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—— Abstract

Hierarchical embedding constraints define a set of allowed cyclic orders for the edges incident to

the vertices of a graph. These constraints are expressed in terms of FPQ-trees. FPQ-trees are
a variant of PQ-trees that includes F-nodes in addition to P-nodes and to Q-nodes: An F-node
represents a permutation that is fixed, i.e., it cannot be reversed. Let G be a graph such that every
vertex of G is equipped with a set of FPQ-trees encoding hierarchical embedding constraints for
its incident edges. We study the problem of testing whether G admits a planar embedding such
that, for each vertex v of G, the cyclic order of the edges incident to v is described by at least one
of the FPQ-trees associated with v. We prove that the problem is fixed-parameter tractable for
biconnected graphs, where the parameters are the treewidth of G and the number of FPQ-trees
associated with every vertex. We also show that the problem is NP-complete if parameterized
by the number of FPQ-trees only, and W[1]-hard if parameterized by the treewidth only.

1 Introduction

The study of graph planarity testing and of its variants is at the heart of graph algorithms
and of their applications. This paper is inspired by a work of Gutwenger et al. [7], who
study the graph planarity testing problem subject to hierarchical embedding constraints.
Hierarchical embedding constraints specify for each vertex v of G which cyclic orders of the
edges incident to v are admissible in a constrained planar embedding of G. For example,
Fig. 1 shows the edges incident to a vertex v and a set of hierarchical embedding constraints
on these edges. Edges are partitioned into four sets, denoted as FEi, F», E3, and FEy; the
constraints allow only two distinct clockwise cyclic orders for these edge-sets, namely either
E\EyE3E, (Fig. 1a) or By EsEsEy (Fig. 1b). Within each set, the constraints of Fig. 1 allow
the edges of E1, F5, and E3 to be arbitrarily permuted, while the edges of E4 are partitioned
into three subsets Ej), EY, and E}’ such that E} must appear between E} and E}’ in the
clockwise order around v. The edges of Ej can be arbitrarily permuted, while the edges of
EJ and the edges of EJ’ have only two possible orders that are the reverse of one another.
Hierarchical embedding constraints can be encoded by using FPQ-trees, a variant of
PQ-trees that includes F-nodes in addition to P-nodes and to Q-nodes. An F-node encodes
a permutation that cannot be reversed. For example, the hierarchical embedding constraints
of Fig. 1 can be represented by two FPQ-trees denoted as T and T” in Fig. la and 1b.
Gutwenger et al. [7] study the planarity testing problem with hierarchical embedding
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Figure 1 Two examples of a vertex v with hierarchical embedding constraints and the corre-

sponding FPQ-trees. F-nodes are shaded boxes, Q-nodes are white boxes, and P-nodes are circles.

constraints by allowing at most one FPQ-tree per vertex. We generalize their study and allow
more than one FPQ-tree associated with each vertex. Our main results are the following.

We show that FPQ-CHOOSABLE PLANARITY TESTING is NP-complete even if the num-
ber of FPQ-trees associated with each vertex is bounded by a constant greater than 1,
and it remains NP-complete even if the FPQ-trees only contain P-nodes. This contrasts
with the result of Gutwenger et al. [7] who prove that FPQ-CHOOSABLE PLANARITY
TESTING can be solved in linear time when each vertex is equipped with at most one
FPQ-tree.

We prove that FPQ-CHOOSABLE PLANARITY TESTING is W[1]-hard if parameterized by
treewidth, and that it remains W[1]-hard even when the FPQ-trees only contain P-nodes.
The above results imply that FPQ-CHOOSABLE PLANARITY TESTING is not fixed-
parameter tractable if parameterized by treewidth only or by the number of FPQ-trees
per vertex only. For a contrast, we show that FPQ-CHOOSABLE PLANARITY TESTING
becomes fixed-parameter tractable for biconnected graphs when parameterized by both
the treewidth and the number of FPQ-trees associated with every vertex.

Proofs and details omitted from this extended abstract can be found in the full version [8].

Preliminaries. We assume familiarity with graph theory and algorithms, and with the
concepts of PQ-tree, SPQR-decomposition tree, branchwidth, treewidth and sphere-cut de-
composition of a graph [3, 4, 5, 6, 9]. We only briefly recall some of the basic concepts that
will be used extensively in the rest of the paper (see also [1]).
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Figure 2 (a) A biconnected planar graph G. (b) An SPQR-decomposition tree of G. (c) The
embedding tree of vs.

Given a graph G together with a fixed combinatorial embedding, we can associate with
each vertex v a PQ-tree T, whose leaves represent the edges incident to v. The tree T,
encodes a set of permutations for its leaves: Each of these permutations is in a bijection
with a cyclic order of the edges incident to v. If there is a permutation 7, of the leaves of
T, that is in a bijection with a cyclic order o, of the edges incident to v, we say that T,
represents o, or equivalently that o, is represented by T,,. An FPQ-tree is a PQ-tree where,
for some of the Q-nodes, the reversal of the permutation described by their children is not
allowed. To distinguish these Q-nodes from the regular ones, we call them F-nodes.

The planar combinatorial embeddings that are given by the SPQR-decomposition tree
of a biconnected graph G give constraints on the cyclic order of edges around each vertex
of GG. These constraints can be encoded by associating a PQ-tree with each vertex v of G,
called the embedding tree of v and denoted by T¢ (see, e.g., [2]). For example, Fig. 2¢ shows
the embedding tree T, of the vertex vy in Fig. 2a. Note that edges f and h (i and j, resp.)
belong to an R-node (a P-node, resp.) in the SPQR-decomposition tree of G (Fig. 2b),
hence the corresponding leaves are connected to a Q-node (a P-node, resp.) in 77, .

2 The FPQ-choosable Planarity Testing Problem

Let G = (V, E) be a (multi-)graph, let v € V, and let T}, be an FPQ-tree whose leaf set
is E(v). We define consistent(T,) as the set of cyclic orders of the edges incident to v in
a planar embedding £ of G that are represented by the FPQ-tree T;,,. An FPQ-choosable
graph is a pair (G, D) where G = (V, E) is a (multi-)graph, and D is a mapping that as-
sociates each vertex v € V with a set D(v) of FPQ-trees whose leaf set is E(v). Given a
planar embedding £ of G, we denote by £(v) the cyclic order of edges incident to v in &.
An assignment A is a function that assigns to each vertex v € V an FPQ-tree in D(v).
We say that A is compatible with G if there exists a planar embedding £ of G such that
E(v) € consistent(A(v)) for all v € V. In this case, we also say that &£ is consistent with A.
An FPQ-choosable graph (G, D) is FPQ-choosable planar if there exists an assignment that
is compatible with G. Refer to Fig. 3 for an example.

The FPQ-CHOOSABLE PLANARITY TESTING problem receives as input an FPQ-
choosable graph (G, D) and it asks whether (G, D) is FPQ-choosable planar. In the rest of
the paper we assume that G is a biconnected (multi-)graph. Clearly G must be planar or
else the problem becomes trivial. Also, any assignment that is compatible with G must de-
fine a planar embedding of G among those described by an SPQR-decomposition tree of G.
Therefore, a preliminary step for an algorithm that tests whether (G, D) is FPQ-choosable
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Figure 3 (a) An FPQ-choosable planar graph (G, D). (b) A planar embedding of G that is
consistent with assignment {A(u1) = Tu, A(u2) = Ty, A(us) = Ts5, A(ua) = T.}; the assignment is
compatible with G. (c¢) A non-planar embedding of G that is consistent with assignment {A(u1) =
T, A(uz) = T, A(uz) = Ts, A(ua) = T.}; there is no planar embedding that is consistent with A.

planar is to intersect each FPQ-tree T, € D(v) with the embedding tree T of v, so that
the cyclic order of the edges incident to v satisfies both the constraints given by T, and the
ones given by T¢. (See, e.g., [2] for details about the operation of intersection between two
PQ-trees, whose extension to the case of FPQ-trees is straightforward). We assume that the
FPQ-trees of D have been intersected with the corresponding embedding trees and we still
denote by D(v) the set of FPQ-trees associated with v and resulting from the intersection.

3 Complexity of FPQ-choosable Planarity Testing

As we are going to show, FPQ-CHOOSABLE PLANARITY TESTING is fixed-parameter tractable
when parameterized by treewidth and number of FPQ-trees per vertex. One may wonder
whether the problem remains FPT if parameterized by the treewidth only or by the number
of FPQ-trees per vertex only. The following theorems answer this question in the negative.

» Theorem 3.1. FPQ-CHOOSABLE PLANARITY TESTING with a bounded number of FPQ-

trees per vertex is NP-complete. It is NP-complete even if the FPQ-trees have only P-nodes.

» Theorem 3.2. FPQ-CHOOSABLE PLANARITY TESTING parameterized by treewidth is
W/[1]-hard. It is W[1]-hard even if the FPQ-trees have only P-nodes.

4 Fixed Parameter Tractability of FPQ-choosable Planarity Testing

In this section, we introduce some concepts that are fundamental to the description of the
algorithm and we present a polynomial-time testing algorithm for graphs having bounded
branchwidth and such that the number of FPQ-trees associated with each vertex is bounded
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by a constant. Note that, for a graph G with treewidth ¢ and branchwidth b > 1, it holds
that b— 1<t < [3b] —1[9].

Let T be an FPQ-tree, let leaves(T') denote the set of its leaves, and let L be a proper
subset of leaves(T'). We denote by o a cyclic order of the leaves of an FPQ-tree, and we say
that o € consistent(T) if the FPQ-tree T represents o. We say that L is a consecutive set if
the leaves in L are consecutive in every cyclic order represented by T. Let e be an edge of T,
and let 7" and T” be the two subtrees obtained by removing e from T. If either leaves(T")
or leaves(T") are a subset of a consecutive set L, then we say that e is a split edge for L.
The subtree that contains the leaves in L is the split subtree of e for L. A split edge e is
mazimal for L if there exists no split edge e’ such that the split subtree of ¢’ contains e.

» Lemma 4.1. Let T be an FPQ-tree, let L be a consecutive proper subset of leaves(T'), and
let S be the set of maximal split edges for L. Then either |S| =1, or|S| > 1 and there exists
a Q-node (or an F-node) x of T such that x has degree at least |S| + 2 and the elements of
S appear consecutive around x.

If |S| = 1, the split edge in S is called the boundary of L. If |S| > 1, the Q-node (or F-
node) x defined in the statement of Lemma 4.1 is the boundary of L. Since F-nodes are a
more constrained version of Q-nodes, when we refer to boundary Q-nodes we also take into
account the case of F-nodes. Fig. 4a shows an FPQ-choosable graph (G, D) and two FPQ-
trees T, € D(u) and T,, € D(v). The three red edges b, ¢, and d of G define a consecutive
set L,, in T,; the edges e and f define a consecutive set L, in T,,. The boundary of L,, in T,
is a Q-node, while the boundary of L, in T}, is an edge.

We denote by B(L) the boundary of a set of leaves L. If B(L) is a Q-node, we asso-
ciate B(L) with a default orientation that arbitrarily defines one of the two possible permuta-
tions of its children. This default orientation is called the clockwise orientation of B(L), while
the other possible permutation of the children of B(L) is the counter-clockwise orientation.

Let L' = L U {¢}, where ¢ is a new element. Let o € consistent(T), and let o|z be
a cyclic order obtained from o by replacing the elements of the consecutive set leaves(T')\ L by
the single element £. We say that a cyclic order ¢’ of L' is extensible if there exists a cyclic or-
der o € consistent(T) with 0|, = o’ (and o is an extension of 0’). An extensible order o is
clockwise if the orientation of y is clockwise; o is counter-clockwise otherwise. If the bound-
ary of L is an edge, we consider any extensible order as both clockwise and counter-clockwise.

Let (G, D) be an FPQ-choosable graph, let 7 be an SPQR-decomposition tree of G and let
v be a pole of a node u of T, let T,, € D(v) be an FPQ-tree associated with v, let Eqy be
the set of edges that are incident to v and not contained in the pertinent graph G/, and let
E(v) = E(v) \ Eext. Note that there is a bijection between the edges F(v) of G and the
leaves of T),, hence we shall refer to the set of leaves of T}, as E(v). Also note that £} (v)
is represented by a consecutive set of leaves in T, because in every planar embedding of G
the edges in E;(v) must appear consecutively in the cyclic order of the edges incident to v.

The pertinent FPQ-tree of T;,, denoted as Pert,,(T},), is the FPQ-tree obtained from T, by
replacing the consecutive set FEeyt with a single leaf /. Informally, the pertinent FPQ-tree of
v describes the hierarchical embedding constraints for v within G,. For example, in Fig. 4b
a pertinent graph G, with poles u and v is highlighted by a shaded region; the pertinent
FPQ-tree Pert,(T,) of T, and the pertinent FPQ-tree Pert,(T,) of T, are obtained by the
FPQ-trees T, and T, of Fig. 4a.

Let v1,...,vx be the children of p in 7. Observe that the edges E} (v) of each G,
(1 <4 < k) form a consecutive set of leaves of A,(v) = Pert,(T,). The skeletal FPQ-tree of
Pert,, (T,), denoted by Skel,,(T},), is the tree obtained from Pert,, (T},) by replacing each of the
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Figure 4 (a) A boundary Q-node in T3, and a boundary edge in T,. (b) Pertinent FPQ-trees
Pert, (T.) and Pert,(T%). (c) Skeletal FPQ-trees Skel, (T%) of Pert, (T%) and Skel,, (T) of Pert, (T%).

consecutive sets £ (v) (1 <i < k) by a single leaf /; (see Fig. 4c). Note that each Q-node of
Skel,, (T,,) corresponds to a Q-node of Pert, (T},), and thus to a Q-node of T,,; also, distinct
Q-nodes of Skel, (T,) correspond to distinct Q-nodes of Pert,,(T},), and thus to distinct Q-
nodes of T,,. For each Q-node x of T, that is a boundary of i or of one of its children, there
is a corresponding Q-node in Skel, (T,) that inherits its default orientation from T,.

Let (G, D) be an FPQ-choosable graph, let 7 be an SPQR~decomposition tree of G, let u be a
node of T, and let u and v be the poles of . We denote by (G,,, D,,) the FPQ-choosable graph
consisting of the pertinent graph G, and the set D,, that is defined as follows: D, (z) = D(z)
for each vertex z of G, that is not a pole, and D, (v) = {Pert,(T,) | T, € D(v)} if v is a pole
of p. A tuple (T, Ty, 04, 0,) € D(u) x D(v) x{0,1} x{0, 1} is admissible for G,, if there exist
an assignment A, of (G, D,,) and a planar embedding £, of G, consistent with A, such that
Apu(u) = Pert, (Ty,), Au(v) = Pert,(T,), B(E};(u)) is clockwise (counter-clockwise) in 7T, if
0y, = 0 (0, = 1), and B(E};(v)) is clockwise (counter-clockwise) in T}, if 0, = 0 (0, = 1). A

tuple is admissible for p if it is admissible for G,. ¥ () is the set of admissible tuples for G,,.

FPT Algorithm: In order to test if (G, D) is FPQ-choosable planar, we root the SPQR-
decomposition tree 7 at an arbitrary Q-node and we visit 7 from the leaves to the root. At
each step of the visit, we equip the current node p with the set ¥(u). If we encounter a node
p such that ¥(p) = 0, we return that (G, D) is not FPQ-choosable planar; otherwise the
planarity test returns an affirmative answer. If the currently visited node p is a leaf of T, we
set U(u) = D(u) x D(v) x {0,1} x {0,1}, because its pertinent graph is a single edge. If u
is an internal node, ¥(u) is computed from the sets of admissible tuples of the children of i
and depending on whether p is an S-, P-, or R-node. In the case of R-nodes, we compute the
set of admissible tuples by executing the sphere-cut decomposition of the skeleton of p and
by exploiting the fact that it has branchwidth at most b, where b is the branchwidth of G.
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» Theorem 4.2. Let (G, D) be a biconnected FPQ-choosable (multi-)graph such that G =
(V,E) and |V| = n. Let D(v) be the set of FPQ-trees associated with vertex v € V.. There
exists an O(Dégx -n? +n3)-time algorithm to test whether (G, D) is FPQ-choosable planar,
where b is the branchwidth of G and Dyax = maxyey |D(v)].

As future work, it would be nice to extend Theorem 4.2 to simply connected graphs.
Indeed, our proof is based on the SPQR-decomposition that assumes the biconnectivity of
the input graph.
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