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Abstract
Let P be a finite set of points in the plane. For any spanning tree T on P , we denote by |T | the
Euclidean length of T . Let TOPT be a noncrossing spanning tree of maximum length for P . We
show how to construct a noncrossing spanning tree TALG with |TALG| ≥ δ · |TOPT| with δ = 0.512.
We also show how to improve this bound when the points lie in a thin rectangle.

1 Introduction

In this paper we address the problem of finding a longest noncrossing spanning tree. The
closely related problems of finding both a shortest (noncrossing) and a longest (possibly
crossing) spanning tree are computationally easy. The minimization version is simply the
classical minimum spanning tree problem, and the noncrossing property follows from the
triangle inequality. Similarly, the longest spanning tree can be computed in a greedy fashion.
In contrast, finding the longest noncrossing spanning tree is conjectured to be NP-hard [1].

As obtaining an efficient exact algorithm seems to be difficult, we focus on polynomial-
time approximation algorithms for the longest noncrossing spanning tree. One of the first
results is due to Alon et al. [1] who gave an 0.5-approximation. Dumitrescu and Tóth [3]
refined this algorithm and achieved an approximation factor of 0.502. In their analysis, they
compare the output of their algorithm to a longest, possibly crossing, spanning tree. With a
modification of this algorithm, Biniaz et al. improved this factor slightly to 0.503 [2]. They
also compare their result to the longest crossing spanning tree. While such a tree provides
a safe upper bound, it is not a valid solution for the problem and may be up to π/2 > 1.5
times longer than a longest noncrossing spanning tree [1].
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In this paper, we aim to design a better approximation algorithm by making use of the
noncrossing property. In this way, we obtain a significant improvement on the approximation
factor to 0.512. Our algorithm uses similar ideas and constructions as the previous algorithms.

Moreover, we can show an even better approximation for “thin” point sets. In particular,
we show that when the point set lies in a thin rectangular strip, then there is always a
noncrossing spanning tree of length at least 2/3 the length of the longest (possibly crossing)
spanning tree, and that this bound is tight.

2 Preliminaries

Let P ⊂ R2 be the given point set. Without loss of generality we assume that diam(P ) = 1.
Similar to the existing algorithms [1, 2, 3], we make extensive use of stars. The star Sp
rooted at some point p ∈ P is the tree that connects p to all other points of P (see Figure 1).

p

Figure 1 A star Sp.

The following slight generalization of Lemma 3 in Dumitrescu and Tóth [3] will be very
useful throughout the paper.

I Lemma 2.1. Let p, q ∈ P . Then max{|Sp|, |Sq|} ≥ n
2 ‖pq‖.

Proof. First we note that max{|Sp|, |Sq|} ≥ 1
2 (|Sp|+ |Sq|). The triangle inequality yields:

|Sp|+ |Sq| =
∑
r∈P
‖pr‖+ ‖rq‖ ≥

∑
r∈P
‖pq‖ = n · ‖pq‖. J

I Observation 2.2. Let ab be a longest edge of TOPT. As ‖ab‖ ≤ 1 by assumption, we have

|TOPT| ≤ ‖ab‖(n− 1) < ‖ab‖n ≤ n.

3 The 0.512-approximation

We show how to compute a spanning tree TALG with |TALG| ≥ δ · |TOPT| = 0.512 · |TOPT|. Our
approach is the following: we guess a longest edge ab of TOPT. If ‖ab‖ < d := 1

2δ then it is
straightforward to give a good approximation, as shown below in Lemma 3.1. Otherwise, we
describe six different noncrossing spanning trees for the set P and show that at least one of
them gives an approximation ratio of at least δ.

We use the noncrossing property of the optimal tree TOPT in Lemma 3.2, which also is
the bottleneck case in our construction.

From now on, we assume that ab is a longest edge in TOPT and that p, q is a pair of
vertices that realizes the diameter, that is, ‖pq‖ = 1 ≥ ‖ab‖.

I Lemma 3.1. Let TDIAM the longer of Sp and Sq. If ‖ab‖ < d, then |TDIAM| ≥ δ · |TOPT|.
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Proof. From Lemma 2.1 it follows that max{|Sp|, |Sq|} ≥ n
2 . As we observed above, we have

|TOPT| ≤ ‖ab‖n < dn. Thus, we get an approximation ratio of

|TDIAM|
|TOPT|

≥ n/2
dn

= 1
2d = δ. J

Now we only consider the case where ‖ab‖ ≥ d. Additionally for ease of presentation, we
will assume that a = (0, 0) and b = (‖ab‖, 0) without loss of generality.

First, we define F = D(a, 1) ∩D(b, 1) to be the region with distance at most 1 from a

and b. Since the diameter of the point set is 1, we can be sure that P ⊂ F . Let α̂ be a
constant to be determined later. Set γ = 2·δ−1+α̂

α̂ and let E = {x ∈ R2 | ‖ax‖+ ‖xb‖ ≤ γ}.
Lastly, we subdivide E ∩ F into three vertical strips. We fix a parameter ω = 0.1. Let

`1, `2 be the vertical lines at ω‖ab‖ and (1−ω)‖ab‖, respectively. Let L be the part of E ∩F
to the left of `1, let M be the part between `1 and `2, and let R be the part to the right of
`2. See Figure 2 for a schematic.

E

DaDb
`1 `2

L M R
a b

Figure 2 Subdivision of the plane into regions with respect to a longest edge ab of TOPT.

We denote by α the fraction of points in F \ E, and by βL, βM and βR the fraction of
points in L,M and R respectively. Note that α+ βL + βM + βR = 1. Now we are equipped
to consider the next two cases:

I Lemma 3.2. Assume

βM ≥ β̂ = δ − 0.5
δ ·
(

1−
√

1− d2(ω − ω2)
)

and recall that TDIAM is the larger of the stars at the diameter. Then |TDIAM| ≥ δ · |TOPT|.

Proof. The main insight in this case is that we can find a tighter bound on TOPT by exploiting
that ab is an edge of TOPT and so no other edge of TOPT can cross ab. Let M be the region of
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F between `1 and `2 and above ab. Refer to Figure 3 for illustration. We will argue that
every edge with an endpoint in M has length at most diam(M).

Let c1 = `1∩∂(E)∩M and c2 = `1∩ab. Disregarding symmetry, it follows from convexity
that the longest possible edge starting inM has either c1 or c2 as an endpoint. If the endpoint
is c1, then the edge may reach below the line through ab. A maximum length edge starting
from c1 ends at the intersection z of the line through c1 and b with the boundary of F . If
the endpoint is c2, the length of this edge is diam(M). Both cases are shown in Figure 3.

∂Eba

c1

c2 z
M

||c1z||

diam(M)

M

Figure 3 The starting points c1 and c2 of longest edges in TOPT.

Now we consider how these lengths change for d ≤ ‖ab‖ ≤ 1. By basic trigonometry, we
can give expressions for diam(M) and ‖c1z‖ that only depend on ‖ab‖:

diam(M) =
√

1− ‖ab‖2(ω − ω2)

‖c1b‖ =

√√√√((1− ω)‖ab‖)2 +
(√

γ2 − ‖ab‖2 ·
√

(γ/2)2 − (‖ab‖/2− ω‖ab‖)2

γ

)2

‖c1z‖ ≤ ‖c1b‖+ ‖c1b‖(1− ‖ab‖)
(1− ω)‖ab‖

The last bound is tight for ‖ab‖ = 1.
When considering diam(M) and ‖c1z‖ as functions of ‖ab‖, by considering the plots

(Figure 4) it follows that√
1− d2(ω − ω2) = diam(M)d ≥ diam(M) ≥ diam(M)1 and (1)

‖c1z‖d ≥ ‖c1z‖ ≥ ‖c1z‖1 ,

where the subscripted versions denote the values at ‖ab‖ = d and ‖ab‖ = 1, respectively.
With the chosen constants we get diam(M)1 ≥ ‖c1z‖d (again refer to Figure 4). Thus,

diam(M) is a valid upper bound for the length of the edge starting in M .
Using (1) and the definition of β̂ we can bound the size of TOPT and the approximation

ratio:

|TOPT| ≤ n · (βM · diam(M) + (1− βM )) ≤ n · (βM · diam(M)d + (1− βM ))
= n · (1− βM · (1− diam(M)d))
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Figure 4 Plot of diam(M) and ‖c1z‖ over the length of ab. The vertical lines are at d and 1.

|TDIAM|
|TOPT|

≥ 0.5n
(1− βM · (1− diam(M)d))n

≥ 0.5
1− β̂ · (1− diam(M)d)

= δ. J

In the next case, we assume that α ≥ α̂ and also show that there is a good star.

I Lemma 3.3. If

α ≥ α̂ = 1− 2δ + β̂(1− ω)
2− 3ω ,

then max{|Sa|, |Sb|} ≥ δ · |TOPT|.

Proof. As before we bound max{|Sa|, |Sb|} ≥ 1
2 (|Sa|+ |Sb|). This time we get:

|Sa|+ |Sb| ≥ n(α · γ + (1− α)‖ab‖)
= n(‖ab‖+ α(γ − ‖ab‖))
≥ n · (‖ab‖+ α(γ − 1)).

With Observation 2.2 (|TOPT| ≤ ‖ab‖n) we get

max{|Sa|, |Sb|}
|TOPT|

≥ n(‖ab‖+ α(γ − 1))
2‖ab‖n ≥ 1

2 + α

2 (γ − 1) ≥ 1
2 + α̂

2 (γ − 1) = δ. J

Last but not least we consider the case where α and βM are both small. Intuitively, this
means that almost all points are located left or right in E.

I Lemma 3.4. If α < α̂ and βM < β̂, then there is a tree which gives a δ-approximation.

Proof. In this case we do not use a star but trees Bab, Bba of diameter at most five. We will
describe the structure Bab with regard to a. The structure Bba with regard to b is symmetric.
See Figure 5 for an example of the construction.

We start by connecting all points in R to a (blue edges). This gives a star with length at
least βR(1− ω)‖ab‖. The edges of this star subdivide L into wedges. We define the upper
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wedge to be the region above both the highest edge and the x-axis. The lowest wedge is
defined accordingly. For each such wedge W (except the last) we take the lower point of R
defining W and connect it to all points in L∩W . The lowest point in R also connects to the
points in the lowest wedge of L (green edges). Each of these new edges has weight at least
(1− 2ω)‖ab‖.

Now we connect the points in M . The edges of the tree so far subdivide M into
quadrilateral regions, which are defined by two edges of the tree. We again want to connect
the vertices in such a subregion in a star like fashion. From the interior of such a subregion
at least one boundary edge between a point from L and a point from R is fully visible.
For every subregion we pick the better of the two stars centered at the two endpoints of
such an edge (red edges). By Lemma 2.1 this yields a total additional weight of at least
0.5 · βM (1− 2ω)‖ab‖.

Recall that α+ βL + βM + βR = 1. By bounding the maximum by the average, we get

max{|Bab|, |Bba|} ≥
n‖ab‖

2 ((βL + βR)(2− 3ω) + βM (1− 2ω))

= n‖ab‖
2 ((1− α)(2− 3ω)− βM (1− ω))

≥ n‖ab‖
2 ((1− α̂)(2− 3ω)− β̂(1− ω)).

max{|Bab|, |Bba|}
|TOPT|

≥
n‖ab‖

2 ((1− α̂)(2− 3ω)− β̂(1− ω))
‖ab‖n

= δ. J

I Theorem 3.5. A δ = 0.512-approximation for the longest noncrossing Euclidean spanning
tree can be computed in polynomial time.

Proof. We compute Sp for each p ∈ P . Additionally, for each pair a, b with ‖ab‖ > d = 1/(2δ),
we compute Bab and Bba. Let TALG be the largest of these structures.

By the exhaustive case distinction in Lemmas 3.1 to 3.4, for the pair a, b which leads to
the longest edge in TOPT this leads to a δ = 0.512-approximation. J

Eb

≥ βL(1− 2ω)||ab||

a

ω||ab|| (1− 2ω)||ab||

(1− ω)||ab||

L
M

R

≥ 0.5βM (1− 2ω)||ab||

≥ βR(1− ω)||ab||

Figure 5 Structure Bab. The edges of each stage of the construction have a different color.
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4 Improved approximation factor for thin point sets

In this section we present stronger bounds for thin point sets. Given σ > 0, we say that P is
(at most) σ-thick if there exists a diameter of P such that all points in P have distance at
most σ from this diameter. Moreover, let TCR be the longest (possibly crossing) tree on P .

I Theorem 4.1. There is a polynomial-time algorithm that, given a σ-thick point set P with
σ ≤ 1

3 , constructs a planar spanning tree TALG with

|TALG| ≥ f(σ) · |TCR| ≥ f(σ) · |TOPT|,

where f(σ) is given by

f(σ) = 2
3 ·

√
1 + 4σ2

5− 4
√

1− σ2 + 4σ2
.

Inspecting the function f(σ), we get, e.g., f(0.3) ≥ 0.516 and f(0.1) ≥ 0.636. Also, in the
limit d→ 0 we get f(σ)→ 2/3. The constant 2/3 here is tight: There exist perturbations of
point sets lying on a segment for which the longest planar trees have length arbitrarily close
to 2/3 of the length of the longest (possibly crossing) tree (see Figure 6).

TOPT Tcr

Figure 6 A thin convex set consisting of n+1 points with equally spaced x-coordinates 0, 1, . . . , n.
For large n, the length of any longest planar tree is 1 + 2 + · · ·+ n ≈ 1

2n
2, whereas the length of the

longest (possibly crossing) tree is roughly 2 · (n/2 + · · ·+ n) ≈ 3
4n

2. Thus, as n → ∞, we obtain
|TOPT|/|TCR| → 2

3 .

Proof. [of Theorem 4.1] Fix P and σ ≤ 1
3 . Denote the relevant diameter of P by pq, and

without loss of generality place it as p = (0, 0), q = (1, 0). Divide P \ {p, q} by a vertical line
` into a set Pp of points closer to p and a set Pq of points closer to q (see Figure 7(a)).

p q

2σ

p q

2σ

x

c

x′
x?

` (b)(a)

Figure 7 (a) We star the points in the right half from p (blue) and then either star the points in
the left half from p too (yielding Sp, blue and green) or connect them to points in the right half
(yielding Tpq, blue and red). (b) With the shown notation we have f(σ) = 2‖x?q‖/(3‖x?c‖).

We construct a tree Tpq as follows: Connect p to all points in Pq ∪ {q}. This splits Pp
into wedges with apex p. For each wedge, connect all its points in Pp to the endpoint of its
upper side in Pq (use the lower side for the uppermost wedge). Note that Tpq is planar. We
construct Tqp in a symmetric fashion and set TALG to be the longest of Tpq, Tqp, Sp, Sq.

Next we argue that TALG satisfies |TALG| ≥ f(σ) · |TCR|. It suffices to show

|Sp|+ 2|Tpq|+ 2|Tqp|+ |Sq|
6 ≥ f(σ) · |TCR|.

EuroCG’20
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Note that all four trees on the left-hand side include edge pq and since pq is a diameter, we
can without loss of generality assume that TCR contains it too. Direct all other edges of those
five trees towards pq. Fix a point x ∈ P \ {p, q} and let xCR, xpq, xqp be the other endpoints
of the edges pointing from x in TCR, Tpq, Tqp, respectively. (Note that in Sp all edges point
towards p, similarly for Sq and q.) It suffices to prove that

‖xp‖+ 2‖xxpq‖+ 2‖xxqp‖+ ‖xq‖
6 · ‖xxCR‖

≥ f(σ)

Without loss of generality, suppose that x belongs to Pp and lies above pq. Let x′ be the
reflection of x about ` and c the furthest point from x within the intersection of unit disks
centered at p and q. Using the triangle inequality in 4pxx′, the left-hand side is at least

‖xp‖+ ‖xx′‖+ 2‖xq‖+ ‖xq‖
6‖xc‖ ≥ ‖px

′‖+ 3‖xq‖
6‖xc‖ = 2

3 ·
‖xq‖
‖xc‖

.

Since σ ≤ 1
3 , the ratio ‖xq‖/‖xc‖ is minimized when x = x? lies on ` with distance σ from

pq (see Figure 7(b)). Since ‖pc‖ = 1, using the Pythagorean theorem, we easily compute

‖x?c‖ =
√(√

1− σ2 − 1/2
)2

+ (2σ)2 and ‖x?q‖ =
√

(1/2)2 + σ2,

which matches the desired expression f(σ). J

5 Conclusion

We showed that it is possible to significantly increase the approximation factor from 0.503 to
0.512 in the general case and even towards 2/3, when the point set is σ-thick for σ → 0.

The improvement in the approximation factor relies in one case on the planarity of the
optimum tree. Without further analysis this does not yield a better approximation factor
with regard to the longest crossing tree.

In future work, we aim to further reduce the running time and the approximation factor.
For the latter we plan to build on the fact that TOPT is noncrossing, which can lead to further
advances. The last open problem would be to settle the question of NP-hardness.
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