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Abstract
We study two new versions of independent and dominating set problems on vertex-colored interval
graphs, namely f -Balanced Independent Set (f -BIS) and f -Balanced Dominating Set (f -BDS).
Let G = (V,E) be a vertex-colored interval graph with a k-coloring γ : V → {1, . . . , k} for some
k ∈ N. A subset of vertices S ⊆ V is called f -balanced if S contains f vertices from each color
class. In the f -BIS and f -BDS problems, the objective is to compute an independent set or a
dominating set that is f -balanced. We show that both problems are NP-complete even on proper
interval graphs. For the BIS problem on interval graphs, we design two FPT algorithms, one
parameterized by (f, k) and the other by the vertex cover number of G. Moreover, we present a
2-approximation algorithm for a slight variation of BIS on proper interval graphs.

1 Introduction

A graph G is an interval graph if it has an intersection model consisting of intervals on the
real line. Formally, G = (V,E) is an interval graph if there is an assignment of an interval
Iv ⊆ R for each v ∈ V such that Iu ∩ Iv is nonempty if and only if (u, v) ∈ E. A proper
interval graph is an interval graph that has an intersection model in which no interval
properly contains another [8]. Consider an interval graph G = (V,E) and additionally
assume that the vertices of G are k-colored by a mapping γ : V → {1, . . . , k}. We define and
study color-balanced versions of two classical graph problems: maximum independent set
and minimum dominating set on vertex-colored (proper) interval graphs. In what follows,
we define the problems formally and discuss their underlying motivation.

f-Balanced Independent Set (f-BIS): Let G = (V,E) be an interval graph with vertex
coloring γ : V → {1, . . . , k}. Find an f -balanced independent set of G, i.e., an independent
set L ⊆ V that contains exactly f elements from each color class.

The classic maximum independent set problem serves as a natural model for many real-
life optimization problems and finds applications across fields, e.g., computer vision [2],
information retrieval [14], and scheduling [16]. Specifically, it has been used widely in map-
labeling problems [1, 4, 17, 18], where an independent set of a given set of label candidates
corresponds to a conflict-free and hence legible set of labels. To display as much relevant
information as possible, one usually aims at maximizing the size or, in the case of weighted
label candidates, the total weight of the independent set. This approach may be appropriate
if all labels represent objects of the same category. In the case of multiple categories, however,
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maximizing the size or total weight of the labeling does not reflect the aim of selecting a
good mixture of different object types. For example, if the aim was to inform a map user
about different possible activities in the user’s vicinity, labeling one cinema, one theater,
and one museum may be better than labeling four cinemas. In such a setting, the f -BIS
problem asks for an independent set that contains f vertices from each object type.

We initiate this study for interval graphs which is a primary step to understand the
behavior of this problem on intersection graphs. Moreover, solving the problem for interval
graphs gives rise to optimal solutions for certain labeling models, e.g., if every label candidate
is a rectangle that is placed at a fixed position on the boundary of the map [9].

While there exists a simple greedy algorithm for the maximum independent set problem
on interval graphs, it turns out that f -BIS is much more resilient and NP-complete even
for proper interval graphs and f = 1 (Section 2.1). Then, in Section 3, we complement
this complexity result with two FPT algorithms for interval graphs, one parameterized by
(f, k) and the other parameterized by the vertex cover number. We conclude with a 2-
approximation algorithm for a slight variation of BIS on proper interval graphs.

The second problem we discuss is

f-Balanced Dominating Set (f-BDS): Let G = (V,E) be an interval graphs with ver-
tex coloring γ : V → {1, . . . , k}. Find an f -balanced dominating set, i.e., a subset D ⊆ V

such that every vertex in V \ D is adjacent to at least one vertex in D, and D contains
exactly f elements from each color class.

The dominating set problem is another fundamental problem in theoretical computer
science which also finds applications in various fields of science and engineering [5, 10].
Several variants of the dominating set problem have been considered over the years: k-tuple
dominating set [6], Liar’s dominating set [3], independent dominating set [11], and more.
The colored variant of the dominating set problem has been considered in parameterized
complexity, namely, red-blue dominating set, where the objective is to choose a dominating
set from one color class that dominates the other color class [7]. Instead, our f -BDS problem
asks for a dominating set of a vertex-colored graph that contains f vertices of each color
class. Similar to the independent set problem, we primarily study this problem on vertex-
colored interval graphs, which can be of independent interest. In Section 2.2, we prove that
f -BDS on vertex-colored proper interval graphs is NP-complete, even for f = 1.

2 Complexity Results

In this section we show that f -BIS and f -BDS are NP-complete even if the given graph G is
a proper interval graph and f = 1. Our reductions are from restricted, but still NP-complete
versions of 3SAT, namely 3-bounded 3SAT [15] and 2P2N-3SAT (hardness follows from the
result for 2P1N-SAT [19]). In the former 3SAT variant a variable is allowed to appear in at
most three clauses and clauses have two or three literals, in the latter each variable appears
exactly four times, twice as positive literal and twice as negative literal. Here we give the
constructions for both reductions; for detailed proofs we refer to the full version of this
paper.

I Remark. NP-completeness of 1-balanced independent (dominating) set implies the NP-
completeness of f -balanced independent (dominating) set for f > 1. Let I1 be the interval
graph in an 1-balanced independent (dominating) set instance. We construct an interval
graph If consisting of f independent copies of I1. Clearly I1 has 1-balanced independent
(dominating) set if and only if If has an f -balanced independent (dominating) set.
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(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

x1 x2 x3 x4

Negative

Positive u1,1u1,2 u1,4 u2,1 u2,4
u3,2 u3,3 u3,4 u4,1 u4,3u4,2

Figure 1 The graph resulting from the reduction for 1-balanced independent set in Theorem 1
depicted as interval representation with the vertex colors being the colors of the intervals.

2.1 f -Balanced Independent Set
Let φ(x1, . . . , xn) be a 3-bounded 3SAT formula with variables x1, . . . , xn and clause set
C = {C1, . . . , Cm}. From φ we construct a proper interval graph G = (V,E) and a vertex
coloring γ of V as follows. We choose the set of colors to contain exactly m colors, one for
each clause in C and we number these colors from 1 to m. We add a vertex ui,j ∈ V for each
occurrence of a variable xi in a clause Cj in φ. Furthermore, we insert an edge ui,jui,j′ ∈ E
whenever xi appears positively in Cj and negatively in Cj′ (or vice versa). Finally, we color
each vertex ui,j ∈ V with color j. See Figure 1 for an example. The graph G created from
φ is a proper interval graph as it consists only of disjoint paths of length at most three and
can clearly be constructed in polynomial time and space.

I Theorem 1. The f -balanced independent set problem on a graph G = (V,E) with vertex
coloring γ : V → {1, . . . , k} is NP-complete, even if G is a proper interval graph and f = 1.

2.2 f -Balanced Dominating Set
We reduce from 2P2N-3SAT where each variable appears exactly twice positive and twice
negative. Let φ(x1, . . . , xn) be a 2P2N-3SAT formula with variables x1, . . . , xn and clause
set C = {C1, . . . , Cm}. For variable xi in φ we denote with Cxi

= {C1
t , C

2
t , C

1
f , C

2
f} the four

clauses xi appears in, where C1
t , C

2
t are clauses with positive occurrences of xi and C1

f , C
2
f

are clauses containing negative occurrences of xi.
We construct a graph G = (V,E) from φ(x1, . . . , xn) as follows. For each variable xi

we introduce six vertices t1, t2, f1, f2, ht, and hf and for each clause Cj with occurrences of
variables xj1 , xj2 , and xj3 we add up to three vertices ck for each k ∈ {j1, j2, j3} (In case a
clause has less than three literals we add only one or two vertices). If the connection to the
variable is clear, we also write c1

t , c2
t , c1

f , and c2
f for the vertices introduced for this variable’s

occurrences in the clauses C1
t , C

2
t , C

1
f , and C2

f , respectively. Furthermore, we add for each
variable xi the edges (ht, t1), (ht, t2), (hf , f1), and (hf , f2), as well as for each clause Cj
all possible edges between the three vertices introduced for Cj . For each variable xi we
introduce five colors, namely z1

t , z2
t , z1

f , z2
f , and zh. We set γ(ht) = γ(hf ) = zh. Finally, we

x1 x2 x3 x1 ∨ x2 ∨ x3

Positive Negative Positive Negative Positive Negative

t1

t2

f1

f2
hfht

c1f

c2t
c2f

Figure 2 Illustrations of three variable gadgets and a clause gadget from Theorem 2 as interval
representations. The vertex colors are given as the colors of the intervals.
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set γ(t1) = γ(c1
t ) = z1

t . Equivalently for t2, f1, and f2. See Figure 2 for an example.
In total we create 6n+ 3m many vertices and 4n+ 3m many edges, thus the reduction

is in polynomial time. All variable and clause gadgets are independent components and
only consist of paths of length three and triangles, hence G is a proper interval graph.
Furthermore, G can clearly be constructed in polynomial time and space.

I Theorem 2. The f -balanced dominating set problem on a graph G = (V,E) with vertex
coloring γ : V → {1, . . . , C} is NP-complete, even if G is a proper interval graph and f = 1.

3 Algorithmic Results for the Balanced Independent Set Problem

In this section we first take a parameterized perspective on f -BIS and provide two FPT
algorithms1 with different parameters. Then we give a 2-approximation algorithm for the
related problem of maximizing the number of different colors in the independent set. For
omitted proofs see the full version of this paper.

3.1 An FPT Algorithm Parameterized by (f, k)
Assume we are given an instance of f -BIS with G = (V,E) being an interval graph with
vertex coloring γ : V → {1, . . . , k}. We can construct an interval representation I =
{I1, . . . , In}, n = |V |, from G in linear time [12]. Then our algorithm works as follows.
To start we sort the right end-points of the n intervals in I in ascending order. We define
for all intervals Ii with i > 0 the index 0 ≤ pi < n as the index of the interval Ipi whose
right endpoint is rightmost before Ii’s left endpoint. For each color κ ∈ {1, . . . , k}, let êκ
denote the k-dimensional unit vector of the form (0, . . . , 0, 1, 0, . . . , 0), where the element at
the κ-th position is 1 and the rest are 0. For a subset I ′ ⊆ I we define a cardinality vector
as the k-dimensional vector CI′ = (c1, . . . , ck), where each element ci represents the number
of intervals of color i in I ′. We say CI′ is valid if all ci ≤ f and the set I ′ is independent.

The key observation here is that there are at most O(fk) many different valid cardinality
vectors as there are only k colors and we are interested in at most f intervals per color. In
the following let Uj , j ∈ {1, . . . , n}, be the union of all valid cardinality vectors of the
first j intervals in I. Let U0 = {(0, . . . , 0)} in the beginning. To compute an f -balanced
independent set the algorithm simply iterates over all right endpoints of the intervals in I
and in the i-th step computes Ui as Ui = {u+ êγ(Ii) | u ∈ Upi

and u+ êγ(Ii) is valid}∪Ui−1.
Finally, we check the cardinality vectors in Un and return true in case there is one with entries
being all f and false otherwise. An f -balanced independent set can be easily retrieved by
backtracking the decisions we made to compute the cardinality vector.

I Theorem 3. Let G = (V,E) be an interval graph with a vertex coloring γ : V → {1, . . . , k}.
We can compute an f -balanced independent set of G or determine that no such set exists in
O(n logn+ nfkα(fk)) time, where α is the inverse Ackermann function.

3.2 An FPT Algorithm Parameterized by the Vertex Cover Number
Here we will give an alternative FPT algorithm for f -BIS, this time parameterized by the
vertex cover number τ(G) of G, i.e., the size of a minimum vertex cover of G.

1 FPT is the class of parameterized problems that can be solved in time O(g(k)nO(1)) for input size n,
parameter k, and some computable function g.
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I Lemma 4. Let G = (V,E) be a graph with vertex cover number τ(G). There are O(2τ(G))
maximal independent sets of G.

Proof. Consider a minimum vertex cover Vc in G and its complement Vind = V \ Vc. Note
that since Vc is a (minimum) vertex cover, Vind is a (maximum) independent set. Further-
more, any maximal independent set M of G can be constructed from Vind by adding M ∩Vc
and removing its neighborhood in Vind, namely M = (Vind ∪ (M ∩Vc)) \N(M ∩Vc) (see the
full version for details). Thus there are O(2τ(G)) maximal independent sets of G. J

I Theorem 5. Let G = (V,E) be an interval graph with a vertex coloring γ : V → {1, . . . , k}.
We can compute an f -balanced independent set of G or determine that no such set exists in
O(2τ(G) · n) time.

Proof. According to Lemma 4, there are O(2τ(G)) maximal independent sets of G. The
basic idea is to enumerate all the O(2τ(G)) maximal independent sets and compute their
maximum balanced subsets. Enumerating all maximal independent sets of an interval graph
takes O(1) time per output [13]. Given an arbitrary independent set of G we can compute
an f -balanced independent subset in O(n) time or conclude that no such subset exists.
Therefore, the running time of the algorithm is O(2τ(G) · n). J

3.3 A 2-Approximation for 1-Max-Colored Independent Sets
Here we study a variation of BIS, which asks for a maximally colorful independent set.

1-Max-Colored Independent Set (1-MCIS): Let G = (V,E) be a proper interval graph
with vertex coloring γ : V → {1, . . . , k}. Find a 1-max-colored independent set of G, i.e., an
independent set L ⊆ V , whose vertices contain a maximum number of colors.

We note that the NP-completeness of 1-BIS implies that 1-MCIS is an NP-hard optimiza-
tion problem as well. In the following, we will show a simple sweep algorithm for 1-MCIS
with approximation ratio 2.

Our algorithm selects one interval for each color greedily. We maintain an array S of
size k to store the selected intervals. After sorting the n right end-points in ascending order,
we scan the intervals from left to right. For each interval Ii in this order, we check if the
color of Ii is still missing in our solution (by checking if S[γ(Ii)] is not yet occupied). If
so, we store Ii in S[γ(i)] and remove all remaining intervals overlapping Ii. Otherwise, if
S[γ(Ii)] is not empty, we remove Ii and continue scanning the intervals. This is repeated
until all intervals are processed. Using that G is a proper interval graph and a charging
argument on the colors in an optimal solution that are missing in the greedy solution, we
obtain our approximation result.

I Theorem 6. Let G = (V,E) be a proper interval graph with a vertex coloring γ : V →
{1, . . . , k}. In O(n logn) time, we can compute an independent set with at least d c2e colors,
where c is the number of colors in a 1-max-colored independent set.
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