

Department of Mathematics and Computer Science

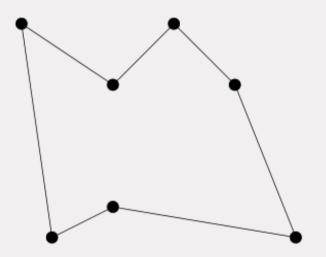
Introduction

The Euclidean Travelling Salesman Problem

In red: added commentary to make the slides readable

The Euclidean Travelling Salesman Problem

Find a shortest tour visiting all points

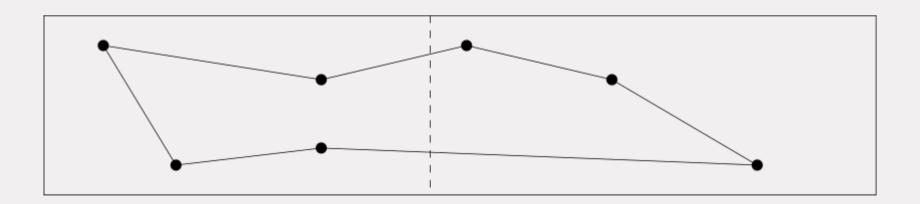


Euclidean TSP in narrow strips

Find a shortest tour visiting all points

Likely to be a bitonic tour

A tour is bitonic if it crosses any vertical line at most twice



Motivation

d-dimensional Euclidean TSP: NP-hard

Can be solved in $2^{O(n^{1-1/d})}$ time

ETH-tight

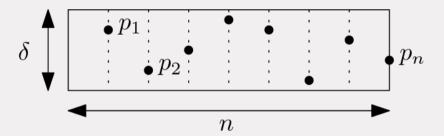
$$2^{O(\sqrt{n})}$$
 for $d=2$

Bitonic tours: $O(n \log^2 n)$

Problem description

 $P = \{p_1, p_2, \dots, p_n\}$ point set in $[0, n] \times [0, \delta]$

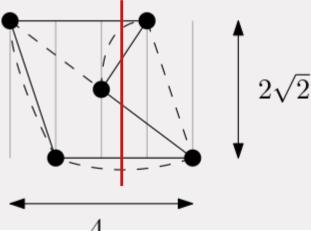
x-coordinate of p_i is exactly i



Theorem 1.

If $\delta \leq 2\sqrt{2}$, there exists a shortest tour that is bitonic. This bound is tight.

Construction for $\delta > 2\sqrt{2}$:

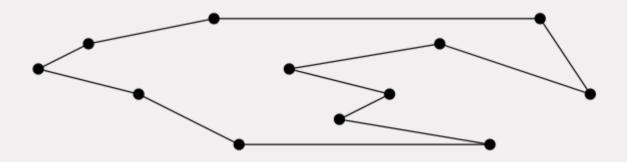


Theorem 1.

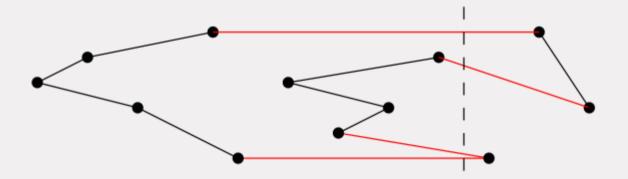
If $\delta \leq 2\sqrt{2}$, there exists a shortest tour that is bitonic. This bound is tight.

Proof sketch:

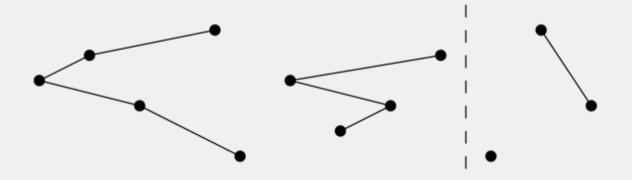
Proof sketch:



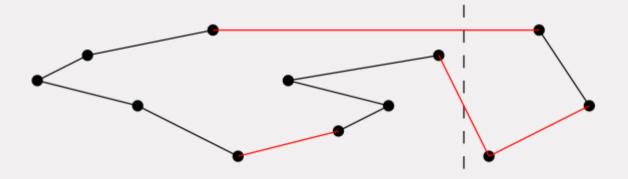
Proof sketch:



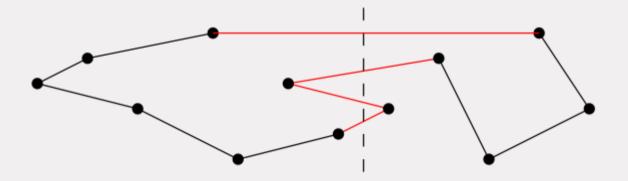
Proof sketch:



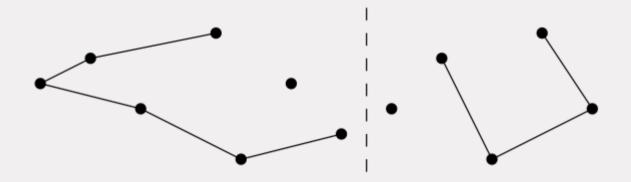
Proof sketch:



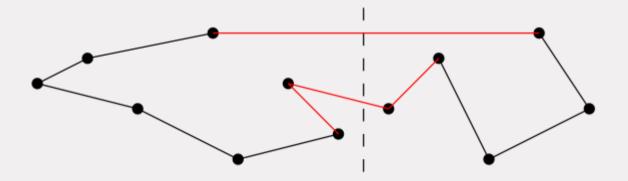
Proof sketch:



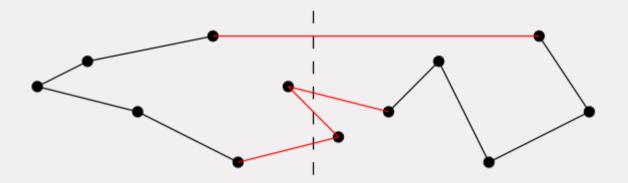
Proof sketch:



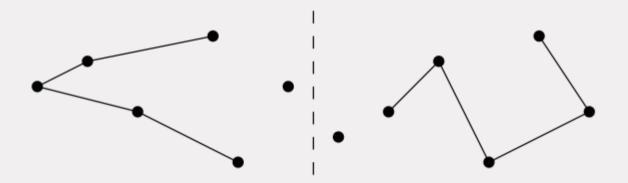
Proof sketch:



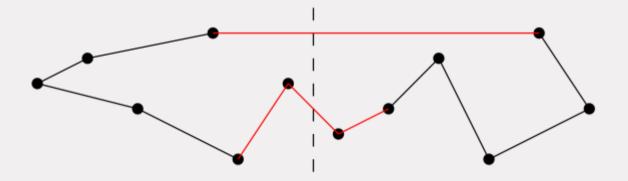
Proof sketch:



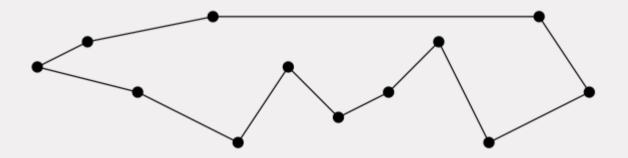
Proof sketch:



Proof sketch:



Proof sketch:



Proof sketch:

Proof sketch:

Transform tour T into (shorter) bitonic tour T'

An edge set E is *superior* to an edge set F if

- The sum of the lengths of the edges of E is strictly less than that of F, or
- The sums are equal, but
 - No vertical line crosses E strictly more times than F, and
 - There exists a vertical line which crosses E strictly fewer times than F

Proof sketch:

Transform tour T into (shorter) bitonic tour T'

Step 1:

Superior edge set exists if 'interesting' points have consecutive x-coordinates

A superior edge set always exists

'Interesting' points are those which cross the vertical line we are currently looking at during our sweep from right to left

Proof sketch:

Transform tour T into (shorter) bitonic tour T'

Step 1:

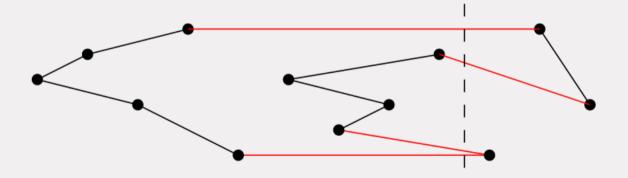
Superior edge set exists if 'interesting' points have consecutive x-coordinates

A superior edge set always exists

Step 2:

Superior edge set exists if 'interesting' points have consecutive x-coordinates

Proof sketch:

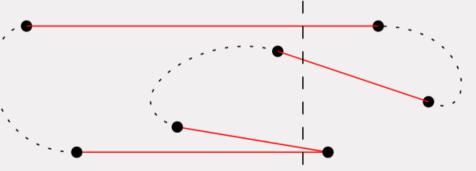


Proof sketch:

Transform tour T into (shorter) bitonic tour T'

The exact connections are unimportant, but their connections are;

the new set of edges
must still form a tour
together with the black
edges



Proof sketch:

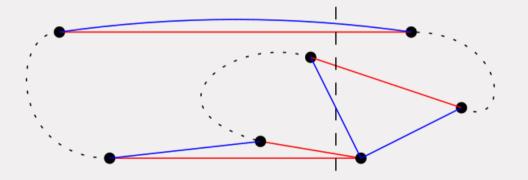
Transform tour T into (shorter) bitonic tour T'

In blue, a alternative set of edges. Note that moving points along the red edges

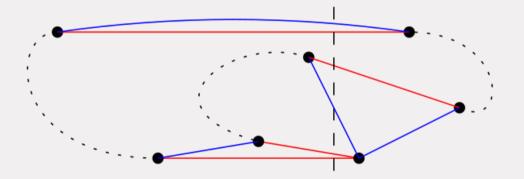
can only make

blue 'less' superior

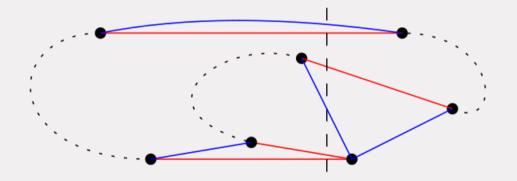
Proof sketch:



Proof sketch:



Proof sketch:



Proof sketch:

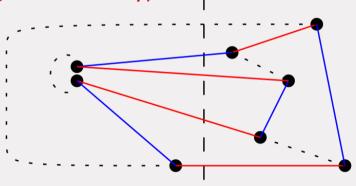
Transform tour T into (shorter) bitonic tour T'

If you whish to move a vertex with two red edges connected, things are slightly more complicated...

Proof sketch:

Transform tour T into (shorter) bitonic tour T'

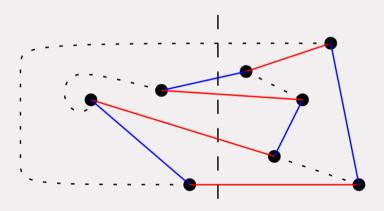
Split the vertex into two, adding a connection between them (they are still on the same spot, but slightly displaced in the figure for clarity)



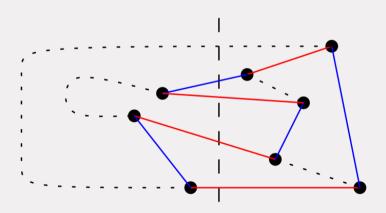
Proof sketch:

Transform tour T into (shorter) bitonic tour T'

Then, you can move one of them as normal



Proof sketch:



Proof sketch:

Transform tour T into (shorter) bitonic tour T'

Step 1:

Superior edge set exists if 'interesting' points have consecutive x-coordinates

A superior edge set always exists

Step 2:

Superior edge set exists if 'interesting' points have consecutive x-coordinates

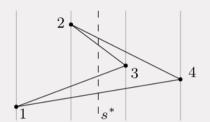
Step 2:

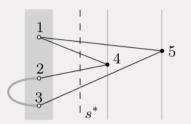
Superior edge set exists if 'interesting' points have consecutive x-coordinates

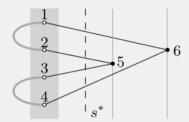
Proof sketch:

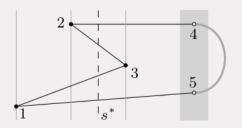
Case distinction on the connections between the 'interesting' points

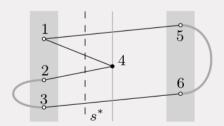
All six possible cases. Points in grey blocks can have any horizontal ordering

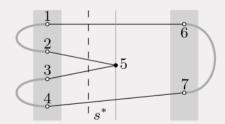








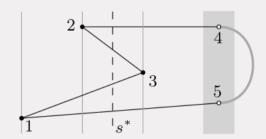




Proof sketch:

Case distinction on the connections between the 'interesting' points For each case, this can be proven either algebraically, or by computer assistance

The figure to the right gives the bound (both horizontal orderings of points 4 and 5 give the same bound of $2\sqrt{2}$)



Questions?

Feel free to let us know!

