT(P_{i,j}) \) does not depend on ordering of points within \(P_{i,j} \)
- All points in \(P_{i,j} \) are equally likely to be \(p_i/p_j \)
- So choosing \(p_i \) and \(p_j \) out of \(P_{i,j} \) is the same as choosing one edge (amongst all \(\binom{j-i+1}{2} \) possible edges) in a graph with \(j - i + 1 \) nodes and \(\leq 3(j - i + 1) - 6 \) edges
Lemma 2: For $j > i + 1$: $Pr[e \in DT(P_{i,j})] < \frac{6}{j-i}$

- $DT(P_{i,j})$ is a planar graph with $j - i + 1$ nodes
 - Euler’s formula: $\leq 3(j - i + 1) - 6$ edges
- $DT(P_{i,j})$ does not depend on ordering of points within $P_{i,j}$
- All points in $P_{i,j}$ are equally likely to be p_i/p_j
- So choosing p_i and p_j out of $P_{i,j}$ is the same as choosing one edge (amongst all $\binom{j-i+1}{2}$ possible edges) in a graph with $j - i + 1$ nodes and $\leq 3(j - i + 1) - 6$ edges

 $\Rightarrow Pr[e \in DT(P_{i,j})] \leq \frac{3(j-i+1)-6}{\binom{j-i+1}{2}} < \frac{6}{j-i}$
Lemma 3: The expected size of E_T is $\Theta(n \log n)$

Lower bound:

- Within $P_{1,1}, \ldots, P_{1,n}$, p_1's nearest neighbor changes $\Theta(\log n)$ times in expectation
 - Applies to all p_i
- Nearest neighbor graph is a subgraph of the Delaunay triangulation

$$\Rightarrow E[|E_T|] \in \Omega(n \log n)$$
Lemma 3: The expected size of E_T is $\Theta(n \log n)$

Upper bound: Use linearity of expectation to sum over all potential edges of E_T
- Edges $\{p_i, p_{i+1}\}$ always exist
- Other edges $\{p_i, p_j\}$ exist with probability $< \frac{6}{j-i}$

\[
E[|E_T|] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr[\{p_i, p_j\} \in E_T]
\]

\[
\leq \sum_{i=1}^{n-1} \left[1 + \sum_{j=i+2}^{n} \frac{6}{j-i} \right] = (n - 1) + 6 \sum_{i=1}^{n-1} \sum_{j=2}^{n-i} \frac{1}{j}
\]

\[
\leq (n - 1) + 6 \sum_{i=1}^{n-1} H_n = O(n \log n)
\]
Delaunay edges used by many Delaunay triangles

\[DT(P_{1,3}) \]
Delaunay edges used by many Delaunay triangles

\[DT(P_{1,4}) \]
Delaunay edges used by many Delaunay triangles

\[DT(P_{1,5}) \]
Delaunay edges used by many Delaunay triangles

$\text{DT}(P_{1,5}) \rightarrow \text{Edge } \{p_1, p_2\} \text{ used by many Delaunay triangles}$
Lemma 4: $|T| \in \Theta(|E_T|)$ for arbitrary orderings of P

- For each triangle in T, at most 3 edges exist in E_T
 \[\Rightarrow |E_T| \leq 3|T| \]
- For upper bound on edges, charge triangles to edges:
 - Delaunay triangle $p_a p_b p_c$ ($a < b < c$) exists in $DT(P_{a,c})$
 - In $DT(P_{a,c})$, at most one other triangle uses edge $\{p_a, p_c\}$
 \[\Rightarrow \text{Charging } T\text{'s triangles } p_a p_b p_c \text{ to } \{p_a, p_c\} \text{ ensures at most two triangles are charged to each edge in } E_T \]
 \[\Rightarrow |T| \leq 2|E_T| \]
Putting it all together

What is the expected number of Delaunay triangles in contiguous subsequences for arbitrary point sets P ordered uniformly at random?
Putting it all together

What is the expected number of Delaunay triangles in contiguous subsequences for arbitrary point sets P ordered uniformly at random?

$$E[|E_T|] = \Theta(n \log n) \text{ and } |T| \in \Theta(|E_T|)$$

$$\Rightarrow E[|T|] = \Theta(n \log n)$$
Experimental results & data

n points sampled from the unit square, averaged over 20 runs

| n | $|\bigcup_{j \leq n} T_{1,j}|$ | $|T|$ | T computation time |
|-----|-------------------------------|------|----------------------|
| 2^{15} | 196,168 | 2,860,956 | 6,309 ms |
| 2^{16} | 392,592 | 6,267,247 | 14,229 ms |
| 2^{17} | 785,879 | 13,622,094 | 32,817 ms |
| 2^{18} | 1,572,292 | 29,425,885 | 70,545 ms |
| 2^{19} | 3,144,770 | 63,210,634 | 155,370 ms |
| 2^{20} | 6,290,562 | 135,134,028 | 347,186 ms |
| 2^{21} | 12,581,989 | 287,719,166 | 771,705 ms |
On the Number of Delaunay Triangles occurring in all Contiguous Subsequences

Felix Weitbrecht
Department of Computer Science
Universität Stuttgart

about work with S. Funke
More data

| n | $|T|$ | T time | $|\bigcup_{j \leq n} T_{1,j}|$ | $T_{1,n}$ time |
|-----|-----------|-----------|-------------------------------|----------------|
| 2^{15} | 2,860,956 | 6,309 ms | 196,168 | 260 ms |
| 2^{16} | 6,267,247 | 14,229 ms | 392,592 | 745 ms |
| 2^{17} | 13,622,094 | 32,817 ms | 785,879 | 1,779 ms |
| 2^{18} | 29,425,885 | 70,545 ms | 1,572,292 | 4,068 ms |
| 2^{19} | 63,210,634 | 155,370 ms| 3,144,770 | 9,008 ms |
| 2^{20} | 135,134,028 | 347,186 ms| 6,290,562 | 20,374 ms |
| 2^{21} | 287,719,166 | 771,705 ms| 12,581,989 | 44,082 ms |