t-spanners for Transmission Graphs Using the Path-Greedy Algorithm

Stay Ashur and Paz Carmi

EuroCG'20 Würzburg

Overview

- Introduction
 - Notations and Definitions
 - Path-Greedy Spanner
- 2 Transmission Graphs
 - Definitions
 - Results
- 3 Computing a t-Spanner for Transmission Graphs
 - Algorithm
 - Analysis

Outline

- Introduction
 - Notations and Definitions
 - Path-Greedy Spanner
- - Definitions
 - Results
- - Algorithm
 - Analysis

Let G = (V, E) be a directed graph.

A t-Spanner for Directed Graphs

A *t*-spanner G' for G is a sparse subgraph $G' \subseteq G$, s.t. for any two vertices $p, q \in G$, there is a directed path from p to q in G' of length at most t times the length of the path from p to q in G.

Let G = (V, E) be a directed graph.

A t-Spanner for Directed Graphs

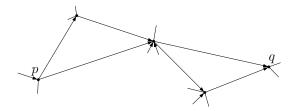
A *t*-spanner G' for G is a sparse subgraph $G' \subseteq G$, s.t. for any two vertices $p, q \in G$, there is a directed path from p to q in G' of length at most t times the length of the path from p to q in G.

Formally:

$$\forall p, q \in V : |\pi_{G'}(p,q)| \leq t \cdot |\pi_{G}(p,q)|$$

Where $\pi_G(p,q)$ is the shortest directed path from p to q in the graph G, and $|\pi_G(p,q)|$ is its length.

Let G = (V, E) be a directed graph.

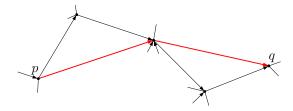


Formally:

$$\forall p, q \in V : |\pi_{G'}(p,q)| \leq t \cdot |\pi_{G}(p,q)|$$

Where $\pi_G(p,q)$ is the shortest directed path from p to q in the graph G, and $|\pi_G(p,q)|$ is its length.

Let G = (V, E) be a directed graph.



Formally:

$$\forall p,q \in V: |\pi_{G'}(p,q)| \leq t \cdot |\pi_{G}(p,q)|$$

Where $\pi_G(p, q)$ is the shortest directed path from p to q in the graph G, and $|\pi_G(p, q)|$ is its length.

Let G = (V, E) be a directed graph.

Formally:

$$\forall p, q \in V : |\pi_{G'}(p,q)| \leq t \cdot |\pi_{G}(p,q)|$$

Where $\pi_G(p,q)$ is the shortest directed path from p to q in the graph G, and $|\pi_G(p,q)|$ is its length.

Let G = (V, E) be a directed graph.

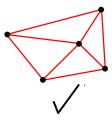
Formally:

$$\forall p, q \in V: |\pi_{G'}(p,q)| \leq t \cdot |\pi_{G}(p,q)|$$

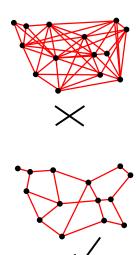
Where $\pi_G(p, q)$ is the shortest directed path from p to q in the graph G, and $|\pi_G(p, q)|$ is its length.

 Small stretch factor (spanning ratio)

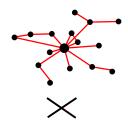


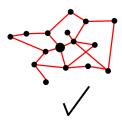


- Small stretch factor (spanning ratio)
- Small number of edges (linear is preferable)



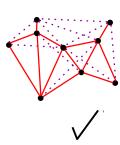
- Small stretch factor (spanning ratio)
- Small number of edges (linear is preferable)
- Bounded degree





- Small stretch factor (spanning ratio)
- Small number of edges (linear is preferable)
- Bounded degree
- Weight





- Small stretch factor (spanning ratio)
- Small number of edges (linear is preferable)
- Bounded degree
- Weight
- Easy construction

Outline

- Introduction
 - Notations and Definitions
 - Path-Greedy Spanner
- - Definitions
 - Results
- - Algorithm
 - Analysis

```
Path-Greedy, O(n^3 \log n)
```

I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, (1993)

```
Input: Given a graph G = (P, E), where P \subset \mathbb{R}^d, E are edges
with Euclidean weights, and a real number t > 1.
Output: The Path-Greedy t-spanner G' = (P, E') for G.
          E \leftarrow E sorted in non-decreasing order of length
          F' := \emptyset
          G' := (P, E')
          ForEach (u, v) \in E (in sorted order)
               If \pi_{G'}(u,v) > t \cdot |uv|
                     E' := E' \cup \{(u, v)\}
          Return: G = (P, E')
```

- I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, (1993)
 - The Path-Greedy spanner has the best properties

- I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, (1993)
 - The Path-Greedy spanner has the best properties
 - \circ O(n) edges

- I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, (1993)
 - The Path-Greedy spanner has the best properties
 - \circ O(n) edges
 - Bounded degree

- I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, (1993)
 - The Path-Greedy spanner has the best properties
 - \circ O(n) edges
 - Bounded degree
 - Total weight O(wt(MST(G)))

- I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, (1993)
 - The Path-Greedy spanner has the best properties
 - O(n) edges
 - Bounded degree
 - Total weight O(wt(MST(G)))
 - Very simple

- I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, (1993)
 - The Path-Greedy spanner has the best properties
 - \circ O(n) edges
 - Bounded degree
 - Total weight O(wt(MST(G)))
 - Very simple
 - Its main weakness is its time complexity

\approx Greedy

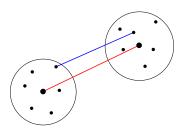
Approximate Greedy, $O(n \log^2 n)$

G. Das and G. Narasimhan, (1997)

\approx Greedy

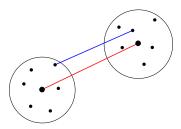
Approximate Greedy, $O(n \log^2 n)$

- G. Das and G. Narasimhan, (1997)
 - Approximating Dijkstra's algorithm by querying a cluster graph



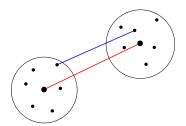
Approximate Greedy, $O(n \log^2 n)$

- G. Das and G. Narasimhan, (1997)
 - Approximating Dijkstra's algorithm by querying a cluster graph
 - Calculating a t-spanner in $O(n \log^2 n)$



Approximate Greedy, $O(n \log^2 n)$

- G. Das and G. Narasimhan, (1997)
 - Approximating Dijkstra's algorithm by querying a cluster graph
 - Calculating a t-spanner in $O(n \log^2 n)$
 - Theoretically has good properties as the Path-Greedy spanner



Path Greedy superiority

Experimental Study of Geometric t-Spanners

M. Farshi, & J. Gudmundsson, (2009)

Algorithm	Edges	Degree	$\frac{\text{Weight}}{wt(MST)}$
Path-Greedy	36K	17	11
θ -Graph	370K	144	327
≈-Greedy	852K	403	
WSPD spanner	11,119K	5,192	70,470

Table: Results for 8000 random uniformly distributed points with t = 1.1

Fast Path-Greedy, $\tilde{O}(n^2)$

P. Bose, P. Carmi, M. Farshi, A. Maheshwari, M. Smid, (2010)

 δ -Greedy, $\tilde{O}(n^2)$

Fast Path-Greedy, $\tilde{O}(n^2)$

P. Bose, P. Carmi, M. Farshi, A. Maheshwari, M. Smid, (2010)

Keeping a stack of actions preformed by Dijkstra's algorithm

δ -Greedy, $\tilde{O}(n^2)$

Fast Path-Greedy, $O(n^2)$

P. Bose, P. Carmi, M. Farshi, A. Maheshwari, M. Smid, (2010)

- Keeping a stack of actions preformed by Dijkstra's algorithm
- The running time is proportional to running Dijkstra from each point $O(n^2 \log n)$

δ -Greedy, $\tilde{O}(n^2)$

Fast Path-Greedy, $\tilde{O}(n^2)$

P. Bose, P. Carmi, M. Farshi, A. Maheshwari, M. Smid, (2010)

- Keeping a stack of actions preformed by Dijkstra's algorithm
- The running time is proportional to running Dijkstra from each point $O(n^2 \log n)$
- Drawback complex and difficult to implement

δ -Greedy, $\tilde{O}(n^2)$

Fast Path-Greedy, $\tilde{O}(n^2)$

P. Bose, P. Carmi, M. Farshi, A. Maheshwari, M. Smid, (2010)

- Keeping a stack of actions preformed by Dijkstra's algorithm
- The running time is proportional to running Dijkstra from each point $O(n^2 \log n)$
- Drawback complex and difficult to implement

δ -Greedy, $\tilde{O}(n^2)$

G. Bar-On & P. Carmi, (2017)

• Maintain cones in directions where *t*-spanning paths are already guaranteed

Fast Path-Greedy, $\tilde{O}(n^2)$

P. Bose, P. Carmi, M. Farshi, A. Maheshwari, M. Smid, (2010)

- Keeping a stack of actions preformed by Dijkstra's algorithm
- The running time is proportional to running Dijkstra from each point $O(n^2 \log n)$
- Drawback complex and difficult to implement

δ -Greedy, $\tilde{O}(n^2)$

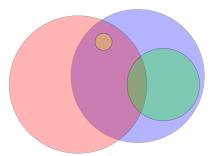
- Maintain cones in directions where *t*-spanning paths are already guaranteed
- Simpler than Fast-Greedy

Outline

- - Notations and Definitions
 - Path-Greedy Spanner
- Transmission Graphs
 - Definitions
 - Results
- - Algorithm
 - Analysis

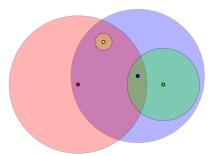
Transmission Graphs

 $D = \{d_1, ..., d_n\}$ a set of disks in \mathbb{R}^d



Transmission Graphs

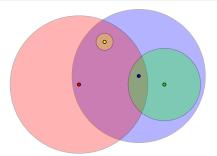
$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^d
 $C = \{c_1, ..., c_n\}$ the centers of the disks



$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^d
 $C = \{c_1, ..., c_n\}$ the centers of the disks

Transmission Graph

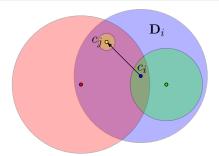
The transmission graph G = (C, E) of D is a directed graph over the centers of the disks



 $D = \{d_1, ..., d_n\}$ a set of disks in \mathbb{R}^d $C = \{c_1, ..., c_n\}$ the centers of the disks

Transmission Graph

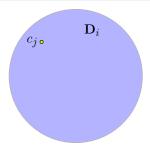
The transmission graph G = (C, E) of D is a directed graph over the centers of the disks, where (c_i, c_i) is a directed edge if c_i lies inside D_i .



$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^d
 $C = \{c_1, ..., c_n\}$ the centers of the disks

Transmission Graph

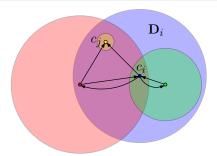
The transmission graph G = (C, E) of D is a directed graph over the centers of the disks, where (c_i, c_i) is a directed edge if c_i lies inside D_i .



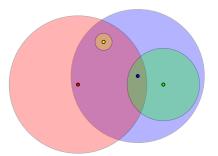
 $D = \{d_1, ..., d_n\}$ a set of disks in \mathbb{R}^d $C = \{c_1, ..., c_n\}$ the centers of the disks

Transmission Graph

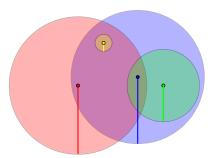
The transmission graph G = (C, E) of D is a directed graph over the centers of the disks, where (c_i, c_i) is a directed edge if c_i lies inside D_i .



 $D = \{d_1, ..., d_n\}$ a set of disks in \mathbb{R}^d



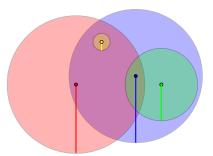
$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^d
 $R = \{r_1, ..., r_n\}$ the radii of the disks



 $D = \{d_1, ..., d_n\}$ a set of disks in \mathbb{R}^d $R = \{r_1, ..., r_n\}$ the radii of the disks

Radius Ratio

The radius ratio Ψ of D is the ratio between the largest and smallest disk radii.

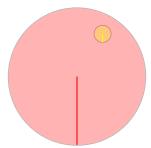


 $D = \{d_1, ..., d_n\}$ a set of disks in \mathbb{R}^d $R = \{r_1, ..., r_n\}$ the radii of the disks

Radius Ratio

The radius ratio Ψ of D is the ratio between the largest and smallest disk radii.

$$r_{max} = max\{r_i\}, r_{min} = min\{r_i\}, \Psi = \frac{r_{max}}{r_{min}}$$



Outline

- - Notations and Definitions
 - Path-Greedy Spanner
- Transmission Graphs
 - Definitions
 - Results
- - Algorithm
 - Analysis

All results are of a *t*-spanner for any t > 1.

 $O(n \cdot \Psi)$ edges, $O(m \log n)$ time

D. Peleg, L. Roditty, (2010)

O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

All results are of a *t*-spanner for any t > 1.

- $O(n \cdot \Psi)$ edges, $O(m \log n)$ time
- D. Peleg, L. Roditty, (2010)
 - Relatively big (many edges)
- O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time
- H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

All results are of a *t*-spanner for any t > 1.

- $O(n \cdot \Psi)$ edges, $O(m \log n)$ time
- D. Peleg, L. Roditty, (2010)
 - Relatively big (many edges)
- O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time
- H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)
 - Difficult construction and analysis

All results are of a *t*-spanner for any t > 1.

 $O(n \cdot \Psi)$ edges, $O(m \log n)$ time

D. Peleg, L. Roditty, (2010)

Relatively big (many edges)

O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

Difficult construction and analysis

No previous result of a *t*-spanner with bounded weight.

Our results

- $O(n \cdot \Psi)$ edges, $O(m \log n)$ time
- D. Peleg, L. Roditty, (2010)
- O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time
- H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

Our results:

- O(n) edges, $O(n^3 \log n)$ time
- S. Ashur, P. Carmi, (2020)

$O(n \cdot \Psi)$ edges, $O(m \log n)$ time

D. Peleg, L. Roditty, (2010)

$$O(n)$$
 edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

Our results:

$$O(n)$$
 edges, $O(n^3 \log n)$ time

S. Ashur, P. Carmi, (2020)

Very simple (implementation and analysis)

Our results

- $O(n \cdot \Psi)$ edges, $O(m \log n)$ time
- D. Peleg, L. Roditty, (2010)
- O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time
- H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

Our results:

- O(n) edges, $O(n^3 \log n)$ time
- S. Ashur, P. Carmi, (2020)
 - Very simple (implementation and analysis)
 - Weight bounded by a function of n and Ψ

$O(n \cdot \Psi)$ edges, $O(m \log n)$ time

D. Peleg, L. Roditty, (2010)

O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

Our results:

$$O(n)$$
 edges, $O(n^3 \log n)$ time

S. Ashur, P. Carmi, (2020)

- Very simple (implementation and analysis)
- Weight bounded by a function of n and Ψ
- Disadvantage runtime

Our results

$O(n \cdot \Psi)$ edges, $O(m \log n)$ time

D. Peleg, L. Roditty, (2010)

O(n) edges, $O(n \log n + n \log \Psi)$ or $O(n \log^5 n)$ time

H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth, (2015, 2018)

Our results:

$$O(n)$$
 edges, $O(n^2 \log n)$ time

S. Ashur, P. Carmi, (2020)

- Very simple (implementation and analysis)
- Weight bounded by a function of n and Ψ
- ullet Disadvantage runtime, can be reduced by using the δ -Greedy

Outline

- - Notations and Definitions
 - Path-Greedy Spanner
- - Definitions
 - Results
- 3 Computing a t-Spanner for Transmission Graphs
 - Algorithm
 - Analysis

Let:

$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^2
 $1 < t \in \mathbb{R}$

Algorithm for computing a t-spanner for the disk graph G of D:

Let:

$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^2
 $1 < t \in \mathbb{R}$

Algorithm for computing a t-spanner for the disk graph G of D:

• $G' \leftarrow PathGreedy(G)$

Let:

$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^2
 $1 < t \in \mathbb{R}$

Algorithm for computing a t-spanner for the disk graph G of D:

- $G' \leftarrow PathGreedy(G)$
- Return G'

Let:

$$D = \{d_1, ..., d_n\}$$
 a set of disks in \mathbb{R}^2
 $1 < t \in \mathbb{R}$

Algorithm for computing a t-spanner for the disk graph G of D:

- $G' \leftarrow PathGreedy(G)$
- Return G'

Claim 1

G' is a t-spanner of G

Outline

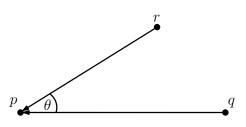
- - Notations and Definitions
 - Path-Greedy Spanner
- - Definitions
 - Results
- 3 Computing a t-Spanner for Transmission Graphs
 - Algorithm
 - Analysis

Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

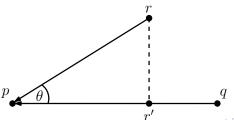
Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.



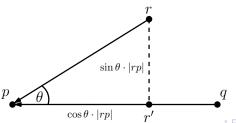
Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.



Claim 2

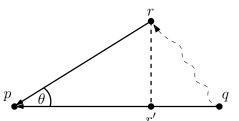
The in-degree of every vertex in G is bounded by a constant that depends on t.



Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

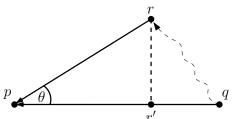
$$|qr| \leq |rr'| + |r'q|$$



Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

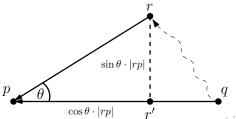


Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|)$

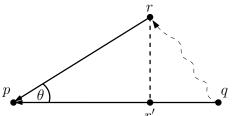


Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$



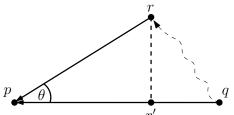
Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$

$$|qr| + |rp|(\cos \theta - \sin \theta) \le |qp|$$



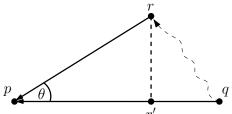
Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$

$$\frac{1}{\cos\theta - \sin\theta}|qr| + |rp| \le \frac{1}{\cos\theta - \sin\theta}|qp|$$



Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$

$$\frac{1}{\cos \theta - \sin \theta} |qr| + |rp| \le \frac{1}{\cos \theta - \sin \theta} |qp|$$

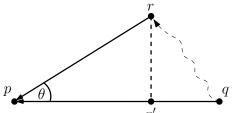
Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$

$$\frac{t|qr|+|rp|\leq t|qp|}{r}$$



Bounded In-Degree

Claim 2

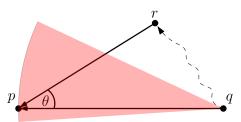
The in-degree of every vertex in G is bounded by a constant that depends on t.

Proof:

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$

$$t|qr| + |rp| \le t|qp|$$



Bounded In-Degree

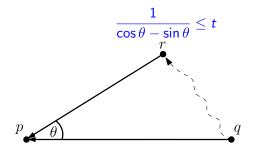
Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

Proof:

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$



Bounded In-Degree

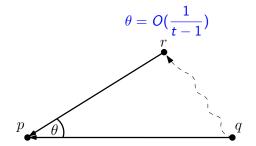
Claim 2

The in-degree of every vertex in G is bounded by a constant that depends on t.

Proof:

$$|qr| \le |rr'| + |r'q| = |rr'| + (|pq| - |pr'|)$$

= $\sin \theta |rp| + (|pq| - \cos \theta |rp|) = |pq| - |rp|(\cos \theta - \sin \theta)$



Claim 2

The weight of G', denoted by wt(G'), is bounded by

$$O((1 + \Psi) \cdot \log n \cdot wt(MST(G))),$$

where wt(MST(G)) is the weight of the MST of the disk centers.

Claim 2

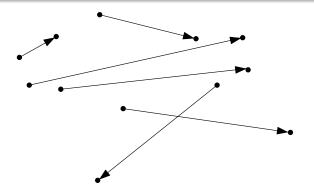
The weight of G', denoted by wt(G'), is bounded by

$$O((1+\Psi)\cdot \log n\cdot wt(MST(G))),$$

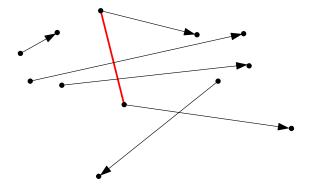
where wt(MST(G)) is the weight of the MST of the disk centers.

w-Gap Property

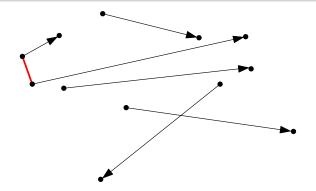
w-Gap Property



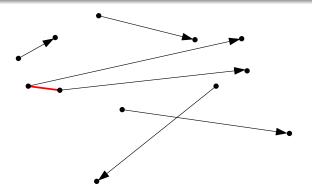
w-Gap Property



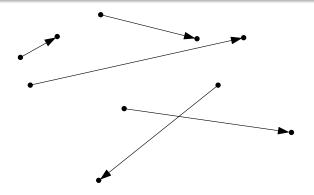
w-Gap Property



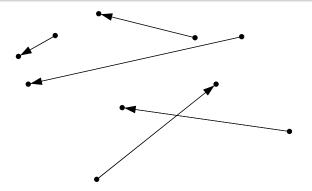
w-Gap Property



w-Gap Property



w-Gap Property



w-Gap Property

A set of directed edges E has the w-gap property for $w \in \mathbb{R}^+$, if for any to edges \overline{pq} and \overline{rs} , $|qs| > w \cdot \min\{|pq|, |rs|\}$

Lemma [G. Narasimhan, M.Smid 2007]

A set of directed edges E that admit the w-gap property for $w \in \mathbb{R}^+$, then the total weight of E is less than

$$(1+\frac{2}{w})\cdot \log |P|\cdot wt(MST(P)),$$

where P is the set of the end-points of E.

w-Gap Property

A set of directed edges E has the w-gap property for $w \in \mathbb{R}^+$, if for any to edges \overline{pq} and \overline{rs} , $|qs| > w \cdot \min\{|pq|, |rs|\}$

Lemma [G. Narasimhan, M.Smid 2007]

A set of directed edges E that admit the w-gap property for $w \in \mathbb{R}^+$, then the total weight of E is less than

$$(1+\frac{2}{w})\cdot \log |P|\cdot wt(MST(P)),$$

where P is the set of the end-points of E.

We divide E(G') into a constant number of sets that admit the $\frac{1}{W}$ -gap property.

- **1** A simple *t*-spanner for transmission-graphs
- 2 Bounded in-degree
- Bounded weight
- $O(n^2 \log n)$ runtime

Thank You

