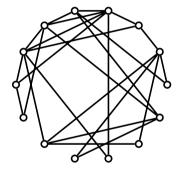
Non-Planarity Measures and Small Cycles

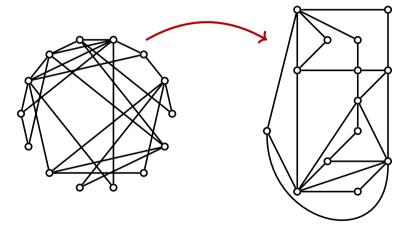
EuroCG 2020 - PhD School

Markus Chimani

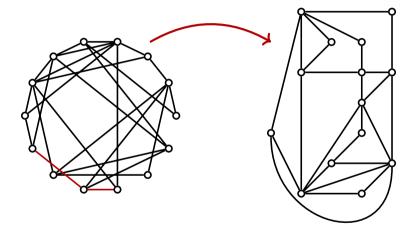
Theoretical Computer Science, Osnabrück University

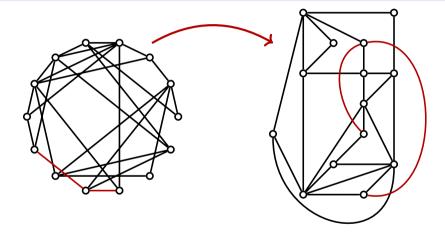
March 19th, 2020





Planarity helps **a lot** algorithmically!

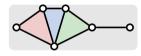




Theorem (Euler's formula)

Given a planarly drawn graph with n vertices, m edges, and f faces, then:

$$n - m + f = 2$$

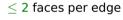


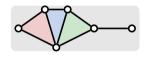
Theorem (Euler's formula)

Given a planarly drawn graph with n vertices, m edges, and f faces, then:

$$n - m + f = 2$$

Consider the number of face-edge incidences: > 3 edges per face



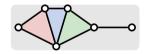


Theorem (Euler's formula)

Given a planarly drawn graph with n vertices, m edges, and f faces, then:

$$n-m+f=2$$

Consider the number of face-edge incidences: > 3 edges per face



$$\implies$$
 3f \geq 2m \rightarrow n - m + (2/3)m \geq 2 \rightarrow m \leq 3n - 6

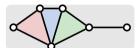
$$\implies$$
 3f \geq 2m \rightarrow n - m + (2/3)m \geq 2 \rightarrow m \leq 3n -

Theorem (Euler's formula)

Given a planarly drawn graph with n vertices, m edges, and f faces, then:

$$n-m+f=2$$

Consider the number of face-edge incidences: \geq 3 edges per face \leq 2 faces per edge



$$\implies$$
 3 $f \ge 2m \rightarrow n-m+(2/3)m \ge 2 \rightarrow m \le 3n-6$

Definition (Girth)

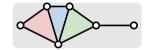
Girth g(G) is the length of the shortest cycle in G.

Theorem (Euler's formula)

Given a planarly drawn graph with n vertices, m edges, and f faces, then:

$$n-m+f=2$$

Consider the number of face-edge incidences: \geq 3 edges per face



$$\Longrightarrow 3f \geq 2m \quad \rightarrow \quad n-m+(2/3)m \geq 2 \quad \rightarrow \quad m \leq 3n-6$$

Definition (Girth)

Girth g(G) is the length of the shortest cycle in G.

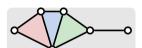
Bipartite graphs (girth ≥ 4): ≥ 4 edges per face $\implies m \leq 2n - 4$

Theorem (Euler's formula)

Given a planarly drawn graph with n vertices, m edges, and f faces, then:

$$n - m + f = 2$$

Consider the number of face-edge incidences: \geq 3 edges per face



$$\leq$$
 2 faces per edge \implies 3 $f \geq 2m \rightarrow n-m+(2/3)m \geq 2 \rightarrow m \leq 3n-6$

Definition (Girth)

Girth g(G) is the length of the shortest cycle in G.

Bipartite graphs (girth ≥ 4): ≥ 4 edges per face $\implies m \leq 2n - 4$

Girth g: $\geq g$ edges per face $\Longrightarrow m \leq \frac{g}{g-2}(n-2)$

 $\textbf{high girth} \rightarrow \textbf{few edges}$

Kuratowski

Theorem (Kuratowski, 1930)

Graph G is non-planar

 \iff

G contains a K_5 - or $K_{3,3}$ -**subdivision** as a subgraph.

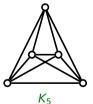
Kuratowski

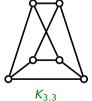
Theorem (Kuratowski, 1930)

Graph G is non-planar

 \iff

G contains a K_5 - or $K_{3,3}$ -**subdivision** as a subgraph.





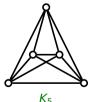
Kuratowski

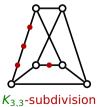
Theorem (Kuratowski, 1930)

Graph G is non-planar

 \iff

G contains a K_5 - or $K_{3,3}$ -subdivision as a subgraph.





Can we gain an algorithmic advantage is graph is close to planar? What does close mean?

Crossing Number: min. number of crossings in the plane

- Crossing Number: min. number of crossings in the plane
- Skewness: min. number of edge deletions to obtain planar graph

- ► Crossing Number: min. number of crossings in the plane
- Skewness: min. number of edge deletions to obtain planar graph
- ▶ Vertex Deletion Number: min. number of vertex deletions to obtain planar graph

- ► Crossing Number: min. number of crossings in the plane
- ▶ **Skewness:** min. number of edge deletions to obtain planar graph
- ▶ Vertex Deletion Number: min. number of vertex deletions to obtain planar graph
- ▶ **Vertex Splitting Number:** min. number of vertex splits to obtain planar graph

- ► Crossing Number: min. number of crossings in the plane
- **Skewness:** min. number of edge deletions to obtain planar graph
- ▶ Vertex Deletion Number: min. number of vertex deletions to obtain planar graph
- Vertex Splitting Number: min. number of vertex splits to obtain planar graph
- ▶ **Thickness:** min. k, s.t. \exists partition of edges into k planar subgraphs

- Crossing Number: min. number of crossings in the plane
- **Skewness:** min. number of edge deletions to obtain planar graph
- Vertex Deletion Number: min. number of vertex deletions to obtain planar graph
- Vertex Splitting Number: min. number of vertex splits to obtain planar graph
- ▶ **Thickness:** min. k, s.t. \exists partition of edges into k planar subgraphs
- ► Coarseness: max. number of disjoint Kuratowski-subdivisions

- Crossing Number: min. number of crossings in the plane
- **Skewness:** min. number of edge deletions to obtain planar graph
- ▶ Vertex Deletion Number: min. number of vertex deletions to obtain planar graph
- ▶ **Vertex Splitting Number:** min. number of vertex splits to obtain planar graph
- ▶ **Thickness:** min. k, s.t. \exists partition of edges into k planar subgraphs
- ► Coarseness: max. number of disjoint Kuratowski-subdivisions
- ▶ **Genus:** min. number of handles to embed on an (orientable) surface

Can we gain an algorithmic advantage is graph is close to planar? What does close mean?

- ► Crossing Number: min. number of crossings in the plane
- **Skewness:** min. number of edge deletions to obtain planar graph
- ▶ **Vertex Deletion Number:** min. number of vertex deletions to obtain planar graph
- ▶ **Vertex Splitting Number:** min. number of vertex splits to obtain planar graph
- ▶ **Thickness:** min. k, s.t. \exists partition of edges into k planar subgraphs
- ► Coarseness: max. number of disjoint Kuratowski-subdivisions
- ► **Genus:** min. number of handles to embed on an (orientable) surface

all of these measures are NP-hard to compute...

 $\operatorname{cr}(G)$

Non-Planarity Measures

Can we gain an algorithmic advantage is graph is close to planar? What does close mean?

- Crossing Number: min. number of crossings in the plane
- **Skewness:** min. number of edge deletions to obtain planar graph sk(G)
- Vertex Deletion Number: min. number of vertex deletions to obtain planar graph
- Vertex Splitting Number: min. number of vertex splits to obtain planar graph
- **Thickness:** min. k, s.t. \exists partition of edges into k planar subgraphs
- ► Coarseness: max. number of disjoint Kuratowski-subdivisions
- **Genus:** min. number of handles to embed on an (orientable) surface $\gamma(G)$

all of these measures are NP-hard to compute...

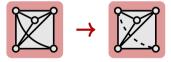
Lemma

 $\operatorname{cr}(G) \geq \operatorname{sk}(G) \geq \gamma(G)$

Lemma

$$\operatorname{cr}(G) \geq \operatorname{sk}(G) \geq \gamma(G)$$

remove arbitrary edge of each crossing



Lemma

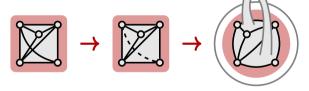
$$\operatorname{cr}(G) \geq \operatorname{sk}(G) \geq \gamma(G)$$

- remove arbitrary edge of each crossing
- route each removed edge over new handle

Lemma

 $\operatorname{cr}(G) \geq \operatorname{sk}(G) \geq \gamma(G)$

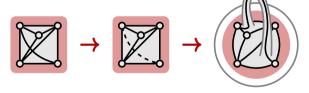
- remove arbitrary edge of each crossing
- route each removed edge over new handle



Lemma

$$\operatorname{cr}(G) \ge \operatorname{sk}(G) \ge \gamma(G)$$

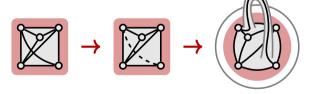
- remove arbitrary edge of each crossing
- route each removed edge over new handle



Lemma

$$\operatorname{cr}(G) \ge \operatorname{sk}(G) \ge \gamma(G)$$

- remove arbitrary edge of each crossing
- route each removed edge over new handle



... and the gaps can be large!

$$\{G: \gamma(G) \leq k\} \supset \{G: \operatorname{sk}(G) \leq k\} \supset \{G: \operatorname{cr}(G) \leq k\}$$

$$\{G: \gamma(G) \leq k\} \supset \{G: \mathrm{sk}(G) \leq k\} \supset \{G: \mathrm{cr}(G) \leq k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- P vs. NP, FPT, (better) approximable,...

$$\{G: \gamma(G) \leq k\} \supset \{G: \mathrm{sk}(G) \leq k\} \supset \{G: \mathrm{cr}(G) \leq k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- P vs. NP, FPT, (better) approximable,...

- rich graph classes
- \blacktriangleright strong theory, but harsh dependency on γ

$$\{G: \gamma(G) \le k\} \supset \{G: \operatorname{sk}(G) \le k\} \supset \{G: \operatorname{cr}(G) \le k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- P vs. NP, FPT, (better) approximable,...

- rich graph classes
- ightharpoonup strong theory, but harsh dependency on γ
- ightharpoonup computing γ very hard in practice, no heuristics

$$\{G: \gamma(G) \le k\} \supset \{G: \operatorname{sk}(G) \le k\} \supset \{G: \operatorname{cr}(G) \le k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- P vs. NP, FPT, (better) approximable,...

- rich graph classes
- ightharpoonup strong theory, but harsh dependency on γ
- ightharpoonup computing γ very hard in practice, no heuristics

Bounded Skewness / Crossing Number.

MaximumFlow in time-complexity of planar graphs [Hochstein&Weihe 2007]

$$\{G: \gamma(G) \le k\} \supset \{G: \operatorname{sk}(G) \le k\} \supset \{G: \operatorname{cr}(G) \le k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- P vs. NP, FPT, (better) approximable,...

- ▶ rich graph classes
- ightharpoonup strong theory, but harsh dependency on γ
- ightharpoonup computing γ very hard in practice, no heuristics

Bounded Skewness / Crossing Number.

- MaximumFlow in time-complexity of planar graphs [Hochstein&Weihe 2007]
- sk constant-factor approximation of crossing number [Ch.&Hliněný 2016]

Exploiting Low Non-Planarity

$$\{G: \gamma(G) \leq k\} \supset \{G: \operatorname{sk}(G) \leq k\} \supset \{G: \operatorname{cr}(G) \leq k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- ▶ P vs. NP, FPT, (better) approximable,...

- rich graph classes
- ightharpoonup strong theory, but harsh dependency on γ
- ightharpoonup computing γ very hard in practice, no heuristics

Bounded Skewness / Crossing Number.

- MaximumFlow in time-complexity of planar graphs [Hochstein&Weihe 2007]
- sk constant-factor approximation of crossing number [Ch.&Hliněný 2016]
- FPT-parameter for MaxCut [Ch. et al. 2020]

Exploiting Low Non-Planarity

$$\{G: \gamma(G) \leq k\} \supset \{G: \operatorname{sk}(G) \leq k\} \supset \{G: \operatorname{cr}(G) \leq k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- ▶ P vs. NP, FPT, (better) approximable,...

- ▶ rich graph classes
- ightharpoonup strong theory, but harsh dependency on γ
- \blacktriangleright computing γ very hard in practice, no heuristics

Bounded Skewness / Crossing Number.

- MaximumFlow in time-complexity of planar graphs [Hochstein&Weihe 2007]
- sk constant-factor approximation of crossing number [Ch.&Hliněný 2016]
- FPT-parameter for MaxCut [Ch. et al. 2020]

 finer-grained parameterization may be more practical

Exploiting Low Non-Planarity

$$\{G: \gamma(G) \leq k\} \supset \{G: \operatorname{sk}(G) \leq k\} \supset \{G: \operatorname{cr}(G) \leq k\}$$

Bounded Genus.

- maaaaaany publications for many problems!
- ▶ P vs. NP, FPT, (better) approximable,...

- rich graph classes
- ightharpoonup strong theory, but harsh dependency on γ
- ightharpoonup computing γ very hard in practice, no heuristics

Bounded Skewness / Crossing Number.

- MaximumFlow in time-complexity of planar graphs [Hochstein&Weihe 2007]
- sk constant-factor approximation of crossing number [Ch.&Hliněný 2016]
- cr FPT-parameter for MaxCut [Ch. et al. 2020]

- finer-grained parameterization may be more practical
- more tractable in practice, reasonable exact algorithms & strong heuristics

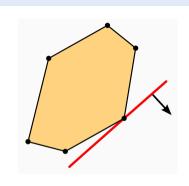
Formulate the problem as an ILP

$$\max c^{\top}x$$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

$$x \in \mathbb{Z}^n$$



Formulate the problem as an ILP

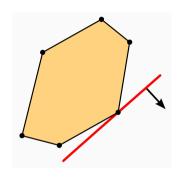
$$\max c^{\top}x$$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

$$x \in \mathbb{Z}^n$$

- relaxation can be computed in polynomial time
- ► fast solvers using branch-and-cut



Formulate the problem as an ILP

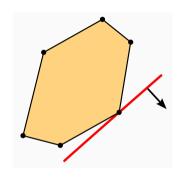
$$\max c^{\top}x$$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

$$x \in \mathbb{Z}^n$$

- relaxation can be computed in polynomial time
- ► fast solvers using branch-and-cut



Only strong formulations yield effective algorithms!

Formulate the problem as an **ILP**

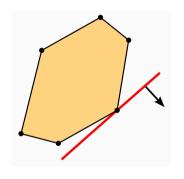
$$\max c^{\top}x$$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

$$x \in \mathbb{Z}^n$$

- relaxation can be computed in polynomial time
- ► fast solvers using branch-and-cut



Only strong formulations yield effective algorithms!

Roadmap (of this talk)

Skewness: Original ILP \rightarrow Improvement by considering Short Cycles

Genus: Original ILP → Improvement by considering Short Cycles

Maxima Dlanar Cubaranh (MD)

Skewness sk(G)

= Maximum Planar Subgraph (MPS)

Kuratowski-based Formulation

Theorem (Kuratowski, 1930)

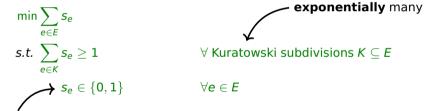
G is non-planar \iff G contains a K_5 - or $K_{3,3}$ -subdivision.

Kuratowski-based Formulation

Theorem (Kuratowski, 1930)

G is non-planar \iff *G* contains a K_5 - or $K_{3,3}$ -subdivision.

Kuratowski-based ILP [Mutzel, 1994]



Variable is 1 iff edge e is deleted

Kuratowski-based Formulation

Theorem (Kuratowski, 1930)

G is non-planar \iff G contains a K_5 - or $K_{3,3}$ -subdivision.

Kuratowski-based ILP [Mutzel, 1994]

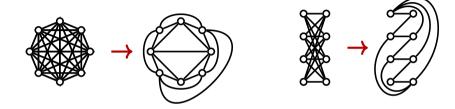


Variable is 1 iff edge e is deleted

Solve via branch-and-cut with heuristic separation.

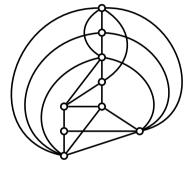
Kuratowski constraints are weak on dense graphs

Kuratowski constraints are weak on dense graphs

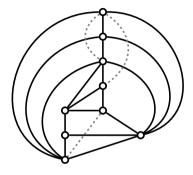


- Kuratowski constraints are weak on dense graphs
- On complete (complete bipartite) graphs, optimality follows directly from Euler's formula
 - ⇒no Kuratowski constraints needed

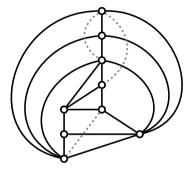
- Kuratowski constraints are weak on dense graphs
- On complete (complete bipartite) graphs, optimality follows directly from Euler's formula
 ⇒no Kuratowski constraints needed
- Real-world graphs typically **neither** have large girth **nor** is their MPS tri- or quadrangulated...



"real-world" graph

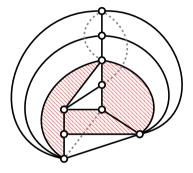


MPS of "real-world" graph



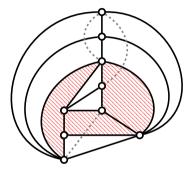
MPS of "real-world" graph

few large faces in MPS (or few short cycles in input)



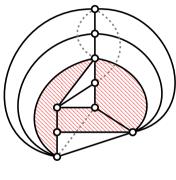
MPS of "real-world" graph

▶ few large faces in MPS (or few short cycles in input)

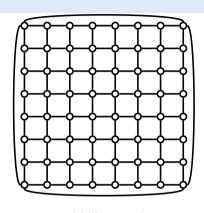


MPS of "real-world" graph

- few large faces in MPS (or few short cycles in input)
- MPS is typically biconnected

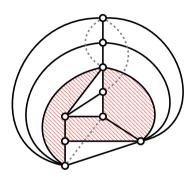


MPS of "real-world" graph

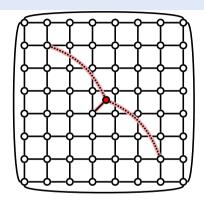


grid-like graph

- few large faces in MPS (or few short cycles in input)
- MPS is typically biconnected



MPS of "real-world" graph



triconnected artificial graph with no biconnected MPS

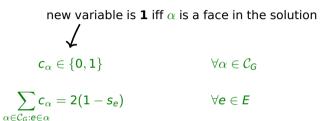
- few large faces in MPS (or few short cycles in input)
- ► MPS is typically biconnected

Assume: MPS is biconnected.

$$\mathcal{C}_{\textit{G}} \coloneqq \mathsf{set} \; \mathsf{of} \; \mathsf{cycles} \; \mathsf{in} \; \mathsf{input} \; \textit{G}.$$

Assume: MPS is biconnected.

 $C_G := set of cycles in input G.$



Assume: MPS is biconnected.

 $C_G := \text{set of cycles in input } G.$

new variable is ${\bf 1}$ iff α is a face in the solution /

$$oldsymbol{\zeta}_{lpha} \in \{0,1\}$$

 $\forall \alpha \in \mathcal{C}_{G}$

$$\sum_{lpha \in \mathcal{C}_G: e \in lpha} c_lpha = 2(1-s_e)$$

$$\forall e \in E$$

$$|3|V(G)| - 6 - \sum_{\alpha \in C_G} (|\alpha| - 3)c_{\alpha} = \sum_{e \in E} (1 - s_e)$$

Assume: MPS is biconnected.

 $C_G := \text{set of cycles in input } G.$

new variable is ${\bf 1}$ iff α is a face in the solution

$$c_lpha \in \{\mathtt{0},\mathtt{1}\}$$

 $\forall \alpha \in \mathcal{C}_{G}$

$$\sum_{lpha \in \mathcal{C}_G: \mathbf{e} \in lpha} c_lpha = \mathsf{2}(\mathsf{1} - s_e)$$

$$\forall e \in E$$

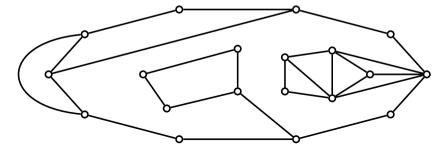
$$3|V(G)|-6-\sum_{\alpha\in\mathcal{C}_G}(|\alpha|-3)c_{\alpha}=\sum_{e\in E}(1-s_e)$$

Problems:

- ► We cannot enumerate **all** cycles in practice
- MPS is not biconnected

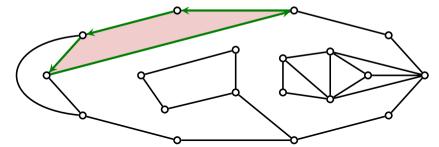
Lemma

- ▶ faces in the solution $\stackrel{1:1}{\longleftrightarrow}$ cycles
- each edge is incident to at most one such cycle



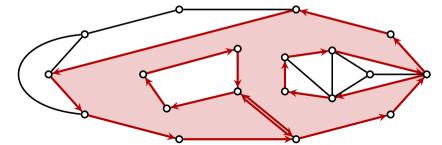
Lemma

- ▶ faces in the solution $\stackrel{1:1}{\longleftrightarrow}$ cycles
- each edge is incident to at most one such cycle



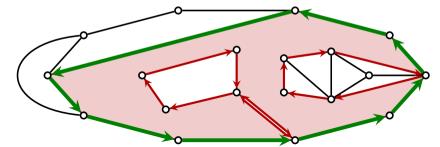
Lemma

- ▶ faces in the solution $\stackrel{1:1}{\longleftrightarrow}$ cycles
- each edge is incident to at most one such cycle



Lemma

- ▶ faces in the solution $\stackrel{1:1}{\longleftrightarrow}$ cycles
- each edge is incident to at most one such cycle



$$egin{aligned} c_{lpha} \in \{0,1\} & orall lpha \in \mathcal{C}_G \ & \sum_{lpha \in \mathcal{C}_G \colon e \in lpha} c_{lpha} = 2(1-s_e) & orall e \in E \ & \ & 3|V(G)| - 6 - \sum_{lpha \in \mathcal{C}_G} (|lpha| - 3) c_{lpha} = \sum_{e \in E} (1-s_e) & \end{aligned}$$

$$egin{aligned} c_{lpha} \in \{0,1\} & orall lpha \in \mathcal{C}_G \ & \sum_{lpha \in \mathcal{C}_G \colon e \in lpha} c_{lpha} \leq 2(1-s_e) & orall e \in E \ \ & 3|V(G)| - 6 - \sum_{lpha \in \mathcal{C}_G} (|lpha| - 3) c_{lpha} = \sum_{e \in E} (1-s_e) & \end{aligned}$$

$$c_{lpha} \in \{0,1\}$$
 $orall lpha \in \mathcal{C}_{G}$ $\sum_{lpha \in \mathcal{C}_{G}: \ e \in lpha} c_{lpha} \leq 2(1-s_{e})$ $orall e \in E$ $3|V(G)| - 6 - \sum_{lpha \in \mathcal{C}_{G}} (|lpha| - 3)c_{lpha} - \sum_{e \in E} (1-s_{e})$

Pick $D \in \mathbb{N}$ such that number of variables is "reasonable".

$$egin{aligned} c_{lpha} \in \{0,1\} & orall lpha \in \mathcal{C}_G, |lpha| \leq D \ & \sum_{lpha \in \mathcal{C}_G \colon e \in lpha, |lpha| \leq D} c_{lpha} \leq 2(1-s_e) & orall e \in E \ & 3|V(G)| - 6 - \sum_{lpha \in \mathcal{C}_G} (|lpha| - 3) \epsilon_{lpha} - \sum_{e \in E} (1-s_e) & \end{aligned}$$

Cycle Model

Pick $D \in \mathbb{N}$ such that number of variables is "reasonable".

$$c_{\alpha} \in \{0,1\} \qquad \forall \alpha \in \mathcal{C}_{G}, |\alpha| \leq D$$

$$\sum_{\alpha \in \mathcal{C}_{G}: e \in \alpha, |\alpha| \leq D} c_{\alpha} \leq 2(1-s_{e}) \qquad \forall e \in E$$

$$3|V(G)| - 6 - \sum_{\alpha \in \mathcal{C}_{G}} (|\alpha| - 3)c_{\alpha} - \sum_{e \in E} (1-s_{e})$$

$$(D+1)(|V(G)| - 2) + \sum_{d=3,4,...,D} (D+1-d) \sum_{\alpha \in \mathcal{C}_{G}^{=d}} c_{\alpha} \geq (D-1) \sum_{e \in E} (1-s_{e})$$

D-Hierarchy

D-Hierarchy

Theorem

D-Hierarchy

Theorem

Skewness (= Maximum Planar Subgraph, MPS) Improvement via Cycle ILP

D-Hierarchy

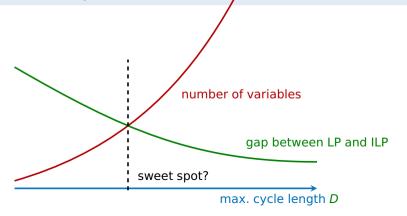
Theorem



Skewness (= Maximum Planar Subgraph, MPS) Improvement via Cycle ILP

D-Hierarchy

Theorem



Supplemental Constraint Zoo

Once you have cycle variables, you can do a lot more with them!

Goal: Tightly link edge- and cycle-variables



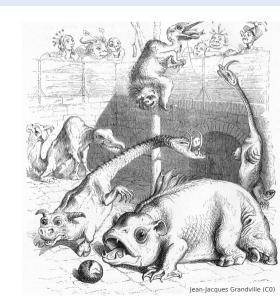
Supplemental Constraint Zoo

Once you have cycle variables, you can do a lot more with them!

Goal: Tightly link edge- and cycle-variables

For example:

- pseudo-tree extension
- cycle-edge cons.
- Kuratowski-cycle cons.
- k-cycles-path cons.
- cvcle-clique cons.
- cycle-two-paths cons.



Experimental Setting

Framework

- ► C++, GCC 6.3
- ► OGDF 2018.03 [www.ogdf.net]

- ► SCIP 6.0 [scip.zib.de]
- ► CPLEX 12.8

Computations

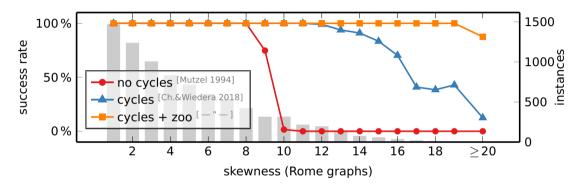
Xeon Gold 6134

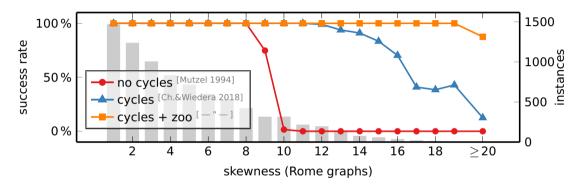
▶ limit: 20 minutes, 8 GB

Instances

- ► Rome [Di Battista et al., 1995]
- ► Expander [Steger & Wormald, 1997]

- North [North, 1995]
- ➤ SteinLib [Koch et al., 2000]





Without vs. with cycles (+zoo)

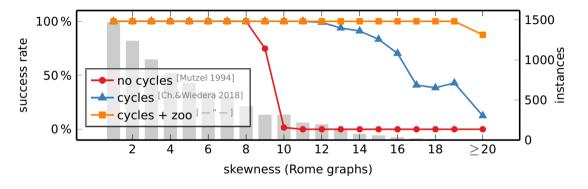
% solved of previously unsolved

Rome "100%"

North 75%

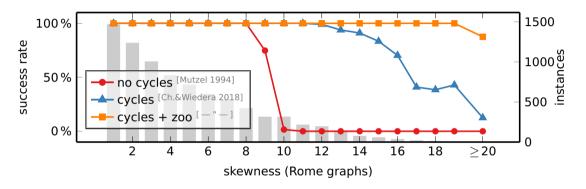
Expander 30%

SteinLib 30%



Without vs. with cycles (+zoo)
% solved of previously unsolved
speed-up (avg) on commonly solved

Rome	North	Expander	SteinLib
"100%"	75%	30%	30%
66x	34x	20x	12x



Without vs. with cycles (+zoo)	Rome	North	Expander	SteinLib
% solved of previously unsolved	"100%"	75%	30%	30%
speed-up (avg) on commonly solved	66x	34x	20x	12x
D (raise until \geq 1000 vars)	11	8	6	7

Genus

Genus $\gamma(\mathbf{G})$

Genus 21

Genus $\gamma(G)$

computing it is quite hard practice...

- ▶ \exists linear time FPT-algorithm for bounded genus $g^{\text{[Mohar 1999]}}$, but **doubly exponential** in g and no known implementation even for toroidal case
- no (reasonable) heuristics

Theorem (Euler's formula)

... is sensitive to the genus of the surface on with the drawing is: $n - m + f = 2 - 2\gamma$.

Faces in Embeddings of Higher Genus

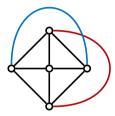
Theorem (Euler's formula)

... is sensitive to the genus of the surface on with the drawing is: $n - m + f = 2 - 2\gamma$.

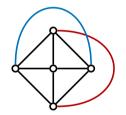
Face-Tracing-based ILP [Beyer et al. 2016]

- Minimize γ by finding an embedding (= rotation system) that **maximizes** f.
- Count faces via face tracing.

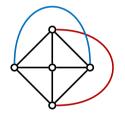
Crossing-free Non-planar Graphs

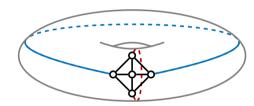


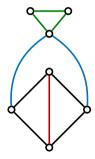
Crossing-free Non-planar Graphs

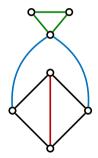


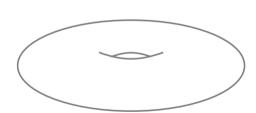
Crossing-free Non-planar Graphs

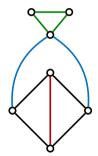


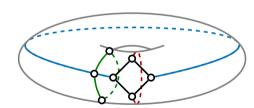




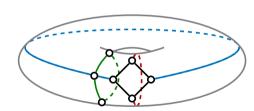




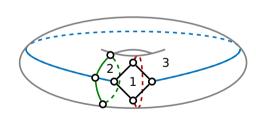












$$\max \sum_{i \in [\bar{f}]} x_i$$

Use the *i*-th face?
$$x_i \in \{0,1\}$$
 $\forall i \in [\bar{f}]$ Arc *a* on *i*-th face? $x_i^a \in \{0,1\}$ $\forall i \in [\bar{f}], a \in A$

$$\max \sum_{i \in [ar{f}]} x_i$$
 s.t. $3x_i \leq \sum_{a \in A} x_i^a$

Use the *i*-th face?
$$x_i \in \{0,1\}$$
 $\forall i \in [\bar{f}]$ Arc *a* on *i*-th face? $x_i^a \in \{0,1\}$ $\forall i \in [\bar{f}], a \in A$

 $\forall a \in A$

Face-Tracing-based Formulation

$$\max \sum_{i \in [ar{f}]} x_i$$

s.t. $3 x_i \leq \sum_{a \in A} x_i^a$
 $\sum_{i \in [ar{f}]} x_i^a = 1$

Use the *i*-th face?
$$x_i \in \{0,1\}$$
 $\forall i \in [\bar{f}]$ Arc *a* on *i*-th face? $x_i^a \in \{0,1\}$ $\forall i \in [\bar{f}], a \in A$

Use the *i*-th face?
$$x_i \in \{0,1\}$$
 $\forall i \in [\overline{f}]$ Arc *a* on *i*-th face? $x_i^a \in \{0,1\}$ $\forall i \in [\overline{f}], a \in A$

$$\max \sum_{i \in [\bar{f}]} x_i$$
s.t.
$$3x_i \leq \sum_{a \in A} x_i^a$$

$$\sum_{i \in [\bar{f}]} x_i^a = 1 \qquad \forall a \in A$$

$$\sum_{a \in \delta^+(v)} x_i^a = \sum_{a \in \delta^-(v)} x_i^a \qquad \forall i \in [\bar{f}], \ v \in V$$

$$[+ \text{ simulate face tracing via } [\text{Beyer et al. 2016}] \text{ or } [\text{Ch.\&Wiedera 2019}]]$$
Use the *i*-th face?
$$x_i \in \{0,1\} \qquad \forall i \in [\bar{f}]$$
Arc *a* on *i*-th face?
$$x_i^a \in \{0,1\} \qquad \forall i \in [\bar{f}], \ a \in A$$

Face-Tracing-based Formulation with small faces

upper bound on number of large faces: $\bar{f} := \min\{m - n, 2m/(D + 1)\}$ all **walks** of length $\leq D$: \mathcal{F}_D

s.t.
$$3x_i \leq \sum_{a \in A} x_i^a$$

$$\sum_{i \in [\bar{f}]} x_i^a = 1 \qquad \forall a \in A$$

$$\sum_{a \in \delta^+(v)} x_i^a = \sum_{a \in \delta^-(v)} x_i^a \qquad \forall i \in [\bar{f}], \ v \in V$$

$$[+ \text{ simulate face tracing via } [\text{Beyer et al. 2016}] \text{ or } [\text{Ch.\&Wiedera 2019}]]$$

Use the *i*-th large face?
$$x_i \in \{0,1\}$$
 $\forall i \in [\bar{f}]$ Arc *a* on *i*-th face? $x_i^a \in \{0,1\}$ $\forall i \in [\bar{f}], a \in A$

Use small face α ? $c_{\alpha} \in \{0,1\}$ $\forall \alpha \in \mathcal{F}_{D}$

Face-Tracing-based Formulation with small faces

upper bound on number of large faces: $\bar{f} := \min\{m - n, 2m/(D + 1)\}$ all **walks** of length $\leq D$: \mathcal{F}_D

Use small face α ? $c_{\alpha} \in \{0, 1\}$

$$\max \sum_{i \in [\bar{f}]} x_i + \sum_{\alpha \in \mathcal{F}_D} \mathbf{C}_{\alpha}$$

$$s.t. \qquad (D+1)x_i \leq \sum_{a \in A} x_i^a$$

$$\sum_{i \in [\bar{f}]} x_i^a + \sum_{\alpha \in \mathcal{F}_D: a \in \alpha} \mathbf{C}_{\alpha} = 1 \qquad \forall a \in A$$

$$\sum_{a \in \delta^+(v)} x_i^a = \sum_{a \in \delta^-(v)} x_i^a \qquad \forall i \in [\bar{f}], \ v \in V$$

$$[+ \text{ simulate face tracing via } [\text{Beyer et al. 2016}] \text{ or } [\text{Ch.\&Wiedera 2019}]]$$
Use the i -th large face? $x_i \in \{0,1\}$ $\forall i \in [\bar{f}]$

$$\text{Arc } a \text{ on } i\text{-th face?} \qquad x_i^a \in \{0,1\} \qquad \forall i \in [\bar{f}], \ a \in A$$

also needs amendment, no details

 $\forall \alpha \in \mathcal{F}_{D}$

Hierarchie and Zoo

Analogous to before:

Theorem

Hierarchie and Zoo

Analogous to before:

Theorem

The ILP formulations become strictly stronger when increasing D (but the number of variables increases drastically, as well).

Now that we have cycle variables, we can again give additional add-ons to bind them tigher with the face-tracing (but fewer options than for skewness; no details now).

No cycles. [Beyer et al. 2016]

- First (at least somewhat) practical approach, but:
- ▶ only able to solve real-world graphs with $\gamma(G) = 1$.

Experimental Evaluation

No cycles. [Beyer et al. 2016]

- First (at least somewhat) practical approach, but:
- ▶ only able to solve real-world graphs with $\gamma(G) = 1$.

With cycles (and little zoo). [Ch.&Wiedera 2019]

> solves instances with up to $\gamma(G) = 10$

Experimental Evaluation

No cycles. [Beyer et al. 2016]

- First (at least somewhat) practical approach, but:
- lacktriangle only able to solve real-world graphs with $\gamma(G)=1$.

With cycles (and little zoo). [Ch.&Wiedera 2019]

- ▶ solves instances with up to $\gamma(G) = 10$
- ▶ increase in success rate: Rome $28\% \rightarrow 82\%$

North $48\% \rightarrow 76\%$

Expander $5\% \rightarrow 24\%$

Experimental Evaluation

No cycles. [Beyer et al. 2016]

- First (at least somewhat) practical approach, but:
- ▶ only able to solve real-world graphs with $\gamma(G) = 1$.

With cycles (and little zoo). [Ch.&Wiedera 2019]

- **>** solves instances with up to $\gamma(G) = 10$
- increase in success rate: Rome $28\% \rightarrow 82\%$ North $48\% \rightarrow 76\%$
 - Expander $5\% \rightarrow 24\%$
- speed-up on commonly solved:

Rome 200x North 100x Expander 80x

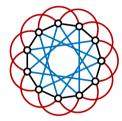
Evaluation: Genera from Literature

The cycle-based ILP can confirm results from literature (all with non-trivial dual bounds):

► Circulants with genus ≤ 2 [Conder&Grande 2015]

hardest case: $C_{11}(1, 2, 4)$

3 pages analysis, 85h \implies 180h [Beyer et al. 2016] \implies 10s



Evaluation: Genera from Literature

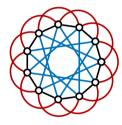
The cycle-based ILP can confirm results from literature (all with non-trivial dual bounds):

- ▶ Circulants with genus $\leq 2^{[Conder\&Grande\ 2015]}$ hardest case: $C_{11}(1, 2, 4)$ 3 pages analysis, 85h \implies 180h [Beyer et al. 2016] \implies 10s
- ► **Gray graph has genus** 7 [Marusic et al. 2005] full paper ⇒ 42 hours

Evaluation: Genera from Literature

The cycle-based ILP can confirm results from literature (all with non-trivial dual bounds):

- ▶ Circulants with genus $\leq 2^{\text{[Conder\&Grande 2015]}}$ hardest case: $C_{11}(1, 2, 4)$ 3 pages analysis, 85h \implies 180h [Beyer et al. 2016] \implies 10s
- ► **Gray graph has genus** 7 [Marusic et al. 2005] full paper ⇒ 42 hours
- $ightharpoonup \mathbb{Z}_9 imes \mathbb{Z}_3$ has genus 4 [Brin et al. 1989] full paper \implies 5 minutes



28

▶ We know for a long time that non-planarity measures are dependent on the graph's girth... but short cycles are underused in current algorithmics!

- ▶ We know for a long time that non-planarity measures are dependent on the graph's girth... but short cycles are underused in current algorithmics!
- ▶ Don't be afraid of the fact that there are exponentially many cycles in a graph! Already considering only **short** ones can help!

- ▶ We know for a long time that non-planarity measures are dependent on the graph's girth... but short cycles are underused in current algorithmics!
- Don't be afraid of the fact that there are exponentially many cycles in a graph! Already considering only **short** ones can help!
- One may also consider cycles in the dual!

- ▶ We know for a long time that non-planarity measures are dependent on the graph's girth... but short cycles are underused in current algorithmics!
- Don't be afraid of the fact that there are exponentially many cycles in a graph! Already considering only **short** ones can help!
- One may also consider cycles in the dual!
- Can something similar can be done for the crossing number?

```
The famous Crossing Lemma \operatorname{cr}(G) = \Omega(m^3/n^2) can be made girth-aware: \operatorname{cr}(G) = \Omega(m^{r+2}/n^{r+1}) for girth >2r [Pach et al. 2000]
```

- ▶ We know for a long time that non-planarity measures are dependent on the graph's girth... but short cycles are underused in current algorithmics!
- Don't be afraid of the fact that there are exponentially many cycles in a graph! Already considering only **short** ones can help!
- One may also consider cycles in the dual!
- Can something similar can be done for the crossing number?

```
The famous Crossing Lemma \operatorname{cr}(G) = \Omega(m^3/n^2) can be made girth-aware: \operatorname{cr}(G) = \Omega(m^{r+2}/n^{r+1}) for girth >2r [Pach et al. 2000]
```

Many opportunities!

- ▶ We know for a long time that non-planarity measures are dependent on the graph's girth... but short cycles are underused in current algorithmics!
- Don't be afraid of the fact that there are exponentially many cycles in a graph! Already considering only **short** ones can help!
- One may also consider cycles in the dual!
- Can something similar can be done for the crossing number?

The famous **Crossing Lemma**
$$cr(G) = \Omega(m^3/n^2)$$
 can be made girth-aware: $cr(G) = \Omega(m^{r+2}/n^{r+1})$ for girth $>2r$ [Pach et al. 2000]

Many opportunities!

Thank you and good health!

In particular also to the organizers Sascha, Steven and Philipp!