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Abstract
Motivated by applications in combinatorial geometry, we consider the following question: Let λ =
(λ1, . . . , λm) be anm-partition of n, let Si ⊆ Cλi be finite sets, and let S := S1×S2×· · ·×Sm ⊆ Cn

be the multi-grid defined by Si. If p is a degree d polynomial with n variables, how many zeros
can p have on S?

We show that, except for a special family of polynomials –that we call λ-reducible– a natural
generalization of the Schwartz-Zippel-DeMillo-Lipton Lemma holds. Moreover, we mention a
symbolic algorithm to detect λ-reducibility for a special case. Along the way, we also present
a multivariate generalization of Combinatorial Nullstellensatz, which might be of independent
interest.

We refer the reader to the extended version of work [2] for further details, the missing proofs,
and the presentation of the symbolic algorithm [2].

1 Introduction

Counting the number of zeros of a polynomial on a finite grid of points has been a subject
of extensive research in combinatorics and theoretical computer science, see, for example,
[6], [5]. The Schwartz-Zippel-DeMillo-Lipton Lemma is a well-known result in this line of
research [7, 12, 3].

I Theorem 1.1 (The Schwartz-Zippel-DeMillo-Lipton Lemma). Let F be a field, let S ⊆ F be
a finite set, and let p ∈ F[x1, . . . , xn] be a polynomial of degree d. Suppose |S| > d and let
Sn := S × S × · · · × S. Then we have

|Z(p) ∩ Sn| ≤ d|S|n−1

where Z(p) = {v ∈ Fn | p(v) = 0} is the zero set of p.

Alon [1] presents a similar statement for polynomials and grids. The result is known as
Combinatorial Nullstellensatz:

I Theorem 1.2 (Combinatorial Nullstellensatz). Let p ∈ F[x1, . . . , xn] with deg(p) =
∑n
i=1 di

for some positive integers di, and assume that the coefficient of
∏n
i=1 x

di
i in p is non-zero.
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Let Si ⊆ F be finite sets with |Si| > di and let S ⊆ Fn be defined by S := S1 × S2 × · · · × Sn.
Then there exists v ∈ S such that

p(v) 6= 0.

We generalize the Schwartz-Zippel-DeMillo-Lipton Lemma and the Combinatorial Nullstel-
lensatz to multi-grids.

I Definition 1.3 (Algebraic Degree of a Finite Set). Let F be a field, and let S ⊆ Fn be a
finite set of points. Let I(S) ⊆ F[x1, . . . , xn] be the ideal of polynomials vanishing on S. We
define the algebraic degree, deg(S), of S to be

deg(S) := min
0 6=p∈I(S)

deg(p).

For the univariate case we have S ⊆ F and so deg(S) = |S|. However, for n ≥ 2, one can
have arbitrarily large sets of degree one. For example, in Fn we can consider arbitrarily many
points sampled from a hyperplane. The only general relation between the size and the degree
of a set S ⊆ Fn seems to be the following inequality that we can prove using basic linear
algebra:

|S| ≥
(

deg(S)− 1 + n

n

)
.

Notation We call a sequence λ = (λ1, . . . , λm) a partition of n into m parts if n =
λ1 + λ2 + · · · + λm. In this case, we write λ

m̀
n. Given a partition λ

m̀
n, we introduce

the notation x1 = (x1, x2, . . . , xλ1), x2 = (xλ1+1, . . . , xλ1+λ2), and so on. Given a polynomial
p ∈ F[x1, x2, . . . , xn], we denote by degi(p), the degree of p with respect to the variables in
xi. Given finite sets S1 ⊆ Fλ1 , S2 ⊆ Fλ2 etc. we call the product

S1 × S2 × · · · × Sm ⊆ Fn

the multi-grid defined by S1, S2, . . . , Sm.
Now we can give our first result that forbids polynomials to vanish on multi-grids defined

by finite sets of large degree:

I Theorem 1.4. Let F be a field, λ
m̀
n be a partition of n into m parts, and let p ∈

F[x1, . . . , xn] be a polynomial with deg(p) =
∑m
i=1 di. Furthermore, suppose that there exists

a non-zero term xα in p with degi(xα) = di for all i ∈ [m]. Let Si ⊆ Fλi be finite sets, and
let the multi-grid S ⊆ Fn be defined by S := S1 × S2 × · · · × Sm. If deg(Si) > di for all
i ∈ [m], then there exists v ∈ S such that

p(v) 6= 0.

In the case that λ = (1, 1, . . . , 1) ` n, we obtain Alon’s Combinatorial Nullstellensatz. In
this sense, the above theorem is a generalization of Combinatorial Nullstellensatz. However,
for the applications in incidence geometry, we want to obtain quantitative statements. In
other words, we want to give bounds in terms of |Si|. The next observation shows that it is
not always possible to obtain such bounds:

I Observation 1.5. Let g1 ∈ C[x1, x2] \ C and g2 ∈ C[x3, x4] \ C. For any h1, h2 ∈
C[x1, x2, x3, x4] and p = g1h1 + g2h2, the zero set Z(p) of p contains Z(g1)× Z(g2) which
is a positive dimensional variety. Thus, we can have arbitrarily large finite sets S1 ⊆ Z(g1)
and S2 ⊆ Z(g2) such that

S1 × S2 ⊆ Z(p).
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As the above observation shows, in order to have a quantitative statement on |Z(p)∩ S|, one
has to assume certain compatibility conditions between p and S:

I Definition 1.6 (λ-irreducibility). Let λ
m̀
n be a partition of n into m parts, and let

V ⊆ Cn be an algebraic set. We call V λ-reducible if there exist positive dimensional varieties
Vi ⊆ Cλi for i = 1, . . . ,m such that

V1 × V2 × · · · × Vm ⊆ V.

We call V λ-irreducible otherwise. If V is a hypersurface defined by a polynomial p, then we
say p is λ-reducible (resp. λ-irreducible).

Mojarrad et al. [4] study the same problem for the special case of λ = (2, 2). Their
observation is that (2, 2)-reducible polynomials have a particularly concrete form. Namely,
a polynomial p ∈ C[x1, x2, x3, x4] is λ-reducible if and only if there exist polynomials
g1 ∈ C[x1, x2] \ C, g2 ∈ C[x3, x4] \ C and h1, h2 ∈ C[x1, x2, x3, x4] such that

p = g1h1 + g2h2.

Mojarrad et al. ask for an algorithm to check whether a given polynomial p ∈ C[x1, x2, x3, x4]
is (2, 2)-reducible. In the last section, we mention an algorithm which detects λ-reducibility
for partitions of the form λ = (2, 2, . . . , 2). The full details of this algorithm can be found in
[2]. For now, we turn our attention back to polynomials and multi-grids.

Now, using the concept of λ-reducibility, we can give a bound on the cardinality of
multi-grids on which a λ-irreducible polynomial can vanish:

I Theorem 1.7. Let λ
m̀
n be a partition of n into m parts, and let p ∈ C[x1, . . . , xn]

be a λ-irreducible polynomial such that degi(p) = di. Let Si ⊆ Cλi be finite sets, and set
S := S1 × S2 × · · · × Sm. If |Si| > dλii , then there exists v ∈ S such that

p(v) 6= 0.

We state our main theorem.

I Theorem 1.8. Let λ
m̀
n, let Si ⊆ Cλi , i = 1, . . . ,m be finite sets, and let S := S1 × S2 ×

· · · × Sm be the multi-grid defined by Si. Then for a λ-irreducible polynomial p of degree
d ≥ 2, and for every ε > 0 we have

|Z(p) ∩ S| = On,ε

(
d5

m∏
i=1
|Si|1−

1
λi+1 +ε + d2n4

m∑
i=1

∏
j 6=i
|Sj |

)

where On,ε notation only hides constants depending on n and ε.

2 Applications

As our first application, we recover the complex version of Szemerédi-Trotter Theorem [10]
on the number of incidences between points and lines in real plane. To our knowledge, this
version is first proven by Tóth except for the ε in the exponent [11].

I Corollary 2.1. Let P be a set of points and L be a set of lines in the complex plane C2,
and let I(P,L) denote the set of point-line incidences. Then, for all ε > 0, we have

|I(P,L)| = O(|P | 23 +ε|L| 23 +ε + |P |+ |L|).

EuroCG’20
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Proof. Let p = x1 + x2x3 + x4. It is straightforward to show that p is (2, 2)-irreducible.
Moreover, for a point v = (z1, z2) ∈ C2 and a line l : x + by + c = 0, we have p ∈ l if and
only if p(z1, z2, b, c) = 0. Theorem 1.8 yields the result. J

As a second application, we consider the following problem: Given a set P of n points in the
complex plane C2, can we bound the number of pairs ((v1, v2), (w1, w2)) ∈ P × P such that
(v1 − w1)2 + (v2 − w2)2 = 1? In the real plane, the problem is known as the unit distance
problem and a subquadratic upper bound is given by Spencer, Szemerédi and Trotter [9].
In the complex case, Solymosi and Tao reproduced the same bound except for the ε in the
exponent. [8]. We obtain the same bound using Theorem 1.8.

I Corollary 2.2. Let P ⊆ C2 be a finite set of points in the complex plane. Set S =
{((v1, v2), (w1, w2)) ∈ P × P | (v1 − w1)2 + (v2 − w2)2 = 1}. Then, for all ε > 0, we have

|S| = O(|P |4/3+ε).

Proof. Let p = (x1−y1)2 +(x2−y2)2−1 ∈ C[x1, x2, y1, y2]. We claim that no 3×3 multi-grid
is contained in Z(p). Given three distinct points u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ C2,
the system

p(u1, u2, y1, y2) = 0
p(v1, v2, y1, y2) = 0
p(w1, w2, y1, y2) = 0

has at most one solution: If u, v, w are on an affine (complex) line, a direct computation
shows that the above system has no solution. If they are not on an affine (complex) line then
taking differences between pairs of polynomials in the above system, we see that

[
y1 y2

]
·
[
v1 − u1 w1 − u1 w1 − v1
v2 − u2 w2 − u2 w2 − v2

]
= 0

and as u, v, w are affinely independent, we obtain y = 0. We deduce that p is (2, 2)-irreducible
and applying Theorem 1.8 to ε/2 yields the result. J

I Theorem 2.3 (The Sparse Hypersurface-Point Incidence Theorem). Let A = {a1, a2, . . . , ak}
be a set of lattice points in Zn≥0 with

∑n
j=1 aij ≤ d for all 1 ≤ i ≤ k. We say a polynomial f

is supported in A if

f =
k∑
j=1

cjx
aj

where cj ∈ C and xaj = x
aj1
1 x

aj2
2 . . . x

ajn
n . Let P be a set of points in Cn, L be a set of

polynomials supported in A, and let I(P,L) denote the set of incidences between P and L.
We assume for any sets U1 ⊆ P with |U1| > dn and U2 ⊆ L with |U2| > dk, the product
U1 × U2 is not included in I(P,L). Then, for all ε > 0, we have

|I(P,L)| = On,k,ε(d3|P |1−
1

n+1 +ε|L|1−
1
k+1 +ε + d(n+k)4

(|P |+ |L|)).

3 Algorithms

In [2], Section 3, we give an algorithm for the following problem:
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Problem: Consider the partition λ = (n, n, . . . , n) of n(m + 1) into m + 1 parts. Given
a polynomial p ∈ Q[x1, x2, . . . , xm+1], are there polynomials gi ∈ Q[xi] \ Q and hi ∈
Q[x1, x2, . . . , xm+1] such that

p =
m+1∑
i=1

gihi ? (1)

Equivalently, are there hypersurfaces Vi ⊆ Cn such that

V1 × V2 × · · · × Vm+1 ⊆ V (p) ⊆ Cn(m+1),

where Vi = V (gi) are the zero sets of the polynomials gi for i ∈ [m+ 1]?
In the case that λ = (2, 2, . . . , 2), we can check λ-reducibility using the previous algorithm:

If p is (2, 2, . . . , 2)-reducible, then it contains a product

V1 × V2 × · · · × Vm ⊆ Z(p)

where each Vi is an algebraic curve in C2. As Vi are hypersurfaces, they can be written as
Vi = Z(gi) for some polynomials gi ∈ C[x2i, x2i+1] \ C and thus p is contained in the ideal
generated by g1, . . . , gm. Conversely, if p is contained in the ideal generated by (g1, . . . , gm),
then p contains the product V1 ×V2 × · · · × Vm in its zero set. We deduce that a polynomial
p ∈ C[x1, x2, . . . , x2n] is (2, 2, . . . , 2)-reducible if and only if it is of the form

p(x1, . . . , x2n) =
n∑
i=1

gi(x2i, x2i+1)hi(x1, . . . , x2n),

for some gi ∈ C[x2i, x2i+1] \ C and hi ∈ C[x1, . . . , x2n]. We can detect this property using
our algorithm.

We leave the existence of an algorithm that detects λ-reducibility for general λ as an
open problem.
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