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Abstract
Hierarchical embedding constraints define a set of allowed cyclic orders for the edges incident to
the vertices of a graph. These constraints are expressed in terms of FPQ-trees. FPQ-trees are
a variant of PQ-trees that includes F-nodes in addition to P-nodes and to Q-nodes: An F-node
represents a permutation that is fixed, i.e., it cannot be reversed. LetG be a graph such that every
vertex of G is equipped with a set of FPQ-trees encoding hierarchical embedding constraints for
its incident edges. We study the problem of testing whether G admits a planar embedding such
that, for each vertex v of G, the cyclic order of the edges incident to v is described by at least one
of the FPQ-trees associated with v. We prove that the problem is fixed-parameter tractable for
biconnected graphs, where the parameters are the treewidth of G and the number of FPQ-trees
associated with every vertex. We also show that the problem is NP-complete if parameterized
by the number of FPQ-trees only, and W[1]-hard if parameterized by the treewidth only.

1 Introduction

The study of graph planarity testing and of its variants is at the heart of graph algorithms
and of their applications. This paper is inspired by a work of Gutwenger et al. [7], who
study the graph planarity testing problem subject to hierarchical embedding constraints.
Hierarchical embedding constraints specify for each vertex v of G which cyclic orders of the
edges incident to v are admissible in a constrained planar embedding of G. For example,
Fig. 1 shows the edges incident to a vertex v and a set of hierarchical embedding constraints
on these edges. Edges are partitioned into four sets, denoted as E1, E2, E3, and E4; the
constraints allow only two distinct clockwise cyclic orders for these edge-sets, namely either
E1E2E3E4 (Fig. 1a) or E1E3E2E4 (Fig. 1b). Within each set, the constraints of Fig. 1 allow
the edges of E1, E2, and E3 to be arbitrarily permuted, while the edges of E4 are partitioned
into three subsets E′

4, E
′′
4 , and E′′′

4 such that E′′
4 must appear between E′

4 and E′′′
4 in the

clockwise order around v. The edges of E′
4 can be arbitrarily permuted, while the edges of

E′′
4 and the edges of E′′′

4 have only two possible orders that are the reverse of one another.
Hierarchical embedding constraints can be encoded by using FPQ-trees, a variant of

PQ-trees that includes F-nodes in addition to P-nodes and to Q-nodes. An F-node encodes
a permutation that cannot be reversed. For example, the hierarchical embedding constraints
of Fig. 1 can be represented by two FPQ-trees denoted as T and T ′ in Fig. 1a and 1b.

Gutwenger et al. [7] study the planarity testing problem with hierarchical embedding
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Figure 1 Two examples of a vertex v with hierarchical embedding constraints and the corre-
sponding FPQ-trees. F-nodes are shaded boxes, Q-nodes are white boxes, and P-nodes are circles.

constraints by allowing at most one FPQ-tree per vertex. We generalize their study and allow
more than one FPQ-tree associated with each vertex. Our main results are the following.

We show that FPQ-Choosable Planarity Testing is NP-complete even if the num-
ber of FPQ-trees associated with each vertex is bounded by a constant greater than 1,
and it remains NP-complete even if the FPQ-trees only contain P-nodes. This contrasts
with the result of Gutwenger et al. [7] who prove that FPQ-Choosable Planarity
Testing can be solved in linear time when each vertex is equipped with at most one
FPQ-tree.
We prove that FPQ-Choosable Planarity Testing is W[1]-hard if parameterized by
treewidth, and that it remains W[1]-hard even when the FPQ-trees only contain P-nodes.
The above results imply that FPQ-Choosable Planarity Testing is not fixed-
parameter tractable if parameterized by treewidth only or by the number of FPQ-trees
per vertex only. For a contrast, we show that FPQ-Choosable Planarity Testing
becomes fixed-parameter tractable for biconnected graphs when parameterized by both
the treewidth and the number of FPQ-trees associated with every vertex.

Proofs and details omitted from this extended abstract can be found in the full version [8].

Preliminaries. We assume familiarity with graph theory and algorithms, and with the
concepts of PQ-tree, SPQR-decomposition tree, branchwidth, treewidth and sphere-cut de-
composition of a graph [3, 4, 5, 6, 9]. We only briefly recall some of the basic concepts that
will be used extensively in the rest of the paper (see also [1]).
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Figure 2 (a) A biconnected planar graph G. (b) An SPQR-decomposition tree of G. (c) The
embedding tree of v2.

Given a graph G together with a fixed combinatorial embedding, we can associate with
each vertex v a PQ-tree Tv whose leaves represent the edges incident to v. The tree Tv
encodes a set of permutations for its leaves: Each of these permutations is in a bijection
with a cyclic order of the edges incident to v. If there is a permutation πv of the leaves of
Tv that is in a bijection with a cyclic order σv of the edges incident to v, we say that Tv
represents σv, or equivalently that σv is represented by Tv. An FPQ-tree is a PQ-tree where,
for some of the Q-nodes, the reversal of the permutation described by their children is not
allowed. To distinguish these Q-nodes from the regular ones, we call them F-nodes.

The planar combinatorial embeddings that are given by the SPQR-decomposition tree
of a biconnected graph G give constraints on the cyclic order of edges around each vertex
of G. These constraints can be encoded by associating a PQ-tree with each vertex v of G,
called the embedding tree of v and denoted by T εv (see, e.g., [2]). For example, Fig. 2c shows
the embedding tree T εv2

of the vertex v2 in Fig. 2a. Note that edges f and h (i and j, resp.)
belong to an R-node (a P-node, resp.) in the SPQR-decomposition tree of G (Fig. 2b),
hence the corresponding leaves are connected to a Q-node (a P-node, resp.) in T εv2

.

2 The FPQ-choosable Planarity Testing Problem

Let G = (V,E) be a (multi-)graph, let v ∈ V , and let Tv be an FPQ-tree whose leaf set
is E(v). We define consistent(Tv) as the set of cyclic orders of the edges incident to v in
a planar embedding E of G that are represented by the FPQ-tree Tv. An FPQ-choosable
graph is a pair (G,D) where G = (V,E) is a (multi-)graph, and D is a mapping that as-
sociates each vertex v ∈ V with a set D(v) of FPQ-trees whose leaf set is E(v). Given a
planar embedding E of G, we denote by E(v) the cyclic order of edges incident to v in E .
An assignment A is a function that assigns to each vertex v ∈ V an FPQ-tree in D(v).
We say that A is compatible with G if there exists a planar embedding E of G such that
E(v) ∈ consistent(A(v)) for all v ∈ V . In this case, we also say that E is consistent with A.
An FPQ-choosable graph (G,D) is FPQ-choosable planar if there exists an assignment that
is compatible with G. Refer to Fig. 3 for an example.

The FPQ-Choosable Planarity Testing problem receives as input an FPQ-
choosable graph (G,D) and it asks whether (G,D) is FPQ-choosable planar. In the rest of
the paper we assume that G is a biconnected (multi-)graph. Clearly G must be planar or
else the problem becomes trivial. Also, any assignment that is compatible with G must de-
fine a planar embedding of G among those described by an SPQR-decomposition tree of G.
Therefore, a preliminary step for an algorithm that tests whether (G,D) is FPQ-choosable
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Figure 3 (a) An FPQ-choosable planar graph (G, D). (b) A planar embedding of G that is
consistent with assignment {A(u1) = Tα, A(u2) = Tγ , A(u3) = Tδ, A(u4) = Tε}; the assignment is
compatible with G. (c) A non-planar embedding of G that is consistent with assignment {A(u1) =
Tα, A(u2) = Tβ , A(u3) = Tδ, A(u4) = Tε}; there is no planar embedding that is consistent with A.

planar is to intersect each FPQ-tree Tv ∈ D(v) with the embedding tree T εv of v, so that
the cyclic order of the edges incident to v satisfies both the constraints given by Tv and the
ones given by T εv . (See, e.g., [2] for details about the operation of intersection between two
PQ-trees, whose extension to the case of FPQ-trees is straightforward). We assume that the
FPQ-trees of D have been intersected with the corresponding embedding trees and we still
denote by D(v) the set of FPQ-trees associated with v and resulting from the intersection.

3 Complexity of FPQ-choosable Planarity Testing

As we are going to show, FPQ-Choosable Planarity Testing is fixed-parameter tractable
when parameterized by treewidth and number of FPQ-trees per vertex. One may wonder
whether the problem remains FPT if parameterized by the treewidth only or by the number
of FPQ-trees per vertex only. The following theorems answer this question in the negative.

I Theorem 3.1. FPQ-Choosable Planarity Testing with a bounded number of FPQ-
trees per vertex is NP-complete. It is NP-complete even if the FPQ-trees have only P-nodes.

I Theorem 3.2. FPQ-Choosable Planarity Testing parameterized by treewidth is
W[1]-hard. It is W[1]-hard even if the FPQ-trees have only P-nodes.

4 Fixed Parameter Tractability of FPQ-choosable Planarity Testing

In this section, we introduce some concepts that are fundamental to the description of the
algorithm and we present a polynomial-time testing algorithm for graphs having bounded
branchwidth and such that the number of FPQ-trees associated with each vertex is bounded
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by a constant. Note that, for a graph G with treewidth t and branchwidth b > 1, it holds
that b− 1 ≤ t ≤

⌊ 3
2b

⌋
− 1 [9].

Let T be an FPQ-tree, let leaves(T ) denote the set of its leaves, and let L be a proper
subset of leaves(T ). We denote by σ a cyclic order of the leaves of an FPQ-tree, and we say
that σ ∈ consistent(T ) if the FPQ-tree T represents σ. We say that L is a consecutive set if
the leaves in L are consecutive in every cyclic order represented by T . Let e be an edge of T ,
and let T ′ and T ′′ be the two subtrees obtained by removing e from T . If either leaves(T ′)
or leaves(T ′′) are a subset of a consecutive set L, then we say that e is a split edge for L.
The subtree that contains the leaves in L is the split subtree of e for L. A split edge e is
maximal for L if there exists no split edge e′ such that the split subtree of e′ contains e.

I Lemma 4.1. Let T be an FPQ-tree, let L be a consecutive proper subset of leaves(T ), and
let S be the set of maximal split edges for L. Then either |S| = 1, or |S| > 1 and there exists
a Q-node (or an F-node) χ of T such that χ has degree at least |S|+ 2 and the elements of
S appear consecutive around χ.

If |S| = 1, the split edge in S is called the boundary of L. If |S| > 1, the Q-node (or F-
node) χ defined in the statement of Lemma 4.1 is the boundary of L. Since F-nodes are a
more constrained version of Q-nodes, when we refer to boundary Q-nodes we also take into
account the case of F-nodes. Fig. 4a shows an FPQ-choosable graph (G,D) and two FPQ-
trees Tu ∈ D(u) and Tv ∈ D(v). The three red edges b, c, and d of G define a consecutive
set Lu in Tu; the edges e and f define a consecutive set Lv in Tv. The boundary of Lu in Tu
is a Q-node, while the boundary of Lv in Tv is an edge.

We denote by B(L) the boundary of a set of leaves L. If B(L) is a Q-node, we asso-
ciate B(L) with a default orientation that arbitrarily defines one of the two possible permuta-
tions of its children. This default orientation is called the clockwise orientation of B(L), while
the other possible permutation of the children of B(L) is the counter-clockwise orientation.

Let L′ = L ∪ {`}, where ` is a new element. Let σ ∈ consistent(T ), and let σ|L′ be
a cyclic order obtained from σ by replacing the elements of the consecutive set leaves(T )\L by
the single element `. We say that a cyclic order σ′ of L′ is extensible if there exists a cyclic or-
der σ ∈ consistent(T ) with σ|L′ = σ′ (and σ is an extension of σ′). An extensible order σ is
clockwise if the orientation of χ is clockwise; σ is counter-clockwise otherwise. If the bound-
ary of L is an edge, we consider any extensible order as both clockwise and counter-clockwise.

Let (G,D) be an FPQ-choosable graph, let T be an SPQR-decomposition tree of G and let
v be a pole of a node µ of T , let Tv ∈ D(v) be an FPQ-tree associated with v, let Eext be
the set of edges that are incident to v and not contained in the pertinent graph Gµ, and let
E?µ(v) = E(v) \ Eext. Note that there is a bijection between the edges E(v) of G and the
leaves of Tv, hence we shall refer to the set of leaves of Tv as E(v). Also note that E?µ(v)
is represented by a consecutive set of leaves in Tv, because in every planar embedding of G
the edges in E?µ(v) must appear consecutively in the cyclic order of the edges incident to v.

The pertinent FPQ-tree of Tv, denoted as Pertµ(Tv), is the FPQ-tree obtained from Tv by
replacing the consecutive set Eext with a single leaf `. Informally, the pertinent FPQ-tree of
v describes the hierarchical embedding constraints for v within Gµ. For example, in Fig. 4b
a pertinent graph Gµ with poles u and v is highlighted by a shaded region; the pertinent
FPQ-tree Pertµ(Tu) of Tu and the pertinent FPQ-tree Pertµ(Tv) of Tv are obtained by the
FPQ-trees Tu and Tv of Fig. 4a.

Let ν1, . . . , νk be the children of µ in T . Observe that the edges E?νi
(v) of each Gνi

(1 ≤ i ≤ k) form a consecutive set of leaves of Aµ(v) = Pertµ(Tv). The skeletal FPQ-tree of
Pertµ(Tv), denoted by Skelµ(Tv), is the tree obtained from Pertµ(Tv) by replacing each of the
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Figure 4 (a) A boundary Q-node in Tu and a boundary edge in Tv. (b) Pertinent FPQ-trees
Pertµ(Tu) and Pertµ(Tv). (c) Skeletal FPQ-trees Skelµ(Tu) of Pertµ(Tu) and Skelµ(Tv) of Pertµ(Tv).

consecutive sets E?νi
(v) (1 ≤ i ≤ k) by a single leaf `i (see Fig. 4c). Note that each Q-node of

Skelµ(Tu) corresponds to a Q-node of Pertµ(Tu), and thus to a Q-node of Tu; also, distinct
Q-nodes of Skelµ(Tu) correspond to distinct Q-nodes of Pertµ(Tu), and thus to distinct Q-
nodes of Tu. For each Q-node χ of Tu that is a boundary of µ or of one of its children, there
is a corresponding Q-node in Skelµ(Tu) that inherits its default orientation from Tu.
Let (G,D) be an FPQ-choosable graph, let T be an SPQR-decomposition tree ofG, let µ be a
node of T , and let u and v be the poles of µ. We denote by (Gµ, Dµ) the FPQ-choosable graph
consisting of the pertinent graph Gµ and the set Dµ that is defined as follows: Dµ(z) = D(z)
for each vertex z of Gµ that is not a pole, and Dµ(v) = {Pertµ(Tv) | Tv ∈ D(v)} if v is a pole
of µ. A tuple 〈Tu, Tv, ou, ov〉 ∈ D(u)×D(v)×{0, 1}×{0, 1} is admissible for Gµ if there exist
an assignment Aµ of (Gµ, Dµ) and a planar embedding Eµ of Gµ consistent with Aµ such that
Aµ(u) = Pertµ(Tu), Aµ(v) = Pertµ(Tv), B(E?µ(u)) is clockwise (counter-clockwise) in Tu if
ou = 0 (ou = 1), and B(E?µ(v)) is clockwise (counter-clockwise) in Tv if ov = 0 (ov = 1). A
tuple is admissible for µ if it is admissible for Gµ. Ψ(µ) is the set of admissible tuples for Gµ.

FPT Algorithm: In order to test if (G,D) is FPQ-choosable planar, we root the SPQR-
decomposition tree T at an arbitrary Q-node and we visit T from the leaves to the root. At
each step of the visit, we equip the current node µ with the set Ψ(µ). If we encounter a node
µ such that Ψ(µ) = ∅, we return that (G,D) is not FPQ-choosable planar; otherwise the
planarity test returns an affirmative answer. If the currently visited node µ is a leaf of T , we
set Ψ(µ) = D(u)×D(v)× {0, 1} × {0, 1}, because its pertinent graph is a single edge. If µ
is an internal node, Ψ(µ) is computed from the sets of admissible tuples of the children of µ
and depending on whether µ is an S-, P-, or R-node. In the case of R-nodes, we compute the
set of admissible tuples by executing the sphere-cut decomposition of the skeleton of µ and
by exploiting the fact that it has branchwidth at most b, where b is the branchwidth of G.
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I Theorem 4.2. Let (G,D) be a biconnected FPQ-choosable (multi-)graph such that G =
(V,E) and |V | = n. Let D(v) be the set of FPQ-trees associated with vertex v ∈ V . There
exists an O(D

3
2 bmax ·n2 +n3)-time algorithm to test whether (G,D) is FPQ-choosable planar,

where b is the branchwidth of G and Dmax = maxv∈V |D(v)|.

As future work, it would be nice to extend Theorem 4.2 to simply connected graphs.
Indeed, our proof is based on the SPQR-decomposition that assumes the biconnectivity of
the input graph.
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