36th European Workshop on Computational Geometry

Disjoint tree-compatible plane perfect matchings

Oswin Aichholzer¹, <u>Julia Obmann</u>¹, Pavel Paták², Daniel Perz¹, and Josef Tkadlec²

¹ Graz University of Technology, Austria

² IST Austria, Klosterneuburg, Austria

- compatibility graph:
 - \circ vertices: all plane perfect matchings on S
 - \circ edge $(M_i, M_j) \iff M_i$ and M_j are compatible

- compatibility graph:
 - \circ vertices: all plane perfect matchings on S
 - \circ edge $(M_i, M_j) \iff M_i$ and M_j are compatible
- compatibility graph for matchings is connected convex point set: [C. Hernando, F. Hurtado and M. Noy; 2002.]

```
general point set: [M.E. Houle, F. Hurtado, M. Noy and E. Rivera-Campo; 2005.]
```

- compatibility graph:
 - \circ vertices: all plane perfect matchings on S
 - \circ edge $(M_i, M_j) \iff M_i$ and M_j are compatible
- compatibility graph for matchings is connected convex point set: [C. Hernando, F. Hurtado and M. Noy; 2002.]
 general point set: [M.E. Houle, F. Hurtado, M. Noy and E. Rivera-Campo; 2005.]
- diameter is $O(\log n)$ [ABDGHHKMRSSUW; 2009.] and $\Omega(\log n/\log\log n)$ [A.Razen; 2008.]

- disjoint compatibility graph:
 - \circ vertices: all plane perfect matchings on S
 - \circ edge $(M_i, M_j) \iff M_i, M_j$ are disjoint compatible

- disjoint compatibility graph:
 - \circ vertices: all plane perfect matchings on S
 - \circ edge $(M_i, M_j) \iff M_i, M_j$ are disjoint compatible
- disjoint compatibility graph for matchings on point sets of $2n \geq 6$ points in convex position is disconnected
 - [O. Aichholzer, A. Asinowski and T. Miltzow; 2015.]

- disjoint compatibility graph:
 - \circ vertices: all plane perfect matchings on S
 - \circ edge $(M_i, M_j) \iff M_i, M_j$ are disjoint compatible
- disjoint compatibility graph for matchings on point sets of $2n \geq 6$ points in convex position is disconnected
 - [O. Aichholzer, A. Asinowski and T. Miltzow; 2015.]

Alternative way of defining compatibility?

- ullet disjoint tree-compatibility graph G_{2n} :
 - \circ vertices: all plane perfect matchings on S
 - \circ edge $(M_i, M_j) \iff M_i, M_j$ disjoint tree-compatible

 consider 'compatibility' via disjoint compatible plane spanning trees

ATTENTION: different from (disjoint) compatibility!

disjoint tree-compatible

⇒ compatible
disjoint compatible

disjoint tree-compatible

 consider 'compatibility' via disjoint compatible plane spanning trees

ATTENTION: different from (disjoint) compatibility!

disjoint tree-compatible

⇒ compatible
disjoint compatible

disjoint tree-compatible

 G_8

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\operatorname{diam}(G_{2n}) \leq 5$.

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Proof Idea.

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Proof Idea.

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Proof Idea.

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Proof Idea.

Theorem 1. For $2n \geq 10$, the graph G_{2n} is connected and $\operatorname{diam}(G_{2n}) \leq 5.$

- "inside semicycles" can be (simultaneously) rotated in one step
- large "semiears" (≥ 12 vertices) can be rotated in at most 3 steps

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

- "inside semicycles" can be (simultaneously) rotated in one step
- large "semiears" (≥ 12 vertices) can be rotated in at most 3 steps

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

- "inside semicycles" can be (simultaneously) rotated in one step
- large "semiears" (≥ 12 vertices) can be rotated in at most 3 steps

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

- "inside semicycles" can be (simultaneously) rotated in one step
- large "semiears" (≥ 12 vertices) can be rotated in at most 3 steps

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Proof Idea.

• all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Proof Idea.

• all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

Proof Idea.

• all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2

• easy bound 9: distance to P_1 or P_2 is ≤ 3 for each matching

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

- ullet all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2
- easy bound 9: distance to P_1 or P_2 is ≤ 3 for each matching

Theorem 1. For $2n \ge 10$, the graph G_{2n} is connected and $diam(G_{2n}) \le 5$.

- ullet all matchings can be quickly transformed to one of the perimeter matchings P_1 or P_2
- easy bound 9: distance to P_1 or P_2 is ≤ 3 for each matching
- more sophisticated arguments yield bound 5

Theorem 2. For $2n \geq 10$, we have $diam(G_{2n}) \geq 4$.

Theorem 2. For $2n \geq 10$, we have $diam(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd

Theorem 2. For $2n \geq 10$, we have $diam(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd

Theorem 2. For $2n \geq 10$, we have $diam(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd

Theorem 2. For $2n \geq 10$, we have $diam(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4 for both n even and n odd

(i) M tree-compatible to $E_1 \Rightarrow$ no green perimeter edge (analogously for E_2)

Theorem 2. For $2n \geq 10$, we have $diam(G_{2n}) \geq 4$.

Idea: distance between two specific matchings is at least 4for both n even and n odd

- (i) M tree-compatible to $E_1 \Rightarrow$ no green perimeter edge (analogously for E_2)
- (ii) M tree-compatible to $O_1 \Rightarrow$ at most one green perimeter edge, which is g (analogously for O_2 and r)

(iii) M and M' tree-compatible \Rightarrow at least two perimeter edges in common

(iii) M and M' tree-compatible \Rightarrow at least two perimeter edges in common

(iii) M and M' tree-compatible \Rightarrow at least two perimeter edges in common

Summary / Open problems

Summary / Open problems

- The disjoint tree-compatibility graph G_{2n} is connected if and only if 2n > 10.
- \bullet The diameter in that case is either 4 or 5.
- Conjecture. The diameter for all 2n > 18 is 4. $(diam(G_{2n})=5 \text{ for } n \in \{5,6,7,8\} \text{ and } diam(G_{18})=4)$
- Is G_{2n} connected for general point sets (which n)?
- Compatibility via other graph classes? Ongoing work: disjoint path-compatibility

German Research Foundation

Thanks a lot to the Organizing Committee and all involved people for adapting so well to this unusual situation and for carrying out the workshop in this way!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.