36th European Workshop on Computational Geometry

Disjoint tree-compatible plane perfect matchings

Oswin Aichholzer1, Julia Obmann1, Pavel Paták2, Daniel Perz1, and Josef Tkadlec2

1 Graz University of Technology, Austria
2 IST Austria, Klosterneuburg, Austria
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position

compatible
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position
Compatibility of graphs

Setting: set S of $2n$ points in the plane in general position

disjoint compatible
Compatibility of matchings
Compatibility of matchings

• compatibility graph:
 ○ vertices: all plane perfect matchings on S
 ○ edge $(M_i, M_j) \iff M_i$ and M_j are compatible
Compatibility of matchings

- compatibility graph:
 - vertices: all plane perfect matchings on S
 - edge $(M_i, M_j) \iff M_i$ and M_j are compatible

- compatibility graph for matchings is connected
 convex point set: [C. Hernando, F. Hurtado and M. Noy; 2002.]
 general point set: [M.E. Houle, F. Hurtado, M. Noy and E. Rivera-Campo; 2005.]
Compatibility of matchings

- compatibility graph:
 - vertices: all plane perfect matchings on S
 - edge $(M_i, M_j) \iff M_i$ and M_j are compatible

- compatibility graph for matchings is connected
 - convex point set: [C. Hernando, F. Hurtado and M. Noy; 2002.]
 - general point set: [M.E. Houle, F. Hurtado, M. Noy and E. Rivera-Campo; 2005.]

- diameter is $O(\log n)$ [ABDGHHKMRSSUW; 2009.]
 and $\Omega(\log n / \log \log n)$ [A.Razen; 2008.]
Disjoint compatibility of matchings
Disjoint compatibility of matchings

- **disjoint** compatibility graph:
 - vertices: all plane perfect matchings on S
 - edge (M_i, M_j) $\iff M_i, M_j$ are disjoint compatible
Disjoint compatibility of matchings

- **disjoint compatibility graph:**
 - vertices: all plane perfect matchings on S
 - edge $(M_i, M_j) \iff M_i, M_j$ are disjoint compatible

- disjoint compatibility graph for matchings on point sets of $2n \geq 6$ points in convex position is disconnected

[O. Aichholzer, A. Asinowski and T. Miltzow; 2015.]
Disjoint compatibility of matchings

- **disjoint** compatibility graph:
 - vertices: all plane perfect matchings on S
 - edge $(M_i, M_j) \iff M_i, M_j$ are **disjoint** compatible

- **disjoint** compatibility graph for matchings on point sets of $2n \geq 6$ points in convex position is disconnected

 [O. Aichholzer, A. Asinowski and T. Miltzow; 2015.]

Alternative way of defining compatibility?
Disjoint tree-compatibility of matchings
Disjoint tree-compatibility of matchings

• consider ‘compatibility’ via
disjoint compatible plane spanning trees
Disjoint tree-compatibility of matchings

• consider 'compatibility' via disjoint compatible plane spanning trees
Disjoint tree-compatibility of matchings

- consider 'compatibility' via disjoint compatible plane spanning trees
Disjoint tree-compatibility of matchings

- consider 'compatibility' via disjoint compatible plane spanning trees

not compatible!
Disjoint tree-compatibility of matchings

• consider ’compatibility’ via disjoint compatible plane spanning trees
Disjoint tree-compatibility of matchings

- consider 'compatibility' via disjoint compatible plane spanning trees
Disjoint tree-compatibility of matchings

- consider 'compatibility' via disjoint compatible \textit{plane spanning trees}

matchings are \textbf{disjoint tree-compatible}
(for short: tree-compatible)
Disjoint tree-compatibility of matchings

- consider 'compatibility' via disjoint compatible plane spanning trees

- disjoint tree-compatibility graph G_{2n}:
 - vertices: all plane perfect matchings on S
 - edge $(M_i, M_j) \iff M_i, M_j$ disjoint tree-compatible
Disjoint tree-compatibility of matchings

- consider 'compatibility' via disjoint compatible plane spanning trees

ATTENTION: different from (disjoint) compatibility!

- disjoint tree-compatible $\not\implies$ compatible
- disjoint compatible $\not\implies$ disjoint tree-compatible
Disjoint tree-compatibility of matchings

• consider 'compatibility' via
disjoint compatible plane spanning trees

ATTENTION: different from (disjoint) compatibility!

\[
\text{disjoint compatible} \not\Rightarrow \text{compatible} \\
\text{disjoint compatible} \not\Rightarrow \text{disjoint tree-compatible}
\]
G_8
Disjoint tree-compatible plane perfect matchings

G_8
G_8
G_8
G_8
Upper bound
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.
Upper bound

Theorem 1. For \(2n \geq 10\), the graph \(G_{2n}\) is connected and \(\text{diam}(G_{2n}) \leq 5\).

Proof Idea.
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.
- "inside semicycles" can be (simultaneously) rotated in one step
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.
- ”inside semicycles” can be (simultaneously) rotated in one step
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.
- "inside semicycles" can be (simultaneously) rotated in one step.
Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.
- "inside semicycles" can be (simultaneously) rotated in one step
Upper bound

Theorem 1. For \(2n \geq 10\), the graph \(G_{2n}\) is connected and \(\text{diam}(G_{2n}) \leq 5\).

Proof Idea.

- ”inside semicycles” can be (simultaneously) rotated in one step
- large ”semiears” (\(\geq 12\) vertices) can be rotated in at most 3 steps
Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.

- ”inside semicycles” can be (simultaneously) rotated in one step
- large ”semiears” (≥ 12 vertices) can be rotated in at most 3 steps
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.
- ”inside semicycles” can be (simultaneously) rotated in one step
- large ”semiears” (≥ 12 vertices) can be rotated in at most 3 steps
Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.

- ”inside semicycles” can be (simultaneously) rotated in one step
- large ”semiears” (≥ 12 vertices) can be rotated in at most 3 steps
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.

- all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.

- all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2.
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.
- all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2
- easy bound 9: distance to P_1 or P_2 is ≤ 3 for each matching
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.

- all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2
- easy bound 9:
 distance to P_1 or P_2 is ≤ 3 for each matching
Upper bound

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\text{diam}(G_{2n}) \leq 5$.

Proof Idea.

- all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2
- easy bound 9: distance to P_1 or P_2 is ≤ 3 for each matching
- more sophisticated arguments yield bound 5
Lower bound
Lower bound

Theorem 2. For $2n \geq 10$, we have $\text{diam}(G_{2n}) \geq 4$.
Lower bound

Theorem 2. For $2n \geq 10$, we have $\text{diam}(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd
Lower bound

Theorem 2. For $2n \geq 10$, we have $\text{diam}(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd.
Theorem 2. For $2n \geq 10$, we have $\text{diam}(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd.
Lower bound

Theorem 2. For $2n \geq 10$, we have $\text{diam}(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd

(i) M tree-compatible to $E_1 \Rightarrow$ no green perimeter edge (analogously for E_2)
Lower bound

Theorem 2. For $2n \geq 10$, we have $\text{diam}(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd

(i) M tree-compatible to $E_1 \Rightarrow$ no green perimeter edge (analogously for E_2)

(ii) M tree-compatible to $O_1 \Rightarrow$ at most one green perimeter edge, which is g (analogously for O_2 and r)
Lower bound

(iii) M and M' tree-compatible \Rightarrow at least two perimeter edges in common
Lower bound

(iii) M and M' tree-compatible \Rightarrow at least two perimeter edges in common
(iii) \(M \) and \(M' \) tree-compatible \(\Rightarrow \) at least two perimeter edges in common
Summary / Open problems
Summary / Open problems

- The disjoint tree-compatibility graph G_{2n} is connected if and only if $2n \geq 10$.
- The diameter in that case is either 4 or 5.
- **Conjecture.** The diameter for all $2n \geq 18$ is 4.

 \[(\text{diam}(G_{2n}) = 5 \text{ for } n \in \{5, 6, 7, 8\} \text{ and diam}(G_{18}) = 4)\]
- Is G_{2n} connected for general point sets (which n)?
- Compatibility via other graph classes?

Ongoing work: disjoint path-compatibility
Thanks a lot to the Organizing Committee and all involved people for adapting so well to this unusual situation and for carrying out the workshop in this way!

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.