
Labeling Nonograms
Maarten Löffler1 and Martin Nöllenburg2

1 Department of Computing and Information Sciences, Utrecht University, the
Netherlands
m.loffler@uu.nl

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

Abstract
Slanted and curved nonograms are a new type of picture puzzles introduced by van de Kerkhof
et al. (2019). They consist of an arrangement of lines or curves within a frame B, where some of
the cells need to be colored in order to obtain the solution picture. Up to two clues are attached
as numeric labels to each line on either side of B. In this paper we study the algorithmic problem
of optimizing or deciding the existence of a placement of the given clue labels to a nonogram. We
provide polynomial-time algorithms for restricted cases and prove NP-completeness in general.

1 Introduction

1 1

2 2

5

2 21 1

25

13

26

11 5

8

2 4

4

1

1

1

2

3

6 7

3

6

4

4

1

3 2

3

1 3

2

0

15

1

1 1 1

4

1
1
6
4

6
2

1
5

1
1

1
4

3

5

1
7

3 2
2

3
4

4 0
2
66

0

10

2
15

3
6

1
2
2
1

2
2

2
6

1
1

4

7

2
2

2

2

4

3
10

1

63
105

67

2

13

7

2
1

5
32

52
4

6
52 6

51
1

5
3 2

8 2

2 5 2

6

3
1

Figure 1 (left) A classic nonogram in solved state. (middle) A slanted nonogram. On the left,
we show all possible labels, creating a large amount of overlap. On the right, some
possible ways to resolve overlapping labels: extend labels from the same port, extend
parallel labels, draw both labels of the same line at the same side, or allow crossings
outside the puzzle frame. (right) A curved nonogram, showing a subset of labels
(some extended to avoid overlap) which still results in a unique puzzle.

Nonograms, also known as Japanese puzzles, paint-by-numbers, or griddlers, are a popular
puzzle type where one is given an empty grid and a set of clues on which grid cells need
to be colored, typically resulting in a picture (see Figure 1 (left)). The difficulty of solving
nonograms has been studied [2, 6], and remains an active topic of discussion [7].

Van de Kerkhof et al. introduced curved nonograms, a variant in which the puzzle is no
longer played on a grid but on any arrangement of lines or even curves [11]. See also [8, 10, 12].
Of special interested are slanted nonograms [10], in which all curves are straight lines, possibly
limited to a fixed number k of orientations (also known as sloped nonograms or, in the case
of k = 4, tangram nonograms). Figure 1 illustrates the different variants.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



71:2 Labeling Nonograms

Van de Kerkhof et al. describe heuristics to generate puzzles, but they leave open the
question of how to attach labels with clues. This is a non-trivial task, as labels could be
placed in several valid locations. Each curve enters and leaves the picture frame (bold
black rectangle in the figures) once, and the information about which incident cells of the
arrangement should be filled is summarized in two clues, one on each side of the curve (we
refer the reader to [11] for a full description of the rules). This gives two logical potential
locations for each clue. Furthermore, it may be possible to extend curves outside the frame
to make room for the clues, and not all clues need to be given for the puzzle to be solvable.

How to best label curved nonograms is an interesting open problem; it is most apparent
in the case of slanted nonograms, since the rigid structure limits the possible label locations.

Problem statement. In the nonogram labeling problem we are given the following input:

(i) a nonogram frame, which is a simple convex polygon B;
(ii) a set L of nonogram lines passing through B, each l ∈ L defining a pair (pl, ql) of ports

at the intersection points of l with B; and
(iii) a pair of non-negative integers (al, bl) for each l ∈ L, where al defines the width of the

label above l and bl defines the width of the label below l.

As output, we ask for a labeling of L, such that for each label ` of nonogram line l ∈ L:

(i) ` is assigned to one of the two ports pl or ql;
(ii) ` is assigned an extension length d (which could be 0);
(iii) we draw a leader of length d from its assigned port pl or ql aligned with the slope of l,

and the label itself as an al × 1 (or bl × 1) rectangle, also aligned with the slope of l, and
anchored at the end of its leader.

A labeling is valid if no two labels overlap each other, no label overlaps an extension
leader of another label, and no label intersects the frame. In addition to being valid, we
identify three further desired properties.

Crossing-free. We disallow intersections between leaders.
Balanced. We require the two labels of a line l ∈ L to be assigned to opposite ports.
Compact. We require all leaders to be of length 0, or the shortest length necessary to
avoid an intersection between the label and the frame.

We would like to find a crossing-free compact balanced labeling, but this may not exist
(see, e.g., Figure 1 (middle)). We study the computational problem of testing the existence of
a solution, or, for some variants, minimizing the total leader length, for several combinations
of properties. In some cases, we also restrict the number k of distinct slopes of lines in L.

Results. First, we observe that a balanced solution which is not crossing-free and not
compact always exists: we simply extend the leaders sufficiently far. Since this does not
give a satisfactory result, we focus on more restricted variants in the remainder.

In Section 2.1, we show that testing whether a compact solution exists is possible in
polynomial time. In Section 2.2, we show that a non-crossing balanced solution of minimal
total leader length can be computed in polynomial time, if the assignment of labels to ports
is given and k = 2. Finally, in Section 3, we show that the problem of testing whether a
crossing-free solution exists is NP-complete, even when k = 2.



M. Löffler and M. Nöllenburg 71:3

Related work. Labeling nonograms is closely related to the boundary labeling problem in
information visualization, where a set of point features in a rectangular frame B is to be
annotated with labels (names or short descriptions) that are placed outside B and connected
to their features with straight or polygonal leaders [4, 5]. Yet nonogram labeling is different
in several respects: Since the curves/lines in nonograms intersect the frame B in two fixed
locations, the possible positions for the clues are very restricted, while in boundary labeling
the label can basically be placed anywhere along B as long as the resulting leader lines are
valid. Labels in boundary labeling are typically axis-aligned, but the clues in nonograms are
aligned with their respective nonogram line or curve. Finally, by extending the nonogram
curves beyond the frame to gain extra space, we obtain a new degree of freedom that has
been rarely used in boundary labeling, with some exceptions of multi-row labeling [3, 9].

2 Algorithms

2.1 Compact labeling
In our first result, we assume that each label ` must be placed as close to the frame B as
possible, i.e., ` must touch B. This leaves only one degree of freedom for each label ` of a
nonogram line l, namely whether it is placed at port pl or ql.

I Theorem 2.1. Given a nonogram labeling instance, we can decide in polynomial time
whether a compact labeling exists. This is true regardless of whether we require it to be balanced.

Proof. We derive a 2-SAT formula ϕ that has a satisfying variable assignment if and only if
a valid labeling without leader extensions exists. For each nonogram line l ∈ L we define two
variables xa

l and xb
l , where xa

l = 1 (xa
l = 0) indicates that the label above l is assigned to the

port pl (ql) of l. Similarly, xb
l = 1 (xb

l = 0) indicates that the label below l is assigned to pl

(ql). It is clear that a variable assignment is in bijection to a port assignment of the labels
and it remains to add some clauses to ϕ to model the valid labelings. For each overlap of a
label of a line l with a label of another line l′ (we call that a conflict), we add a clause that
prevents both labels to be selected simultaneously. As an example consider the case that
the label above l and the label below l′ intersect if both assigned to their ports pl and pl′ .
Then we add the clause ¬xa

l ∨ ¬xb
l′ . Now a satisfying assignment for ϕ corresponds to an

assignment of each label to a port of its nonogram line such that no two labels intersect each
other; otherwise some clause would not be satisfied. To ensure that the labeling is balanced,
we would add the additional clauses xa

l ∨ xb
l and ¬xa

l ∨ ¬xb
l for each l ∈ L.

Solving the 2-SAT instance takes linear time [1] in the size of ϕ, where the number of
clauses of ϕ is linear in the number of nonogram lines and the number of label conflicts. J

We remark that this 2-SAT model is independent of the type of nonogram lines (or curves)
and the shape of B. It depends only on the set of conflicting candidate label positions.

2.2 Fixed side assignment
Our second algorithm allows extensible leaders, but disallows leader intersections and assumes
that a balanced assignment of the labels to the ports of each nonogram line is given. We
further assume that the nonogram lines have slopes ±1 and that the frame B is a rectangle.

I Lemma 2.2. For a nonogram labeling instance with n lines and a balanced fixed side
assignment for each label we can discretize the relevant extension lengths of each label to
O(n2) values such that we can find a labeling of minimum total extension length among this
set of extension lengths (if the instance has a solution at all).

EuroCG’20



71:4 Labeling Nonograms

(a) (b) (c) (d) (e)

` `
`

`
`

Figure 2 Possible cases of extension lengths for label ` in the proof of Lemma 2.2.

Proof. In a minimum-length labeling, every label ` of a nonogram line l should be shifted as
close to B as possible without intersecting another label. Hence it either touches B and the
extension length is 0 or 1 (depending on which side of l is labeled), or it touches another label
`′ blocking it from moving closer to B. This blocking label `′ can belong to a line of different
slope, meaning that the extension length of ` is given by the intersection point of the two
nonogram lines (possibly +1), see Figure 2(a). There are O(n) such intersection points for
`. Or, the lines of ` and `′ are parallel and of distance at most 2. If the chain of blocking
relations comprises only parallel lines and all of them have the labels on the same side
(Figure 2(b)), then we get a single extension length for `. If the parallel lines come in a group
of right-flipped labels followed by a group of left-flipped labels as in Figures 2(d–e) then any
prefix of the sequence of left-flipped labels can add to the extension length of `, which again
yields O(n) possible extension lengths. Finally, ` may be blocked by some chain of parallel
labels, the last of which is blocked by a label of an orthogonal line (Figure 2(c)). Considering
all combinations this last case can give rise to O(n2) different extension lengths. J

I Theorem 2.3. Given a nonogram labeling instance with n lines and a fixed side assignment
for each label, we can decide in O(n9) time, whether an assignment of an extension length to
each label exists such that the resulting labeling is valid. If this is the case we can find one of
minimum total extension length.

Proof. (Sketch) The idea of the algorithm is to use dynamic programming. Consider an
edge e of B and all the lines crossing e. From Lemma 2.2 we know that it is sufficient to
consider at most O(n2) many extension lengths for each label. We define a subinstance of
the labeling problem for edge e by selecting two boundary lines l1 and l2 together with an
extension length for each of the two labels. This defines O(n6) possible subinstances. Any
line with a port between those of l1 and l2 is restricted to stay in the region bounded by
l1, l2, and a horizontal line through the topmost point of the shorter of the two lines l1, l2,
see Figure 3. To solve such an instance recursively, we optimize over all lines l̂ contained
in the instance and all admissible and intersection-free extension lengths for that label and
recurse into the two subinstances defined by l1 and l̂ as well as l̂ and l2 (see the two shaded
subinstances defined by l4 between l3 and l2 in Figure 3). The optimization step takes O(n3)
time for each subinstance. We initialize the recursion with two outward pointing dummy
lines and repeat the process for all sides of B. This yields an overall O(n9) running time. J

3 Hardness

The problem of testing whether a valid labeling exists, in the setting where we disallow
crossing leaders, but are allowed to choose at which port each label is placed and are allowed
to extend the leaders to any desired length, is NP-hard. We will construct an instance with
a rectangular frame which only has lines of slopes 1 and −1. We will reduce from 3-SAT.



M. Löffler and M. Nöllenburg 71:5

l1
l2l3

l4

Figure 3 Illustration of the dynamic programming recursion.

Variables. The bulk of the construction consists of cross gadgets. A cross gadget consists of
two short labels intersecting each other at 90◦ angles.1 Figure 4 shows a single cross gadget.

Figure 4 A variable gadget (cross gadget) and its three possible valid solutions.

Note that for a cross gadget it is not relevant on which side of the lines the labels are, and
that although labels can be extended, doing so does not change the combinatorial choices of
which combinations of sides are possible.

A cross gadget has three possible valid states, and we wish to use them to represent
variables, which have two valid states. Furthermore, we would like to enforce multiple cross
gadgets to represent the same variable. We can achieve both of these properties by connecting
several cross gadgets into a variable loop. Figure 5 illustrates a variable loop.

Figure 5 A single variable loop.

By connecting the cross gadgets into a loop, we ensure that only two valid solutions
remain for each cross gadget. Note that we can increase the number of occurrences of a cross
of the same variable by making the frame wider, and we can increase the distance between
consecutive crosses by making the frame higher. We can embed multiple independent loops
next to each other, as illustrated in Figure 6.

In the construction, we will also need to place some labels which cannot be removed. We
create a special variable loop, for which one of the states is disabled by a crossing between a
positive and a negative label. We achieve this by making them longer (see Figure 7). Note
that forced (black) labels are only forced to be on a particular side of B; they can still be
extended, but we will use them in a way where extending black labels is never useful.

1 Here, we are only using one side of each line l ∈ L, which corresponds to a setting where not all clues
are present in the puzzle. The contruction can easily be adapted to the case where both labels are
present, by placing them at the same side (i.e. not balanced).

EuroCG’20



71:6 Labeling Nonograms

Figure 6 Multiple variable loops.

Figure 7 A variable loop where one state is impossible; solid black labels are forced.

Clauses. Next, a clause gadget essentially consists of a single clause label which is forced
to be at a specific port, but can be extended. Depending on how far it is extended, it will
intersect different variable labels. The clause label is restricted to only three essentially
different positions by two fixed labels. Figure 8 illustrates a clause gadget.

Figure 8 Clause gadget and three possible valid solutions.

For a clause label, it is important on which side of the line the label is placed: it must be
faced towards the variable labels. We need to connect the clause gadget to the correct literals
of the three variables involved in the clause, as well as to the fixed loop on two sides. For this,
we need to make some very long labels. Figure 9 illustrates how a clause gadget is connected,
showing only the relevant labels. Note that the variables may need to be connected to two
different groups of cross gadgets in the variable loops.

The global picture. Globally, we embed the different clauses horizontally next to each
other. Each clause, including its connections, covers a horizontal distance of a constant
number of variable zig-zags. These connections are placed between the variable loops, so
they do not interfere. Figure 10 shows how the first clause and the beginning of the second
clause could look globally, without hiding any labels.



M. Löffler and M. Nöllenburg 71:7

Figure 9 Connecting a clause gadget to the correct literals for clause ¬purple ∨ red ∨ ¬orange.

The total horizontal distance covered will be O(nm). The vertical distance is O(n).

clause 1 clause 2

Figure 10 The global picture.

I Theorem 3.1. Given a nonogram instance without side assignment and extensible leaders,
it is NP-complete to decide whether a valid labeling exists.

4 Future work

Several interesting questions in nonogram labeling remain open. Our hardness reduction
uses long labels whose lengths depend on the size of the 3-SAT instance. In contrast, most
labels in real-world nonograms are 1 × c rectangles for small constant values of c. This
raises the question of investigating the computational complexity of nonogram labeling for
bounded label lengths. A second question follows from Theorem 2.1. If a compact balanced
labeling does not exist, but a non-balanced one does, then a natural optimization problem is
to maximize the number of balanced pairs of labels.

References
1 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for

testing the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979. doi:10.1016/0020-0190(79)90002-4.

EuroCG’20

http://dx.doi.org/10.1016/0020-0190(79)90002-4


71:8 Labeling Nonograms

2 Kees Joost Batenburg and Walter A. Kosters. On the difficulty of nonograms. ICGA
Journal, 35(4):195–205, 2012. doi:10.3233/ICG-2012-35402.

3 Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis. Multi-
stack boundary labeling problems. In S. Arun-Kumar and Naveen Garg, editors, Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS’06), volume
4337 of LNCS, pages 81–92. Springer, 2006. doi:10.1007/11944836_10.

4 Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. Boundary
labeling: Models and efficient algorithms for rectangular maps. Computational Geometry
Theory and Applications, 36(3):215–236, 2007. doi:10.1016/j.comgeo.2006.05.003.

5 Michael A. Bekos, Benjamin Niedermann, and Martin Nöllenburg. External labeling
techniques: A taxonomy and survey. Computer Graphics Forum, 38(3):833–860, 2019.
doi:10.1111/cgf.13729.

6 Daniel Berend, Dolev Pomeranz, Ronen Rabani, and Ben Raziel. Nonograms: Com-
binatorial questions and algorithms. Discrete Applied Mathematics, 169:30–42, 2014.
doi:10.1016/j.dam.2014.01.004.

7 Yen-Chi Chen and Shun-Shii Lin. A fast nonogram solver that won the TAAI 2017 and
ICGA 2018 tournaments. ICGA Journal, 41(1):2–14, 2019. doi:10.3233/ICG-190097.

8 Tim K. de Jong. The concept and automatic generation of the curved nonogram puzzle.
Master’s thesis, Utrecht University, 2016. URL: https://dspace.library.uu.nl/handle/
1874/337632.

9 Andreas Gemsa, Jan-Henrik Haunert, and Martin Nöllenburg. Multi-row boundary-labeling
algorithms for panorama images. ACM Trans. Spatial Algorithms and Systems, 1(1):1:1–
1:30, 2015. doi:10.1145/2794299.

10 Raphael J. Parment. Generation of sloped nonograms. Master’s thesis, Utrecht University,
2015. URL: https://dspace.library.uu.nl/handle/1874/323196.

11 Mees van de Kerkhof, Tim de Jong, Raphael Parment, Maarten Löffler, Amir Vaxman,
and Marc J. van Kreveld. Design and automated generation of japanese picture puzzles.
Comput. Graph. Forum, 38(2):343–353, 2019. doi:10.1111/cgf.13642.

12 Mees A. van de Kerkhof. Improved automatic generation of curved nonograms. Master’s
thesis, Utrecht University, 2017. URL: https://dspace.library.uu.nl/handle/1874/
357864.

http://dx.doi.org/10.3233/ICG-2012-35402
http://dx.doi.org/10.1007/11944836_10
http://dx.doi.org/10.1016/j.comgeo.2006.05.003
http://dx.doi.org/10.1111/cgf.13729
http://dx.doi.org/10.1016/j.dam.2014.01.004
http://dx.doi.org/10.3233/ICG-190097
https://dspace.library.uu.nl/handle/1874/337632
https://dspace.library.uu.nl/handle/1874/337632
http://dx.doi.org/10.1145/2794299
https://dspace.library.uu.nl/handle/1874/323196
http://dx.doi.org/10.1111/cgf.13642
https://dspace.library.uu.nl/handle/1874/357864
https://dspace.library.uu.nl/handle/1874/357864

	Introduction
	Algorithms
	Compact labeling
	Fixed side assignment

	Hardness
	Future work

