The Complexity of Finding Tangles

Oksana Firman ${ }^{1}$, Stefan Felsner ${ }^{2}$, Philipp Kindermann ${ }^{1}$, Alexander Ravsky ${ }^{3}$, Alexander Wolff ${ }^{1}$, and Johannes Zink ${ }^{1}$

1 Universität Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

2 TU Berlin, Germany felsner@math.tu-berlin.de
3 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

Abstract

We study the following combinatorial problem. Given a set of n y-monotone curves, which we call wires, a tangle determines the order of the wires on a number of horizontal layers such that the orders of the wires on any two consecutive layers differ only in swaps of neighboring wires. Given a multiset L of swaps (that is, unordered pairs of wires) and an initial order of the wires, a tangle realizes L if each pair of wires changes its order exactly as many times as specified by L. Finding a tangle that realizes a given multiset of swaps and uses the least number of layers is known to be NP-hard. We show that it is even NP-hard to decide if a realizing tangle exists.

1 Introduction

The subject of this paper is the visualization of so-called chaotic attractors, which occur in chaotic dynamic systems. Such systems are considered in physics, celestial mechanics, electronics, fractals theory, chemistry, biology, genetics, and population dynamics. Birman and Williams [3] were the first to mention tangles as a way to describe the topological structure of chaotic attractors. They investigated how the orbits of attractors are knotted. Later Mindlin et al. [6] showed how to characterize attractors using integer matrices that contain numbers of swaps between the orbits.

Olszewski et al. [7] studied computational aspects of visualizing chaotic attractors. In the framework of their paper, one is given a set of y-monotone curves called wires that hang off a horizontal line in a fixed order, and a multiset of swaps between the wires (called list). A tangle then is a visualization of these swaps, i.e., a sequence of permutations of the wires such that consecutive permutations differ only in swaps of neighboring wires (but disjoint swaps can be done simultaneously). For examples of lists and tangles realizing them, see Figs. 1 and 2. The list L in Fig. 1 admits a tangle realizing it. We call such a list feasible. The list L^{\prime}, in contrast, is not feasible. In Fig. 2, the list L_{n} is described by an $(n \times n)$-matrix. The gray horizontal bars correspond to the permutations (or layers). Olszewski et al. gave

$$
\begin{aligned}
L & =\{(1,2),(1,3)\} \\
L^{\prime} & =\left\{(1,2)_{2},(1,3)\right\}
\end{aligned}
$$

Figure 1 Lists L and L^{\prime} for three wires (left). The list L is feasible (a tangle realizing L is to the right), whereas L^{\prime}, which has two copies of the swap $(1,2)$, is infeasible.

$$
L_{n}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & \ldots & 1 & 0 & 2 \\
1 & 0 & 1 & \ldots & 1 & 2 & 0 \\
1 & 1 & 0 & \ldots & 1 & 0 & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \ldots & 0 & \mathbf{0} & \mathbf{2} \\
0 & 2 & 0 & \ldots & \mathbf{0} & 0 & n-1 \\
2 & 0 & 2 & \ldots & \mathbf{2} & n-1 & 0
\end{array}\right)
$$

(The bold zeros and twos must be exchanged if n is even.)

Figure 2 A list L_{n} for n wires (left) and a tangle realizing L_{n} (right). Entry (i, j) of L_{n} defines how often wires i and j must swap in the tangle. Here, $n=7$.
an exponential-time algorithm for minimizing the height of a tangle, that is, the number of layers. They tested their algorithm on a benchmark set.

Later, we [5] showed that in fact tangle-height minimization is NP-hard. Our proof was by reduction from 3-Partition. We also presented an (exponential-time) algorithm for the problem. Using an extended benchmark set, we showed that in almost all cases our algorithm is faster than the algorithm of Olszewski et al.

Sado and Igarashi [8] used the same optimization criterion for tangles, given only the final permutation. They used odd-even sort, a parallel variant of bubble sort, to compute tangles with at most one layer more than the minimum. Wang [10] showed that there is always a height-optimal tangle where no swap occurs more than once. Bereg et al. [1, 2] considered a similar problem. Given a final permutation, they showed how to minimize the number of bends or moves (which are maximal "diagonal" segments of the wires).

In this paper we strengthen our previous results and show that it is even NP-hard to test, given a multiset of swaps and a start permutation of the wires, whether there is any tangle that realizes the given swaps. We call this problem List-Feasibility.

2 Complexity

We show that List-Feasibility is NP-hard by reducing from Positive NAE 3-SAT Diff, a variant of Not-All-Equal 3-SAT. Recall that in Not-All-Equal 3-SAT one is given a conjunctive normal form with three literals per clause and the task is to decide whether there exists a variable assignment such that in no clause all three literals have the same truth value. By Schaefer's dichotomy theorem [9], Not-All-Equal 3-SAT is NP-hard even if no negative literals are admitted. In Positive NAE 3-SAT Diff, additionally each clause contains three different variables. It is easy to see that this variant is NP-hard, too.

- Lemma 1. Positive NAE 3-SAT Diff is NP-hard.

For a formal proof, see the full version [4]. Our main result is as follows.

- Theorem 2. List-Feasibility is NP-hard (even if every pair of wires has at most eight swaps).

We split our proof into several parts. First we introduce some notation, then we give the intuition behind our reduction. Next, we explain variable and clause gadgets in more detail. Finally, we show the correctness of the reduction.

Notation. We label the wires by their index in the initial permutation of a tangle. In particular, for a wire ε, its neighbor to the right is wire $\varepsilon+1$. If a wire μ is to the left of some other wire ν, we write $\mu<\nu$. If all wires in a set M are to the left of all wires in a set N, we write $M<N$. For any integer $k>0$, let $[k]=\{1,2, \ldots, k\}$.

Setup. Given an instance $F=d_{1} \wedge \cdots \wedge d_{m}$ of Positive NAE 3 -SAT Diff with variables w_{1}, \ldots, w_{n}, we construct in polynomial time a list L of swaps such that there is a tangle T realizing L if and only if F is a yes-instance.

In L we have two inner wires λ and $\lambda^{\prime}=\lambda+1$ that swap eight times. This yields two types of loops (see Fig. 3): four $\lambda^{\prime}-\lambda$ loops, where λ^{\prime} is on the left and λ is on the right side, and three $\lambda-\lambda^{\prime}$ loops with λ on the left and λ^{\prime} on the right side. Notice that we consider only closed loops, which are bounded by swaps between λ and λ^{\prime}. In the following, we construct variable and clause gadgets. Each variable gadget will contain a specific wire that represents the variable, and each clause gadget will contain a specific wire that represents the clause. The corresponding variable and clause wires swap in one of the four $\lambda^{\prime}-\lambda$ loops. We call the first two $\lambda^{\prime}-\lambda$ loops true-loops, and the last two $\lambda^{\prime}-\lambda$ loops false-loops. If the corresponding variable is true, then the variable wire swaps with the corresponding clause wires in a true-loop, otherwise in a false-loop.

Apart from λ and λ^{\prime}, our list L contains (many) other wires, which we split into groups. For every $i \in[n]$, we introduce sets V_{i} and V_{i}^{\prime} of wires that together form the gadget for variable w_{i} of F. These sets are ordered (initially) $V_{n}<V_{n-1}<\cdots<V_{1}<\lambda<\lambda^{\prime}<V_{1}^{\prime}<V_{2}^{\prime}<\cdots<V_{n}^{\prime}$; the order of the wires inside these sets will be detailed in the next two paragraphs. Let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{n}$ and $V^{\prime}=V_{1}^{\prime} \cup V_{2}^{\prime} \cup \cdots \cup V_{n}^{\prime}$. Similarly, for every $j \in[m$, we introduce a set C_{j} of wires that contains a clause wire c_{j} and three sets of wires D_{j}^{1}, D_{j}^{2}, and D_{j}^{3} that represent occurrences of variables in a clause d_{j} of F. The wires in C_{j} are ordered $D_{j}^{3}<D_{j}^{2}<D_{j}^{1}<c_{j}$. Together, the wires in $C=C_{1} \cup C_{2} \cup \cdots \cup C_{m}$ represent the clause gadgets; they are ordered $V<C_{m}<C_{m-1}<\cdots<C_{1}<\lambda$. Additionally, our list L contains a set $E=\left\{\varphi_{1}, \ldots, \varphi_{7}\right\}$ of wires that will make our construction rigid enough. The order of all wires in L is $V<C<\lambda<\lambda^{\prime}<E<V^{\prime}$. Now we present our gadgets in more detail.

Variable gadget. For each variable w_{i} of $F, i \in[n]$, we introduce two sets of wires V_{i} and V_{i}^{\prime}. Each V_{i}^{\prime} contains a variable wire v_{i} that has four swaps with λ and no swaps with λ^{\prime}. Therefore, v_{i} intersects at least one and at most two $\lambda^{\prime}-\lambda$ loops. In order to prevent v_{i} from intersecting both a true- and a false-loop, we introduce two wires $\alpha_{i} \in V_{i}$ and $\alpha_{i}^{\prime} \in V_{i}^{\prime}$ with $\alpha_{i}<\lambda<\lambda^{\prime}<\alpha_{i}^{\prime}<v_{i}$; see Fig. 3. These wires neither swap with v_{i} nor with each other, but they have two swaps with both λ and λ^{\prime}. We want to force α_{i} and α_{i}^{\prime} to have the two true-loops on their right and the two false-loops on their left, or vice versa. This will ensure that v_{i} cannot reach both a true- and a false-loop.

To this end, we introduce, for $j \in[5]$, a β_{i}-wire $\beta_{i, j} \in V_{i}$ and a β_{i}^{\prime}-wire $\beta_{i, j}^{\prime} \in V_{i}^{\prime}$. These are ordered $\beta_{i, 5}<\beta_{i, 4}<\cdots<\beta_{i, 1}<\alpha_{i}$ and $\alpha_{i}^{\prime}<\beta_{i, 1}^{\prime}<\beta_{i, 2}^{\prime}<\cdots<\beta_{i, 5}^{\prime}<v_{i}$. Every pair of β_{i}-wires as well as every pair of β_{i}^{\prime}-wires swaps exactly once. Neither β_{i} - nor β_{i}^{\prime}-wires swap with α_{i} or α_{i}^{\prime}. Each β_{i}^{\prime}-wire has four swaps with v_{i}. Moreover, $\beta_{i, 1}, \beta_{i, 3}, \beta_{i, 5}, \beta_{i, 2}^{\prime}, \beta_{i, 4}^{\prime}$ swap with λ twice. Symmetrically, $\beta_{i, 2}, \beta_{i, 4}, \beta_{i, 1}^{\prime}, \beta_{i, 3}^{\prime}, \beta_{i, 5}^{\prime}$ swap with λ^{\prime} twice; see Fig. 3.

Figure 3 A variable gadget with a variable wire v_{i} that corresponds to the variable that is true (on the left) or false (on the right).

We use the $\beta_{i^{-}}$and $\beta_{i^{\prime}}^{\prime}$-wires to fix the minimum number of $\lambda^{\prime}-\lambda$ loops that are on the left of α_{i} and on the right of α_{i}^{\prime}, respectively. Note that, together with λ and λ^{\prime}, the β_{i} - and β_{i}^{\prime}-wires have the same rigid structure as the wires in Fig. 2.

- Observation 1 ([5]). The tangle in Fig. 2 realizes the list L_{n} specified there; all tangles that realize L_{n} have the same order of swaps along each wire.

This means that there is a unique order of swaps between the β_{i}-wires and λ or λ^{\prime}, i.e., for $j \in[4]$, every pair of $\beta_{i, j+1^{-}} \lambda$ swaps (or $\beta_{i, j+1^{-}} \lambda^{\prime}$ swaps, depending on the parity of j) can be done only after the pair of $\beta_{i, j^{-}} \lambda^{\prime}$ swaps (or $\beta_{i, j^{-}}$位 swaps, respectively). We have the same rigid structure on the right side with β_{i}^{\prime}-wires. Hence, there are at least two $\lambda^{\prime}-\lambda$ loops to the left of α_{i} and at least two to the right of α_{i}^{\prime}. Since α_{i} and α_{i}^{\prime} do not swap, there cannot be a $\lambda^{\prime}-\lambda$ loop that appears simultaneously on both sides.

Note that the $\lambda-\lambda^{\prime}$ swaps that belong to the same side have to be consecutive, otherwise α_{i} or α_{i}^{\prime} would need to swap more than twice with λ and λ^{\prime}. Thus, there are only two ways to order the swaps among the wires $\alpha_{i}, \alpha_{i}^{\prime}, \lambda, \lambda^{\prime}$; the order is either $\alpha_{i}^{\prime}-\lambda^{\prime}, \alpha_{i}^{\prime}-\lambda$, four times $\lambda-\lambda^{\prime}, \alpha_{i}^{\prime}-\lambda, \alpha_{i}^{\prime}-\lambda^{\prime}, \alpha_{i}-\lambda, \alpha_{i}-\lambda^{\prime}$, four times $\lambda-\lambda^{\prime}, \alpha_{i}-\lambda^{\prime}, \alpha_{i}-\lambda$ (see Fig. 3(left)) or the reverse (see Fig. 3(right)). It is easy to see that in the first case v_{i} can reach only the first two $\lambda^{\prime}-\lambda$ loops (the true-loops), and in the second case only the last two (the false-loops).

To avoid that the gadget for variable w_{i} restricts the proper functioning of the gadget for some variable w_{j} with $j>i$, we add the following swaps to L : for any $j>i, \alpha_{j}$ and α_{j}^{\prime} swap with both V_{i} and V_{i}^{\prime} twice, the β_{j}-wires swap with α_{i}^{\prime} and V_{i} twice, and, symmetrically, the β_{j}^{\prime}-wires swap with α_{i} and V_{i}^{\prime} twice, v_{j} swaps with α_{i} and all wires in V_{i}^{\prime} six times. We

Figure 4 A realization of swaps between the variable wire v_{j} and all wires that belong to the variable gadget corresponding to the variable w_{i}. On the left the variables w_{i} and w_{j} are both true, and on the right w_{i} is true, whereas w_{j} is false.
briefly explain these multiplicities. Wires from V_{j} and $V_{j}^{\prime} \backslash\left\{v_{j}\right\}$ swap their partners twice so that they reach the corresponding $\lambda-\lambda^{\prime}$ or $\lambda^{\prime}-\lambda$ loops and go back. None of the wires from V_{i} or V_{i}^{\prime} is restricted in which loop to intersect. Considering the wire v_{j}, note that it has to reach the $\lambda^{\prime}-\lambda$ loops twice. For simplicity and in order not to have any conflicts with the β_{i}^{\prime}-wires, we introduce exactly six swaps with α_{i} and all wires in V_{i}^{\prime}, see Fig. 4.

Clause gadget. For every clause d_{j} from $F, j \in[m]$, we introduce a set of wires C_{j}. It contains the clause wire c_{j} that has eight swaps with λ^{\prime}. We want to force each c_{j} to appear in all $\lambda^{\prime}-\lambda$ loops. To this end, we use the set E with the seven φ-wires $\varphi_{1}, \ldots, \varphi_{7}$ ordered $\varphi_{1}<\cdots<\varphi_{7}$. They create a rigid structure similar to the one of the β_{i}-wires. Each pair of φ-wires swaps exactly once. For each $k \in[7]$, if k is odd, φ_{k} swaps twice with λ and twice with c_{j} for every $j \in[m]$. If k is even, φ_{k} swaps twice with λ^{\prime}. Since c_{j} does not swap with λ, each pair of swaps between c_{j} and a φ-wire with odd index appears inside a $\lambda^{\prime}-\lambda$ loop. Due to the rigid structure, each of these pairs of swaps occurs in a different $\lambda^{\prime}-\lambda$ loop; see Fig. 5.

If a variable w_{i} belongs to a clause d_{j}, then L contains two $v_{i}-c_{j}$ swaps. Since every clause has exactly three different positive variables, we want to force variable wires that belong to the same clause to swap with the corresponding clause wire in different $\lambda^{\prime}-\lambda$ loops. This way, every clause contains at least one true and at least one false variable if F is satisfiable.

We call a part of a clause wire c_{j} that is inside a $\lambda^{\prime}-\lambda$ loop-i.e., a $\lambda^{\prime}-c_{j}$ loop-an arm of the clause c_{j}. We want to "protect" the arm that is intersected by a variable wire from other variable wires. To this end, for every occurrence $k \in[3]$ of a variable in d_{j}, we introduce four more wires. The wire γ_{j}^{k} will protect the arm of c_{j} that the variable wire of the k-th variable

EuroCG'20

Figure 5 A gadget for clause c_{j} showing only one of the three variables, namely v_{i}.
of d_{j} intersects. To achieve this, γ_{j}^{k} has to intersect one of the φ-wires that swaps with the arm. In order not to restrict the choice of the $\lambda^{\prime}-\lambda$ loop, γ_{j}^{k} swaps twice with each φ_{ℓ} with odd $\ell \in[7]$. Similarly to c_{j}, the wire γ_{j}^{k} has eight swaps with λ^{\prime} and appears once in every $\lambda^{\prime}-\lambda$ loop. Additionally, γ_{j}^{k} has two swaps with c_{j}.

We force γ_{j}^{k} to protect the correct arm in the following way. Consider the $\lambda^{\prime}-\lambda$ loop where an arm of c_{j} swaps with a variable wire v_{i}. We want the order of swaps along λ^{\prime} inside this loop to be fixed as follows: λ^{\prime} first swaps with γ_{j}^{k}, then twice with c_{j}, and then again with γ_{j}^{k}. This would prevent all variable wires that do not swap with γ_{j}^{k} from reaching the arm of c_{j}. To achieve this, we introduce three ψ_{j}^{k}-wires $\psi_{j, 1}^{k}, \psi_{j, 2}^{k}, \psi_{j, 3}^{k}$ with $\psi_{j, 3}^{k}<\psi_{j, 2}^{k}<\psi_{j, 1}^{k}<\gamma_{j}^{k}$.

The ψ_{j}^{k}-wires also have the rigid structure similar to the one that β_{i}-wires have, so that there is a unique order of swaps along each ψ_{j}^{k}-wire. Each pair of ψ_{j}^{k}-wires swaps exactly once, $\psi_{j, 1}^{k}$ and $\psi_{j, 3}^{k}$ have two swaps with c_{j}, and $\psi_{j, 2}^{k}$ has two swaps with λ^{\prime} and v_{i}. Note that no ψ_{j}^{k}-wire swaps with γ_{j}^{k}. Also, since $\psi_{j, 2}^{k}$ does not swap with c_{j}, the $\psi_{j, 2}^{k}-v_{i}$ swaps can appear only inside the $\lambda^{\prime}-c_{j}$ loop that contains the arm of c_{j} we want to protect from other variable wires. Since c_{j} has to swap with $\psi_{j, 1}^{k}$ before and with $\psi_{j, 3}^{k}$ after the $\psi_{j, 2}^{k}-\lambda^{\prime}$ swaps, and since there are only two swaps between γ_{j}^{k} and c_{j}, there is no way for any variable wire except for v_{i} to reach the arm of c_{j} without also intersecting γ_{j}^{k}; see Fig. 5.

Finally, we consider the behavior of wires from different clause gadgets among each other and with respect to wires from variable gadgets. For every $\ell>k$ and for every $j \in[m]$, the wires c_{j} and γ_{j}^{ℓ} have eight swaps and the ψ_{j}^{ℓ}-wires have two swaps with all wires in C_{j}. Since all wires in V are to the left of all wires in C, each wire in C swaps twice with all wires in V and, for $i \in[n]$, with α_{i}^{\prime}. Finally, all α - and α^{\prime}-wires swap twice with each φ-wire.

Figure 6 A tangle obtained from the satisfiable formula $F=\left(w_{1} \vee w_{2} \vee w_{3}\right) \wedge\left(w_{1} \vee w_{3} \vee w_{4}\right) \wedge$ $\left(w_{2} \vee w_{3} \vee w_{4}\right) \wedge\left(w_{2} \vee w_{3} \vee w_{5}\right)$. Here w_{1}, w_{4} and w_{5} are set to true, whereas w_{2} and w_{3} are set to false. Note that we show here only "crucial" wires, namely $\lambda, \lambda^{\prime}$, and all variable and clause wires.

Note that the order of the arms of the clause wires inside a $\lambda^{\prime}-\lambda$ loop cannot be chosen arbitrarily. If a variable wire intersects more than one clause wire, the arms of these clause wires should be consecutive, as for v_{2} and v_{3} in the shaded region in Fig. 6. If we had an interleaving pattern of variable wires (see inset), say v_{2} first intersects c_{1}, then v_{3} intersects c_{2}, then v_{2} intersects c_{3}, and finally v_{3} intersects c_{4}, then v_{2} and v_{3} would have to swap at least three times within the same $\lambda^{\prime}-\lambda$ loop. However, we have reserved only eight swaps for each pair of variable wires-two for each of the four $\lambda^{\prime}-\lambda$ loops.

Correctness. Clearly, if F is satisfiable, then there is a tangle obtained from F as described above that realizes the list L, so L is feasible; see Fig. 6 for an example.

On the other hand, if there is a tangle that realizes the list L that we obtain from the reduction, then F is satisfiable. This follows from the rigid structure of a tangle that realizes L. The only flexibility is in which type of loop (true or false) a variable wire swaps with the corresponding clause wire. As described above, a tangle exists if, for each clause, the corresponding three variable wires swap with the clause wire in three different loops (at least one of which is a true-loop and at least one is a false-loop). In this case, the position of the variable wires yields a truth assignment satisfying F.

3 Open Problems

We recall three open questions of our previous paper [5].

- Can we decide the feasibility of a list faster than finding its optimal realization?
- For simple lists, that is, lists where each swap occurs at most once, odd-even sort efficently computes tangles with at most one layer more than minimum [8]. Can minimum-height tangles be computed efficiently for simple lists?
- In this paper, we showed that it is NP-hard to decide whether general lists are feasible. Earlier, we showed that the problem is easy for odd lists [5], i.e., if every swap occurs an odd number of times or zero times. A list is non-separable if, for every three wires $i<k<j$, there is no swap between i and k, and none between k and j, then there isn't any between i and j either. We conjecture that every non-separable even list is feasible.

References

1 Sergey Bereg, Alexander Holroyd, Lev Nachmanson, and Sergey Pupyrev. Representing permutations with few moves. SIAM J. Discrete Math., 30(4):1950-1977, 2016. URL: https://arxiv.org/abs/1508.03674, doi:10.1137/15M1036105.
2 Sergey Bereg, Alexander E. Holroyd, Lev Nachmanson, and Sergey Pupyrev. Drawing permutations with few corners. In Stephen Wismath and Alexander Wolff, editors, Proc. Int. Symp. Graph Drawing (GD'13), volume 8242 of LNCS, pages 484-495. Springer, 2013. URL: http://arxiv.org/abs/1306.4048, doi:10.1007/978-3-319-03841-4_42.
3 Joan S. Birman and R. Fredrick Williams. Knotted periodic orbits in dynamical systems-I: Lorenz's equation. Topology, 22(1):47-82, 1983. doi:10.1016/0040-9383(83)90045-9.
4 Oksana Firman, Stefan Felsner, Philipp Kindermann, Alexander Ravsky, Alexander Wolff, and Johannes Zink. The complexity of finding tangles. Arxiv report, 2020. URL: http: //arxiv.org/abs/2002.12251.
5 Oksana Firman, Philipp Kindermann, Alexander Ravsky, Alexander Wolff, and Johannes Zink. Computing optimal-height tangles faster. In Daniel Archambault and Csaba D. Tóth, editors, Proc. 27th Int. Symp. Graph Drawing \mathcal{E}^{3} Network Vis. (GD'19), volume 11904 of LNCS, pages 203-215. Springer, 2019. URL: http://arxiv.org/abs/1901.06548, doi:10.1007/978-3-030-35802-0_16.
6 Gabo Mindlin, Xin-Jun Hou, Robert Gilmore, Hernán Solari, and N. B. Tufillaro. Classification of strange attractors by integers. Phys. Rev. Lett., 64:2350-2353, 1990. doi: 10.1103/PhysRevLett. 64.2350 .

7 Maya Olszewski, Jeff Meder, Emmanuel Kieffer, Raphaël Bleuse, Martin Rosalie, Grégoire Danoy, and Pascal Bouvry. Visualizing the template of a chaotic attractor. In Therese Biedl and Andreas Kerren, editors, Proc. 26th Int. Symp. Graph Drawing \& Network Vis. (GD'18), volume 11282 of LNCS, pages 106-119. Springer, 2018. URL: https://arxiv. org/abs/1807.11853, doi:10.1007/978-3-030-04414-5_8.
8 Kazuhiro Sado and Yoshihide Igarashi. A function for evaluating the computing time of a bubbling system. Theor. Comput. Sci., 54:315-324, 1987. doi:10.1016/0304-3975(87) 90136-8.
9 Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annu. ACM Symp. Theory Comput. (STOC'78), pages 216-226, 1978. doi:10.1145/800133.804350.
10 Deborah C. Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. In Proc. 28th ACM/IEEE Design Automation Conf. (DAC'91), pages 49-53, 1991. doi: 10.1145/127601.127626.

