Maximum Rectilinear Crossing Number of Uniform Hypergraphs

Rahul Gangopadhyay¹ and Saif Ayan Khan²

- 1 IIIT Delhi
 rahulg@iiitd.ac.in
- 2 IIIT Delhi saifk@iiitd.ac.in

Abstract

We improve the lower bound on the d-dimensional rectilinear crossing number of the complete d-uniform hypergraph having 2d vertices to $\Omega(2^dd)$ from $\Omega(2^d\sqrt{d})$. In [4], Anshu et al. conjectured that among all d-dimensional rectilinear drawings of a complete d-uniform hypergraph having n vertices, the number of crossing pairs of hyperedges is maximized if all its vertices are placed on the d-dimensional moment curve and proved this conjecture for d=3. We prove that their conjecture is valid for d=4 by using Gale transform. We establish that the maximum d-dimensional rectilinear crossing number of a complete d-partite d-uniform balanced hypergraph is $(2^{d-1}-1)\binom{n}{2}^d$, where n denotes the number of vertices in each part. We then prove that finding the maximum d-dimensional rectilinear crossing number of an arbitrary d-uniform hypergraph is NP-hard and give a randomized scheme to create a d-dimensional rectilinear drawing of a d-uniform hypergraph d-unifo

1 Introduction

Let K_n^d denote the complete d-uniform hypergraph having n vertices and $\binom{n}{d}$ hyperedges. A d-uniform hypergraph is d-partite, if we can partition its vertex set into d disjoint parts such that each of the d vertices in each hyperedge belongs to a different part. This hypergraph is balanced if each part contains equal number of vertices. A balanced d-uniform d-partite hypergraph having n vertices in each part is complete if it has all n^d hyperedges and it is denoted by $K_{d\times n}^d$. A d-dimensional rectilinear drawing of a d-uniform hypergraph H in \mathbb{R}^d places the vertices of H in general position (i.e., no d+1 points lie on a (d-1)-dimensional hypeplane) and the hyperedges are drawn as the convex hull of d corresponding vertices, i.e., (d-1)-simplices, where two hyperedges are said to cross each other if they are vertex disjoint and contain a common point in their relative interiors [6]. The d-dimensional rectilinear crossing number of H, denoted by $\overline{cr}_d(H)$, is the minimum number of crossing pairs of hyperedges among all d-dimensional rectilinear drawings of H. Dey and Pach [6] proved that H can have $O(n^{d-1})$ hyperedges if $\overline{cr}_d(H) = 0$ and Anshu et al. [4] proved that $\overline{cr}_d(K_{2d}^d) = \Omega(2^d)$ with the bound being later improved to $\Omega(2^d\sqrt{d})$ [8]. An extensive survey on rectilinear drawings of graphs (2-uniform hypergraphs) in \mathbb{R}^2 can be found in [12].

Inspired by [11], we define the maximum d-dimensional rectilinear crossing number of a d-uniform hypergraph H, denoted by $\max \overline{cr}_d(H)$, as the maximum number of crossing pairs of hyperedges among all d-dimensional rectilinear drawings of H. The d-dimensional moment curve γ is defined as $\gamma = \{(t, t^2, \dots, t^d) : t \in \mathbb{R}\}$. Let $p_i = (t_i, t_i^2, \dots, t_i^d)$ and $p_j = (t_j, t_j^2, \dots, t_j^d)$ be two points on γ . We say that the point p_i precedes the point p_j $(p_i \prec p_j)$ if $t_i < t_j$. We denote the convex hull of a point set P by Conv(P). In [4], it was proved that placing all the vertices of K_{2d}^d on the d-dimensional moment curve gives a par-

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020. This is an extended abstract of a presentation given at EuroCG'20. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

ticular d-dimensional rectilinear drawing of K_{2d}^d having c_d^m crossing pairs of hyperedges, where

$$c_d^m = \begin{cases} \binom{2d-1}{d-1} - \sum\limits_{i=1}^{\frac{d}{2}} \binom{d}{i} \binom{d-1}{i-1} & if \ d \ is \ even \\ \binom{2d-1}{d-1} - 1 - \sum\limits_{i=1}^{\left\lfloor \frac{d}{2} \right\rfloor} \binom{d-1}{i} \binom{d}{i} & if \ d \ is \ odd. \end{cases}$$

Note that the best-known upper bound on $\overline{cr}_d(K_{2d}^d)$ is c_d^m . In [4], it was conjectured that the maximum number of crossing pairs of hyperedges in any d-dimensional rectilinear drawing of K_{2d}^d is c_d^m for each $d \geq 2$. Note that we need at least 2d vertices to form a crossing pair of hyperedges since they need to be vertex disjoint and each set of 2d vertices creates distinct crossing pairs of hyperedges. This implies that any d-dimensional rectilinear drawing of K_n^d can have at most $c_d^m \binom{n}{2d}$ crossing pairs of hyperedges if the conjecture as mentioned

earlier is correct. In [4], the authors also proved that $\max \overline{cr}_3(K_n^3) = 3\binom{n}{6}$. We summarize the main results in the following.

- ▶ Theorem 1.1. We have $\overline{cr}_d(K_{2d}^d) = \Omega(2^d d)$ for sufficiently large d.
- ▶ Theorem 1.2. We have $\max \overline{cr}_4(K_n^4) = 13 \binom{n}{8}$ for $n \ge 8$.
- ▶ Theorem 1.3. We have $\max \overline{cr}_d(K_{d\times n}^d) = (2^{d-1} 1) \binom{n}{2}^d$ for $d \ge 2$ and $n \ge 2$.
- ▶ **Theorem 1.4.** For a fixed $d \ge 3$, finding the maximum d-dimensional rectilinear crossing number of an arbitrary d-uniform hypergraph is NP-hard.
- ▶ **Theorem 1.5.** Let H = (V, E) be a d-uniform hypergraph. Let F be the total number of pairs of vertex disjoint hyperedges. There exists a d-dimensional rectilinear drawing D of H such that there are at least $\tilde{c_d} \cdot F$ crossing pairs of hyperedges in D, where $\tilde{c_d}$ is a positive constant.

1.1 Techniques used

Let $A = \langle a_1, a_2, \dots, a_n \rangle$ be a sequence of n points in \mathbb{R}^d such that their affine hull is \mathbb{R}^d . The Gale transform [7] of A, denoted by D(A), is a sequence of n vectors $\langle g_1, g_2, \dots, g_n \rangle$ in \mathbb{R}^{n-d-1} .

Let the coordinate of a_i be $(x_1^i, x_2^i, \dots, x_d^i)$. Let us consider the following matrix M(A) having rank d+1.

$$M(A) = \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^n \\ x_2^1 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots \\ x_d^1 & x_d^2 & \cdots & x_d^n \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

Consider a basis of the null space of M(A). Let $\{(b_1^1, b_2^1, \dots, b_n^1), (b_1^2, b_2^2, \dots, b_n^2), \dots, (b_1^{n-d-1}, b_2^{n-d-1}, \dots, b_n^{n-d-1})\}$ be a basis of this null space. The vector g_i in the sequence D(A) of n vectors is $g_i = (b_i^1, b_i^2, \dots, b_i^{n-d-1})$.

A linear separation of vectors in D(A) is a partition of the vectors into $D^+(A)$ and $D^-(A)$ by a hyperplane passing through the origin. When |D(A)| is even, a linear separation is called proper if $|D^+(A)| = |D^-(A)| = |D(A)|/2$.

A vector configuration is said to be totally cyclic if the zero vector can be expressed as a strictly positive linear combination of the vectors present in the configuration. Any totally cyclic vector configuration of n vectors in \mathbb{R}^{n-d-1} that spans \mathbb{R}^{n-d-1} can serve as a Gale transform of some point set having n points in \mathbb{R}^d after proper scaling [9, 14].

- ▶ **Lemma 1.6.** [9] Every set of n-d-1 vectors of D(A) span \mathbb{R}^{n-d-1} if and only if the points in A are in general position in \mathbb{R}^d .
- ▶ Lemma 1.7. [9] Consider a tuple (i_1, i_2, \ldots, i_k) , where $1 \leq i_1 < i_2 < \ldots < i_k \leq n$. The convex hull of $\{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\}$ crosses the convex hull of $A \setminus \{a_{i_1}, a_{i_2}, \ldots, a_{i_k}\}$ if and only if there exists a linear separation of the vectors in D(A) into $\{g_{i_1}, g_{i_2}, \ldots, g_{i_k}\}$ and $D(A) \setminus \{g_{i_1}, g_{i_2}, \ldots, g_{i_k}\}$.

Let us consider a hyperplane h that is not parallel to any vector in D(A) and not passing through the origin. For each $1 \leq i \leq n$, we extend the vector $g_i \in D(A)$ either in the direction of g_i or in its opposite direction until it cuts h at the point $\overline{g_i}$. We color $\overline{g_i}$ as red if the projection is in the direction of g_i , and blue otherwise. The sequence of points $\overline{D(A)} = \langle \overline{g_1}, \overline{g_2}, \dots, \overline{g_n} \rangle$ in \mathbb{R}^{n-d-2} along with the color is called an affine Gale diagram of A.

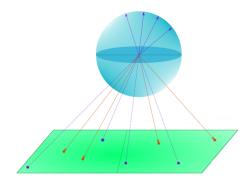


Figure 1 An affine Gale diagram of 8 points in \mathbb{R}^4 .

Balanced 2m-set: Let T be a set of n red and n blue points in \mathbb{R}^2 such that all the 2n points are in general position. A balanced 2m-set ($1 \le m \le \lfloor n/2 \rfloor$) of T is a subset $X \subseteq T$ of size 2m that can be separated from the rest of the (2n-2m) points by a line and X is balanced, i.e., it has an equal number of red and blue points.

We define a balanced 0-set to be a partition of T into an empty set and T. Note that there is only one balanced 0-set of a set.

▶ Observation 1. For a set A' of 8 points in general position in \mathbb{R}^4 , there will always exist an affine Gale diagram $\overline{D(A')}$ having 4 red points and 4 blue points in \mathbb{R}^2 such that all the 8 points are in general position (shown in Figure 1). The total number of proper linear separations in D(A') is equal to the sum of the total number of balanced 2-sets of $\overline{D(A')}$, the total number of balanced 4-sets of $\overline{D(A')}$ and 1.

We can think of order types as equivalence classes. Point configurations that have the same order type share many combinatorial and geometric properties [14]. Aichholzer et al. [1, 2] created a database which contains all order types of 8 points in general position in \mathbb{R}^2 . We use those point sets in the proof of Theorem 1.2.

▶ Lemma 1.8. [3] Let us consider d pairwise disjoint sets in \mathbb{R}^d , each consisting of two points, such that all 2d points are in general position. Then there exist 2 pairwise disjoint (d-1) simplices such that each simplex has one vertex from each set.

We state the following lemmas which are used in the proof of Theorem 1.1.

- ▶ Lemma 1.9. [8] Let C' be a set containing d+4 points in general position in \mathbb{R}^d . There exist $\lfloor (d+4)/2 \rfloor$ pairs of disjoint subsets of C', each of size $\lfloor (d+2)/2 \rfloor$ such that their union is C' and their convex hulls intersects.
- ▶ Lemma 1.10. [8] Consider a set C that contains 2d points in general position in \mathbb{R}^d . Let $C' \subset C$ be its subset such that |C'| = d+4. Let C'_1 and C'_2 be two disjoint subsets of C' such that $|C'_1| = c'_1, |C'_2| = c'_2, C'_1 \cup C'_2 = C'$ and $c'_1, c'_2 \ge \lfloor (d+2)/2 \rfloor$. If the $(c'_1 1)$ -simplex formed by C'_1 and the $(c'_2 1)$ -simplex formed by C'_2 form a crossing pair, then the (d-1)-simplex formed by a point set $B'_1 \supset C'_1$ and the (d-1)-simplex formed by a point set $B'_2 \supset C'_2$ satisfying $B'_1 \cap B'_2 = \emptyset$, $|B'_1|, |B'_2| = d$ and $B'_1 \cup B'_2 = C$ also form a crossing pair.

2 Improved Lower Bound on $\overline{cr}_d(K^d_{2d})$

Proof of Theorem 1.1: Let $V = \{v_1, v_2, \dots, v_{2d}\}$ denote the set of 2d points corresponding to the vertices of K_{2d}^d in its d-dimensional rectilinear drawing. Let E denote the set of (d-1)-simplices created by the corresponding hyperedges of K_{2d}^d in its particular d-dimensional rectilinear drawing. Let V' be any subset of V having d+4 points. Lemma 1.9 implies that there exist $\lfloor (d+4)/2 \rfloor$ pairs of subsets $\{V_{i1}', V_{i2}'\}$ $\{1 \le i \le \lfloor (d+4)/2 \rfloor\}$ which satisfy the properties mentioned in Lemma 1.9. It follows from Lemma 1.10 that each such crossing pair of (u_i-1) -simplex and (v_i-1) -simplex can be extended to obtain at least $\begin{pmatrix} d-4 \\ d-\lfloor (d+2)/2 \rfloor \end{pmatrix} = \Omega\left(2^d/\sqrt{d}\right)$ crossing pairs of (d-1)-simplices formed by the hyperedges in E. Therefore, the total number of crossing pairs of hyperedges originated from a particular choice of V' is at least $\lfloor (d+4)/2 \rfloor$ $\Omega\left(2^d/\sqrt{d}\right) = \Omega\left(2^d\sqrt{d}\right)$.

We can choose V' in $\binom{2d}{d+4} = \Theta\left(4^d/\sqrt{d}\right)$ ways. Note that if d is odd, a particular crossing pair of hyperedges can originate from at most $2\left(\binom{d}{\lfloor (d+2)/2\rfloor}\binom{d}{\lceil (d+2)/2\rceil+2} + \binom{d}{\lceil (d+2)/2\rceil+2}\right) = \Theta\left(4^d/d\right)$ such subsets of d+4 points from V. If d is even, a particular crossing pair of hyperedges can originate from at most $2\left(\binom{d}{(d+2)/2}\binom{d}{(d+6)/2}\right) + \binom{d}{(d+4)/2}^2 = \Theta\left(4^d/d\right)$ such subsets of d+4 points from V. This implies that there exist at least $\left(\Omega\left(2^d\sqrt{d}\right)\Theta\left(4^d/\sqrt{d}\right)\right)/O\left(4^d/d\right) = \Omega\left(2^dd\right)$ distinct crossing pairs of hyperedges in any d-dimensional rectilinear drawing of K_{2d}^d .

3 Maximum Rectilinear Crossing Number of Special Hypergraphs

Proof of Theorem 1.2: Let us consider all order types of the 8 points in general position in \mathbb{R}^2 [1, 2]. Let us denote the point sequence corresponding to the i^{th} ordertype with o_i . We also generate $\binom{8}{4} = 70$ possible colorings of a sequence of 8 points with 4 blue and 4 red. Each coloring is represented as an 8 bit binary string having an equal number of zeroes and ones. Let us denote the j^{th} coloring in lexicographical order by c_j . Formally, we consider the set $O_C = \{(o_i, c_j) : 1 \le i \le 3315 \ \& \ 1 \le j \le 70\}$.

Consider a 4-dimensional rectilinear drawing of K_8^4 . Let us denote these vertices by $V = \{v_1, v_2, \ldots, v_8\}$. Consider an affine Gale diagram $\overline{D(V)}$ of V having 4 red and 4 blue points such that all the 8 points are in general position in \mathbb{R}^2 . Observation 1 ensures that the number of proper linear separations of D(V) is equal to the sum of the total number of balanced 2-sets of $\overline{D(V)}$, the total number of balanced 4-sets of $\overline{D(V)}$ and 1. Note that $\overline{D(V)}$ is equivalent to one of the elements of O_C but all elements of O_C need not be a Gale diagram of some 8 points in \mathbb{R}^4 . We find the maximum value of (total number of balanced 2-sets + the total number of balanced 4-sets) over all members of O_C by analyzing each of its members by computer¹. Observation 1 implies that the maximum number of proper linear separations of D(V) is 12 + 1 = 13. Lemma 1.7 implies that the maximum number of crossing pairs of hyperedges in any 4-dimensional rectilinear drawing of K_8^4 is 13.

Consider a 4-dimensional rectilinear drawing of K_n^4 where all the vertices are placed on the 4-dimensional moment curve. This 4-dimensional rectilinear drawing of K_n^4 contains $13\binom{n}{8}$ crossing pairs of hyperedges.

▶ Lemma 3.1. Consider a 4-dimensional neighborly polytope P having n vertices such that all the vertices of P are in general position in \mathbb{R}^4 . Consider a 4-dimensional rectilinear drawing of K_n^4 such that the vertices of K_n^4 are placed as the vertices of P. The number of crossing pairs of hyperedges in this 4-dimensional rectilinear drawing of K_n^4 is $13\binom{n}{8}$.

Remarks: The proof of Lemma 3.1 is also computer assisted. We consider the set O_C . A member of O_C is a Gale diagram of a 4-dimensional neighborly polytope having 8 vertices if and only if any 2-set and 4-set is balanced and there is no monochromatic 3-set in it. We showed that the number of crossing pairs of hyperedges in a 4-dimensional rectilinear drawing of K_8^4 where its vertices are placed as the vertices of a 4-dimensional neighborly polytope is 13. Since any set of 8 vertices of P spans a neighborly sub-polytope, the result follows.

▶ **Lemma 3.2.** The maximum d-dimensional rectilinear crossing number of $K_{d\times 2}^d$ is $2^{d-1}-1$.

Proof Sketch: Lemma 1.8 implies that in any d-dimensional rectilinear drawing of $K_{d\times 2}^d$, there exists a pair of disjoint simplices such that each simplex has one vertex from each part of $K_{d\times 2}^d$. We then give a placement of the vertices of $K_{d\times 2}^d$ that achieves this bound. For each i satisfying $1 \le i \le d$, let us denote the i^{th} part of the vertex set of $K_{d\times 2}^d$ by C_i . Let $\{p_{c_i}, p'_{c_i}\}$ denote the set of 2 vertices in C_i . In this particular drawing, the vertices of $K_{d\times 2}^d$ are placed on the d-dimensional moment curve such that they satisfy the following ordering on the d-dimensional moment curve. $p_{c_1} \prec p'_{c_2} \prec p'_{c_2} \ldots \prec p_{c_{d-1}} \prec p'_{c_{d-1}} \prec p_{c_d} \prec p'_{c_d}$.

The only pair of hyperedges $\{A, B\}$ that does not form a crossing is the following. For d = 4, it is shown in Figure 2.

$$A = \{p_{c_1}, p'_{c_2}, p_{c_3}, p'_{c_4}, \dots, p_{c_{d-1}}, p'_{c_d}\}, B = \{p'_{c_1}, p_{c_2}, p'_{c_3}, p_{c_4}, \dots, p'_{c_{d-1}}, p_{c_d}\}.$$

Proof Sketch of Theorem 1.3: For each i satisfying $1 \le i \le d$, let C_i be the i^{th} color class of the vertex set of $K_{d \times n}^d$. Let $\{p_1^i, p_2^i, \ldots, p_n^i\}$ be the set of n vertices in C_i . Consider the following arrangement of the vertices of $K_{d \times n}^d$ on the d-dimensional moment curve.

- Any vertex of C_i precedes any vertex of C_j if i < j.
- For each i satisfying $1 \le i \le d$, $p_l^i \prec p_m^i$ if l < m.

¹https://github.com/ayan-iiitd/maximum-rectilinear-crossing-number-of-uniform-hypergraphs.git

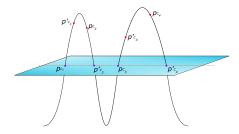


Figure 2 Non-crossing pair of hyperedges of $K_{4\times 2}^4$.

Lemma 3.2 implies that this particular d-dimensional rectilinear drawing of $K_{d\times n}^d$ contains $(2^{d-1}-1)\binom{n}{2}^d$ crossing pairs of hyperedges.

4 Maximum Rectilinear Crossing Number of General Hypergraphs

MAX- E_d -Set-Splitting: Consider a collection F of subsets of a finite set X. Each set in F has cardinality d ($d \ge 2$). It is NP-hard to find a partition of X such that it maximizes the number of subsets of F which are not contained in either of the partitions [10].

Proof Sketch of Theorem 1.4: We are given a *d*-uniform hypergraph H = (V, E) and a constant integer c'. We create a *d*-uniform hypergraph $\tilde{H} = (\tilde{V}, \tilde{E})$, where

$$\tilde{V} = V \cup \{v'_0, v'_1, v'_2, \dots, v'_{t(d-1)}\} \text{ where } t = \binom{|E|}{2} + 1.$$

$$\tilde{E} = \bigcup_i \{e_i\} \cup E \text{ where } e_i = \{v'_0, v'_{(i-1)(d-1)+1}, v'_{(i-1)(d-1)+2}, \dots, v'_{(i-1)(d-1)+(d-1)}\} \text{ for each } i \text{ satisfying } 1 \le i \le t.$$

We prove that \tilde{H} has a d-dimensional rectilinear drawing D having at least tc' crossing pairs of hyperedges if and only if there exists a partition of V into two parts such that at least c' hyperedges of E contains at least one vertex from both the parts.

Proof Sketch of Theorem 1.5: Let $V = \{v_1, v_2, \dots, v_n\}$ be the vertex set of H. Pick an uniformly random permutation of V. Place the vertices on the d-dimensional moment curve according to that order.

5 Discussions and Open Problems

▶ Conjecture 1. Among all d-dimensional (d > 4) rectilinear drawings of K_n^d , the number of crossing pairs of hyperedges gets maximized if all the vertices of K_n^d are placed as the vertices of a neighborly d-polytope that are in general position in \mathbb{R}^d .

Theorem 1.5 shows that there is a randomized approximation algorithm which in expectation provides a $\tilde{c_d} = \frac{c_d^m}{\binom{2d-1}{d-1}}$ guarantee. It is an interesting open problem to derandomize such

algorithm. For d = 2, Bald et al. [5] derandomized the algorithm by Verbitsky [13].

References

O. Aichholzer. Order Types for Small Point Sets. http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/ordertypes/

- O. Aichholzer, F. Aurenhammer and H. Krasser. Enumerating order types for small point sets with applications. Order 19, 265-281 (2002).
- 3 J. Akiyama and N. Alon. Disjoint simplices and geometric hypergraphs. Annals of the New York Academy of Sciences 555, 1-3 (1989).
- 4 A. Anshu, R. Gangopadhyay, S. Shannigrahi and S. Vusirikala. On the rectilinear crossing number of complete uniform hypergraphs. Computational Geometry: Theory and Applications 61, 38-47 (2017).
- 5 S. Bald, M. P. Johnson and O. Liu. Approximating the maximum rectilinear crossing number. In Proceedings of International Computing and Combinatorics Conference. Springer, 455-467(2016).
- T. K. Dey and J. Pach. Extremal problems for geometric hypergraphs. Algorithms and Computation (Proc. ISAAC '96, Osaka; T. Asano et al., eds.), Lecture Notes in Computer Science 1178, Springer-Verlag, 105-114 (1996). Also in: Discrete and Computational Geometry 19, 473-484 (1998).
- 7 D. Gale. Neighboring vertices on a convex polyhedron. Linear inequalities and related system 38, 255-263 (1956).
- 8 R. Gangopadhyay and S. Shannigrahi. k-Sets and Rectilinear Crossings in Complete Uniform Hypergraphs. arXiv preprint arXiv:1806.02574 (2018).
- 9 J. Matoušek. Lectures in Discrete Geometry. Springer, 2002.
- 10 L. Lovász. Coverings and colorings of hypergraphs. In Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing. Utilitas Mathematica Publishing, 3-12 (1973).
- G. Ringel. Extremal problems in the theory of graphs. In Proceedings of Theory of Graphs and its Applications, 85-90 (1964).
- M. Schaefer. The graph crossing number and its variants: A survey. The electronic journal of combinatorics 1000, 21-22 (2013).
- O. Verbitsky. On the obfuscation complexity of planar graphs. Theoretical Computer Science 396, 294-300 (2008).
- 14 G. M. Ziegler. Lectures on Polytopes. Springer, 1995.