A \((1 + \varepsilon)\)-approximation for the minimum enclosing ball problem in \(\mathbb{R}^d\) *

Sang-Sub Kim and Barbara Schwarzwald

Institute of Computer Science, University Bonn

\texttt{schwarzwald@uni-bonn.de}

Abstract

Given a set of points \(P\) in \(\mathbb{R}^d\) for an arbitrary \(d\), the 1-center problem or minimum enclosing ball problem (MEB) asks to find a ball \(B^*\) of minimum radius \(r^*\) which covers all of \(P\). Kumar et. al. [5] and Bádoiu and Clarkson [1] simultaneously developed core-set based \((1 + \varepsilon)\)-approximation algorithms. While Kumar et. al. achieve a slightly better theoretical runtime of \(O(nd/\varepsilon + \varepsilon^6 \log 1/\varepsilon)\), Bádoiu and Clarkson have a stricter bound of \([2/\varepsilon]\) on the size of their core-set, which strongly affects run-time constants.

We give a gradient-descent based algorithm running in time \(O(nd/\varepsilon)\) based on a geometric observation that was used first for a 2-center streaming algorithm by Kim and Ahn [4]. Our approach can be extended to the \(k\)-center problem to obtain a \((1 + \varepsilon)\)-approximation in time \(O(ndk 2^{1/\varepsilon})\).

1 Introduction

Given a set of points \(P \subset \mathbb{R}^d\), the *minimum enclosing ball problem* (MEB), also known as the 1-center problem, asks to find a ball \(B^*\) of minimum radius \(r^*\) containing all of \(P\) and is an important subproblem in clustering. While it can be solved in worst-case linear time for fixed \(d\) [6], the dependence on \(d\) is exponential and hence not practical for high dimensional real-world applications. However, Bádoiu et al. [3] presented a \((1 + \varepsilon)\)-approximation algorithm for arbitrary \(d\) running in time \(O(nd/\varepsilon^2 + \varepsilon^4 \log 1/\varepsilon)\) using core-sets of size at most \(1/\varepsilon^2\) independent of \(d\). An \(\varepsilon\)-core-set is a subset \(S \subset P\), such that a ball of radius \((1 + \varepsilon)r^*\) around the center of a minimum enclosing ball of \(S\) covers \(P\). Their algorithm can be extended to approximate the \(k\)-center problem, but the running time is then exponential in \(k\) and the size of the core-set; so having a tight bound on the size of the core-set is paramount. In fact, no polynomial time approximation scheme for the \(k\)-center problem in high dimensions can exist if \(P \not\in \text{NP}\), see [7].

Kumar et al. [5] improved these results to finding \(\varepsilon\)-core-sets of size \(O(1/\varepsilon)\) in time \(O(nd/\varepsilon^2 + \varepsilon^4 \log 1/\varepsilon)\). Independently Bádoiu and Clarkson [1] achieved an algorithm with a similar running time of \(O(nd/\varepsilon + \varepsilon^3)\) while having a stricter bound of \([2/\varepsilon]\) on the size of their core-set, which significantly affects run-time especially when extending to the \(k\)-center problem. Bádoiu and Clarkson [1] also gave a simple gradient-descent algorithm obtaining a \((1 + \varepsilon)\)-approximation in time \(O(nd/\varepsilon^2)\) and later showed that a tight bound of \([1/\varepsilon]\) on the size of \(\varepsilon\)-core-sets exists, see [2]. The gradient-descent algorithm has the advantage of not computing minimum enclosing balls for several subsets of \(P\) of size \(O(1/\varepsilon)\) which improves the constants involved in the calculation of each step and simplifies implementation. Bádoiu and Clarkson [2] also performed runtime experiments on both the gradient-descent and the different core-set-based algorithms which results showed that the gradient-descent algorithm is competitive in reality, as it converges significantly faster than its theoretical bound suggests.

* This work has been supported by DFG grant Kl 655/19 as part of a DACH project.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020. This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
We combine the analysis of these core-set-based algorithms with the ideas of the gradient-descent algorithm and extend structural observations made by Kim and Ahn [4] for the Euclidean 2-center problem in a streaming model to obtain a new efficient gradient-descent algorithm that converges to a \((1 + \varepsilon)-\)approximation in time \(O(nd/\varepsilon^2)\). It can be applied to the \(k\)-center problem in a similar fashion as the core-set based algorithms. Hence, it gives an alternative \((1 + \varepsilon)-\)approximation in time \(O(ndk2^{d/\varepsilon})\) for that problem without the use of core-sets and, possibly, a faster algorithm on real-world data.

2 An Algorithm for the Euclidean 1-center problem

In this section we present an algorithm for the Euclidean 1-center problem for high dimensions and show the following theorem:

> **Theorem 2.1.** Given a set \(P \in \mathbb{R}^d\), one can compute a \((1 + \varepsilon)\)-approximation of the minimum enclosing ball in time \(O(nd/\varepsilon^2)\) with the gradient-descent-algorithm \textsc{GradientMEB}.

Let \(P \subset \mathbb{R}^d\) for any \(d \geq 2\) be a set of \(n\) points. Let \(B(c, r)\) denote a ball of radius \(r\) centered at \(c\) and let \(r(B)\) and \(c(B)\), denote the radius and center of a ball \(B\), respectively. We denote by \(pq\) the straight line segment between two points \(p\) and \(q\) and by \(|pq|\) the length of \(pq\). Finally, we denote the boundary of a closed set \(A\) by \(\partial A\).

Let \(B^* = B(c^*, r^*)\) be the optimal solution of the 1-center problem for a set \(P\). The core idea of the algorithm is as follows. We will start with an arbitrary point \(p_1\) from \(P\) as a starting center \(m_1\). For any center \(m_i\) constructed, the radius \(r_i\) necessary to cover all of \(P\) with a ball \(B(m_i, r_i)\) is defined by the farthest point in \(P\) from \(m_i\). Therefore, in every subsequent step we pick that farthest point as \(p_{i+1}\) and construct a new center \(m_{i+1}\) on the line segment between \(p_{i+1}\) and \(m_i\) to reduce \(r_i\). We will use a central structural property proven in Lemma 2.2 to show how to construct \(m_i = m(p_{i+1}, m_i)\) in such a way that we can give a bound on its distance \(|m_i c^*|\) to the optimal center \(c^*\) decreasing with every step \(i\). The exact definition of \(m(p_{i+1}, m_i)\) will hence be given after that Lemma.

Algorithm 1 GradientMEB

Input: Set of points \(P \subset \mathbb{R}^d\).

Output: A center \(c\) such that \(B(c, (1 + \varepsilon)r^*)\) covers \(P\)

\[
p_1 \leftarrow \text{arbitrary point from } P
\]

\[
m_1 \leftarrow p_1
\]

\[
\text{bestRadius} \leftarrow \infty
\]

for \(i = 1\) to \(\lceil \frac{d}{2\varepsilon} \rceil\) do

\[
p_{i+1} \leftarrow \text{farthest point from } m_i \text{ in } P
\]

if \(|m_ip_{i+1}| < \text{bestRadius}\) then

\[
\text{bestCenter} \leftarrow m_{i-1}
\]

\[
\text{bestRadius} \leftarrow |m_{i-1}p_i|
\]

\[
m_{i+1} \leftarrow m(p_{i+1}, m_i)
\]

return bestCenter

We will start with the proof of the central structural property and the construction of \(m(p_{i+1}, m_i)\) and then show that after at most \(k = \lceil \frac{d}{2\varepsilon} \rceil\) such steps, \(|m_k c^*| < \varepsilon r^*\) and hence \(B(m_k, (1 + \varepsilon)r^*)\) covers all of \(P\).

Both together will proof the correctness of \textsc{GradientMEB}. As the algorithm runs for \(\lceil \frac{d}{2\varepsilon} \rceil\) rounds, finding \(p_i\) each round takes \(O(nd)\) and the computation of \(m_i\) takes \(O(d)\), this will also proof Theorem 2.1.
Lemma 2.2. Given two d-dimensional balls \(B \) and \(B' \) with radii \(r \) and \(r' \) around the same center point \(c \) with \(r > r' \) with \(d \geq 2 \). Let \(p \in \partial B \) and \(p' \in \partial B' \) with \(|pp'| = l \geq r \). Let \(B'' \) be the d-dimensional ball centered around \(c \) that is tangential to \(pp' \). We denote that tangential point with \(m \) and the distances \(|p'm| \) with \(l_1 \) and \(|pm| \) with \(l_2 \), so \(l = l_1 + l_2 \). Consider any line segment \(p_1p_2 \) with \(|p_1p_2| > l \), \(p_1 \in B' \) and \(p_2 \in B \). Then any point \(m^* \) on \(p_1p_2 \) with \(|p_1m^*| \geq l_1 \) and \(|p_2m^*| \geq l_2 \) lies inside \(B'' \).

Proof. For \(d = 2 \) we first show that \(|p_1p_2| \) intersects \(B'' \) at all. It is clear that we can rotate and reflex \(pp' \) without changing \(B'' \) as long as its length \(l \) stays the same. Hence we can assume without loss of generality, that \(p' \), \(c \) and \(p_2 \) are collinear with \(p_1 \in cp' \). Then \(p_2 \) must lie in \(B \setminus B(p', l) \) which means \(p_1p_2 \) intersects \(B'' \) as illustrated in Figure 1.

![Figure 1](image1.png)

Now consider a point \(m^* \) on \(p_1p_2 \) with \(|p_1m^*| \geq l_1 \) and \(|p_2m^*| \geq l_2 \). Assume \(m^* \) is not contained in \(B'' \). Then either \(p_1m^* \cap B'' = \emptyset \) and \(p_2m^* \cap B'' \neq \emptyset \) or the other way around as \(p_1p_2 \) intersects \(B'' \) somewhere.

Let’s first assume, \(p_1m^* \cap B'' = \emptyset \) and \(p_2m^* \cap B'' \neq \emptyset \). In this case \(p_1 \in B' \setminus B'' \). Let \(p_t \) be a point on the boundary of \(B'' \) such that \(p_1p_t \) is tangential to \(B'' \) and \(m^* \) lies within the triangle \(p_1p_t \). Clearly \(|p_1p_t| > |p_1m^*| \). But by construction of \(B'' \), \(|p'm| \geq |p_1p_t| \), which contradicts \(|p'm| = l_1 \leq |p_1m^*| \). This is illustrated in Figure 2 (assuming without loss of generality that \(p' \) is collinear with \(p_1p_2 \), as this does not not affect the construction of \(B'' \)).

![Figure 2](image2.png)

The other case can be shown equivalently by switching \(p_1 \) and \(p_2 \) and replacing \(p' \) and \(B' \) and \(l_1 \) with \(p \) and \(B \) and \(l_2 \), respectively.

For \(d > 2 \) we can show the lemma by choosing the 2-dimensional plane passing through \(c \) and the line segment \(p_1p_2 \) and then follow the same arguments as for \(d = 2 \).
Note, that the point m' on p_1p_2 with $\frac{|m'p_1|}{|p_1p_2|} = \frac{1}{l} = \frac{|m'p'|}{|pp'|}$ fulfills $|m'p_1| \geq l_1$ and $|m'p_2| \geq l_2$. The following corollary follows from that observation, Lemma 2.2 and the Pythagorean theorem and defines a way to calculate that point without actually knowing r^*.

\textbf{Corollary 2.3.} Let B and B' be two balls in \mathbb{R}^d with $c(B) = c(B')$ and radii $r(B) = r^*$ and $r(B') = r' = \delta r^*$ for some $0 < \delta \leq 1$. Then the line segment pp' between any two points $p \in \partial B$ and $p' \in \partial B'$ with distance $|pp'| = l = (1 + \varepsilon)r^*$ is tangential to $B'' = B(c,r_m)$ with

$$r_m \leq r^* \sqrt{1 - \left(\frac{(1 + (1 + \varepsilon))^2 - \delta^2}{2(1 + \varepsilon)}\right)^2}$$

at a point m^* with $l_1 := |m^*p'|$.

Let $p_1 \in B'$ and $p_2 \in B$ with $|p_1p_2| \geq l = (1 + \varepsilon)r^*$.

Then

$$m(p_1,p_2) := p_1 + (p_2 - p_1)\frac{l_1}{l} = p_2 + (p_1 - p_2)\frac{\delta^2 + (1 + \varepsilon)^2 - 1}{2(1 + \varepsilon)^2}$$

lies in the ball $B(c,r_m)$ and can be calculated independent of r^*, only knowing p_1, p_2, δ and ε.

One can extend this definition to a sequence m_1,m_2,\ldots,m_k based on a sequence of points p_1,\ldots,p_k with $p_i \in P$ with $|p_im_{j-1}| \geq (1 + \varepsilon)r^*$ for all $i \geq j > 1$.

Let

$$\delta_i := \begin{cases} 1, & \text{if } i = 1, \\ \sqrt{1 - \left(\frac{(1 + (1 + \varepsilon))^2 - \delta^2_i}{2(1 + \varepsilon)}\right)^2}, & \text{otherwise.} \end{cases}$$

and

$$m_i := \begin{cases} p_1, & \text{if } i = 1, \\ (m_{i-1},m_{i-1}) = m_{i-1} + (p_i - m_{i-1})\frac{\delta_i^2 + (1 + \varepsilon)^2 - 1}{2(1 + \varepsilon)^2}, & \text{otherwise.} \end{cases}$$

As all points in P lie in the ball $B(c^*,r^*)$, it follows by induction from Corollary 2.3 that m_i lies in the ball $B(c^*,\delta_i r^*)$.

\textsc{GradientMEB} starts with an arbitrary point p_1 from P as m_1 and always uses the farthest point from m_1 in P as p_i. That way, at each round we either have $|m_ip_{i+1}| > (1 + \varepsilon)r^*$ or m_i is already a $(1 + \varepsilon)$-approximation. As we do not know, which of both holds at any round, we just return the best m_i out of all rounds.

It remains to prove, that any sequence of points with $|p_im_{j-1}| \geq (1 + \varepsilon)r^*$ for all $i \geq j > 1$ contains at most $k \leq \lceil \frac{2}{\varepsilon} \rceil$ points before $m_i \in B(c^*,\varepsilon r^*)$.

If at step i, $|m_{i-1}p_i| = (1 + \varepsilon)r^*$, $p_i \in \partial B^*$ and $m_{i-1} \in \partial B(c^*,\delta_{i-1}r^*)$, then $m_i \in \partial B(c^*,\delta_i r^*)$ by Lemma 2.2. In that case, $m_i \in B(c^*,\varepsilon r^*)$ if and only if $\delta_i < \varepsilon$. As this is the worst-case, we can assume we were given our sequence of points $p_i \in P$ by an adversary, always fulfilling $|m_{i-1}p_i| = (1 + \varepsilon)r^*$ and $p_i \in \partial B^*$, which gives $m_{i-1} \in \partial B(c^*,\delta_{i-1})$ by induction.

We use a similar proof as [1] for their core-set based algorithm. For this we consider the line segments $a_i := m_{i-1}m_i$ with $|a_i| = \alpha_i(1 + \varepsilon)r^*$ and $b_i := m_ip_i$ with $|b_i| = \beta_i(1 + \varepsilon)r^*$ that together form $m_{i-1}p_i$ as illustrated in Figure 3.

As m_i converges towards c^* with increasing i, β_i increases and α_i decreases. However, β_i can be at most $\frac{1}{\delta_i(1 + \varepsilon)}$ by construction as b_i forms a right-angled triangle with c^*p_i as the hypotenuse, so $\beta_i(1 + \varepsilon)r^* = |b_i| < |c^*p_i| = r^*$. We will now show a lower bound on β_i and prove that it exceeds $\frac{1}{\delta_i(1 + \varepsilon)}$ for $i \geq \frac{2}{\varepsilon} - 1$. In that case, there does not exist a point p_i with $|m_{i-1}p_i| = (1 + \varepsilon)r^*$ and $p_i \in \partial B^*$ that our adversary could have given us. This
can only happen if the intersection of \(\partial B^* \) and \(\partial B(m_{i-1}, (1 + \varepsilon)r^*) \) is empty, and therefore, \(\partial B(m_{i-1}, (1 + \varepsilon)r^*) \) covers \(B^* \).

\[|b_i| = (1 + \varepsilon) r^* - |a_i| \Rightarrow \beta_i = 1 - \alpha_i. \quad (5) \]

In addition, by the construction of \(m_i \) as illustrated in Figure 3 and the Pythagorean theorem, it holds

\[\beta_i^2 (1 + \varepsilon)^2 = 1^2 - \delta_i^2 \]
\[= 1 - (\delta_{i-1}^2 - \alpha_i^2 (1 + \varepsilon)^2) \]
\[= 1 - ((1 - \beta_{i-1}^2)(1 + \varepsilon)^2) - \alpha_i^2 (1 + \varepsilon)^2) \]
\[\Rightarrow \beta_i^2 = \alpha_i^2 + \beta_{i-1}^2. \quad (6) \]

Combining these two equations we get

\[1 - \alpha_i = \sqrt{\beta_{i-1}^2 + \alpha_i^2} \]
\[1 - 2\alpha_i + \alpha_i^2 = \beta_{i-1}^2 + \alpha_i^2 \]
\[\Rightarrow \alpha_i = \frac{1 - \beta_{i-1}^2}{2}. \quad (7) \]

Applying Equation 5 again we obtain the recurrence

\[\beta_i = \frac{1 + \beta_{i-1}^2}{2}. \quad (8) \]

If we substitute \(\gamma_i = \frac{1}{1 - \beta_i} \Leftrightarrow \beta_i = \frac{\gamma_i - 1}{\gamma_i} \) in Equation 8, we get

\[\gamma_i = \frac{\gamma_{i-1} - 1}{1 - 1/(2\gamma_{i-1})} = \gamma_{i-1}(1 + \frac{1}{2\gamma_{i-1}^2} + \frac{1}{4\gamma_{i-1}^4} + \cdots) \geq \gamma_{i-1} + \frac{1}{2}. \quad (9) \]

As we have \(\beta_1 = 1/2 \) and hence \(\gamma_1 = 2 \), we know \(\gamma_i \geq (3+i)/2 \) and hence \(\beta_i \geq 1 - \frac{2}{3+i} \). To obtain \(\beta_i \geq 1/(1+\varepsilon) \) it suffices to have \(i \geq \lfloor 2/\varepsilon \rfloor - 1 \).

This also concludes the proof of Theorem 2.1.
2.1 Extension to the 2-center problem

We employ a strategy quite similar to the approach in [1]. We aim to construct two series of centers \(m_{1,j} \) and \(m_{2,k} \) based on two series of points from the two optimal balls \(B_1^* \) and \(B_2^* \).

We start with an arbitrary point \(p_1 \) and set \(m_{1,1} = p_1 \) as we can assume \(p_1 \in B_1^* \) without loss of generality. In every further step, we pick a point \(p_i \) farthest from the two current centers \(m_{1,j} \) and \(m_{2,k} \). As long as we have no center for \(B_2^* \), we pick the point furthest from \(m_{1,j} \). We then employ a guessing oracle that tells us whether \(p_i \) belongs to \(B_1^* \) or \(B_2^* \). Depending on its answer, we add the point to the sequence for the respective ball then calculate a new center \(m_{1,j+1} \) or \(m_{2,k+1} \) as in our 1-center algorithm.

After at most \(2\lceil \frac{2}{\varepsilon} \rceil \) picks, we obtain a \((1 + \varepsilon)\)-approximation. As we do not have a guessing oracle, we just exhaust all possible guesses and return the best solution encountered, which results in a running time of \(O(nd2^{\varepsilon}) \).

2.2 Extension to the \(k \)-center problem for \(k > 2 \)

The \(k \)-center algorithm is a straightforward extension of the 2-center algorithm. As we need to guess at most \(k\lceil \frac{2}{\varepsilon} \rceil \) points to obtain \((1 + \varepsilon)\)-approximation and have to exhaust \(k \) possibilities each, our algorithm runs in time \(O(ndk2^{\varepsilon}) \).

3 Conclusion

We provided a new efficient gradient-descent \((1 + \varepsilon)\)-approximation algorithm for MEB in arbitrary dimensions running in time \(O(nd/\varepsilon) \), which is strictly better than previous core-set based approaches with running times \(O(nd/\varepsilon + \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}) \) as long as \(nd \in o(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon}) \). Like the core-set based algorithms it can be extended to the \(k \)-center problem with a running time of \(O(ndk2^{\varepsilon}) \), which makes the gradient-descent based algorithm theoretically equivalent to the core-set based approach with possibly better run-time constants by combining similar analysis with new geometric observations.

References

