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—— Abstract

Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted

from the network. In case of failures, some of the remaining vertices of a reliable spanner may
no longer admit the spanner property, but this collateral damage is bounded by a fraction of the
size of the attack. It is known that Q(nlogn) edges are needed to achieve this strong property,
where n is the number of vertices in the network, even in one dimension. Constructions of
reliable geometric (1 4 ¢)-spanners, for n points in R?, are known, where the resulting graph
has O(nlognloglog®n) edges.

Here, we show randomized constructions of smaller size spanners that have the desired reli-
ability property in expectation or with good probability. The new construction is simple, and
potentially practical — replacing a hierarchical usage of expanders (which renders the previous
constructions impractical) by a simple skip-list like construction. This results in a 1-spanner,
on the line, that has linear number of edges. Using this, we present a construction of a reliable
spanner in R? with O(n loglog® nlogloglogn) edges.

1. Introduction

Geometric graphs are such that their vertices are points in the d-dimensional Euclidean
space R? and edges are straight line segments. Let G = (P, E) be a geometric graph,
where P C R? is a set of n points and E is the set of edges. The shortest path distance
between two points p,q € P in the graph G is denoted by dg(p,q) (or just d(p,q)). The
graph G is a t-spanner for some constant ¢t > 1, if d(p,q) < t- ||p — ¢|| holds for all pairs of
points p,q € P, where ||p — ¢|| stands for the Euclidean distance of p and ¢. The spanning
ratio, stretch factor, or dilation of a graph G is the minimum number ¢ > 1 for which G is
a t-spanner. A path between p and ¢ is a t-path if its length is at most ¢ - ||p — q||.

We focus our attention to construct spanners that can survive massive failures of vertices.
The most studied notion is fault tolerance [6, 7, 8], which provides a properly functioning
residual graph if there are no more failures than a predefined parameter k. It is clear, that
a k-fault tolerant spanner must have Q(kn) edges to avoid small degree nodes. Therefore,
fault tolerant spanners must have quadratic size to be able to survive a failure of a constant
fraction of vertices. Another notion is robustness [2], which gives more flexibility by allowing
the loss of some additional nodes by not guaranteeing ¢-paths for them. For a function
f:N = RT a t-spanner G is f-robust, if for any set of failed points B there is an extended
set BT with size at most f(|B]|) such that the residual graph G\ B has a t-path for any pair
of points p,q € P\ BT. The function f controls the robustness of the graph - the slower
the function grows the more robust the graph is. The benefit of robustness is that a near
linear number of edges are enough to achieve it, even for the case when f is linear, there
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are constructions with nearly O(nlogn) edges. For ¢ € (0,1), a spanner that is f-robust
with f(k) = (1 + ¥k is a 9-reliable spanner [4]. This is the strongest form of robustness,
since the dilation can increase for only a tiny additional fraction of points beyond ¢. The
fraction is relative to the number of failed vertices and controlled by the parameter ¥.

Recently, the authors [4] showed a construction of reliable 1-spanners of size O(nlogn) in
one dimension, and of reliable (1 + ¢)-spanners of size O(n log n log log® n) in higher dimen-
sions (the constant in the O depends both on the dimension, ¢, and the reliability parameter).
An alternative construction, with slightly worse bounds, was given by Bose et al. [1].

Limitations of previous constructions. The construction of Buchin et al. [4] (and also
the construction of Bose et al. [1]) relies on using expanders to get a monotone spanner
for points on the line, and then extending it to higher dimensions. The spanner (in one
dimension) has O(nlogn) edges. Unfortunately, even in one dimension, such a reliable
spanner requires 2(nlogn) edges, as shown by Bose et al. [2].

The problem. As such, the question is whether one can come up with simple and practical
constructions of spanners that have linear or near linear size, while still possessing some
reliability guarantee — either in expectation or with good probability.

Some definitions. Given a graph G, an attack B C V(G) is a set of vertices that are being
removed. The damaged set BT, is the set of all the vertices which are no longer connected to
the rest the graph, or are badly connected to the rest of the graph — that is, these vertices no
longer have the desired spanning property. The loss caused by B, is the quantity |BT \ B,
where we take the minimal damaged set. Note, that BT is not necessarily unique. The loss
rate of B is A\(G,B) = |B™ \ B|/|B|. A graph G is 9-reliable if for any attack B, the loss
rate A(G, B) is at most 9.

Randomness and obliviousness. As mentioned above, reliable spanners must have size
Q(nlogn). A natural way to get a smaller spanner, is to consider randomized constructions,
and require that the reliability holds in expectation (or with good probability). Randomized
constructions are (usually) still sensitive to adversarial attacks, if the adversary is allowed
to pick the attack set after the construction is completed (and it is allowed to inspect it).
A natural way to deal with this issue is to restrict the attacks to be oblivious — that is, the
attack set is chosen before the graph is constructed (or without any knowledge of the edges).

In such an oblivious model, the loss rate is a random variable (for a fixed attack B). It
is thus natural to construct the graph G randomly, in such a way that E[\(G, B)] < ¢, or
alternatively, that the probability P[A(G, B) > ¥] is small.

Our results. We give a randomized construction of a 1-spanner in one dimension, that is
J-reliable in expectation, and has size O(n). Formally, the construction has the property
that E[A(G, B)] < 9. This construction can also be modified so that A(G, B) < 4 holds with
some desired probability. This is the main technical contribution of this work.

Next, following in the footsteps of the construction of reliable spanners, we use the one-
dimensional construction to get (1 + ¢)-spanners that are ¥-reliable either in expectation or
with good probability. The new constructions have size roughly O(n log log? n)

In this abstract, we only present the one-dimensional construction of reliable spanners
in expectation. For the missing proofs and further results, we refer to the full version [3].
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2. Preliminaries

» Definition 2.1 (Reliable spanner). Let G = (P, E) be a t-spanner for some ¢ > 1 constructed
by a (possibly) randomized algorithm. Given an oblivious attack B, its damaged set BT
is the smallest set, such that for any pair of vertices u,v € P\ BT, we have de\s(u,v) <
t - ||lu—v]||, that is, t-paths are preserved for all pairs of points not contained in B*. The
quantity |B™ \ B] is the loss of G under the attack B. The loss rate of G is \(G,B) =
|BT\ B|/|B|. For ¥ € (0,1), the graph G is J-reliable if \(G, B) < 9 holds for any attack
B C P. Further, we say that the graph G is ¥-reliable in expectation if E[\(G,B)] <9
holds for any oblivious attack B C P. For ¢, p € (0, 1), we say that the graph G is 9-reliable
with probability 1 — p if PIA(G, B) <] > 1 — p holds for any oblivious attack B C P.

Let [n] denote the interval {1,...,n}. Similarly, for x and y, let [z...y] denote the
interval {z,z + 1,...,y}. We borrow the notion of shadow from our previous work [4]. A
point p is in the a-shadow if there is a neighborhood of p, such that an a-fraction of it
belongs to the attack set. One can think about the maximum « such that p is in the a-
shadow of B as the depth of p (here, the depth is in the range [0,1]). A point with depth
close to one, are intuitively surrounded by failed points, and have little hope of remaining
well connected. Fortunately, only a few points have depth truly close to one 1.

» Definition 2.2. Consider an arbitrary set B C [n] and a parameter « € (0,1). A number
i is in the left a-shadow of B, if and only if there exists an integer 7 > ¢, such that
|[z il B| >« |[z .. j” . Similarly, 4 is in the right a-shadow of B, if and only if there
exists an integer h, such that h < 4 and |[h...9|N B| > «]l[h...i]|. The left and right
a-shadow of B is denoted by S_,(B) and S (B), respectively. The combined shadow is
denoted by S(a, B) = S, (B) US(B).

» Lemma 2.3 ([4]). For any set B C [n], and o € (0,1), we have that |S(a, B)| < (1 +
2[1/al) |B|. Further, if o € (2/3,1), we have that |S(c, B)| < |B| /(2a — 1).

» Definition 2.4. Given a graph G over [n], a monotone path between i,j € [n], such
that @ < j, is a sequence of vertices i = i1 < iz < --+ < i = j, such that iy_13, € E(G), for
{=2,... k.

A monotone path between i and j has length |j —i|. We use logz and Inz to denote the
base 2 and natural base logarithm of x, respectively. For any set A C P, let A= P\ A
denote the complement of A. For two integer numbers z,y > 0, let x,, = [z/y]y.

3. Construction of reliable spanners on the line

The input consists of a parameter ¥ > 0 and the point set P = [n] = {1,...,n}. The
backbone of the construction is a random elimination tournament, see Figure 3.1 as an
example. We assume that n is a power of 2 as otherwise one can construct the graph for
the next power of two, and then throw away the unneeded vertices.

The tournament is a full binary tree, with the leafs storing the values from 1 to n, say
from left to right. The value of a node is computed randomly and recursively. For a node,
once the values of the nodes were computed for both children, it randomly copies the value
of one of its children, with equal probability to choose either child. Let P; be the values
stored in the ith bottom level of the tree. As such, Py = P, and Pgr, is a singleton. Each
set P; can be interpreted as an ordered set (from left to right, or equivalently, by value). Let

9 8(1 —a) 9

@ 8 and P R clny—1’ (3.1)
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Figure 3.1 An example of a tournament tree with n = 8.

where ¢ > 1 is a sufficiently large constant. Let M be the smallest integer for which
|Pr| < 2M/2 /¢ holds (ie., M = [(2/3)log(en)]). For i = 0,1,..., M, and for all p € P;

connect p with the first
2i/2
(i) = [ —‘ (3.2)

3

successors (and hence predecessors) of p in P;. Let E; be the set of all edges in level i. The
graph G on P is defined as the union of all edges over all levels — that is, E(G) = UM E;.

4. Analysis

» Lemma 4.1. The graph G has O (m?‘l logﬁ_l) edges.

Proof. The number of edges contributed by a point in P; is at most £(i) at level i, and
|P;| = n/2¢. Thus, we have

= M 2i/21 My 9.0i2 x 9
@y < g [ 5 st R gm0 (D): -
i=0 =0

i=0 =0

Fix an attack B C P. The high-level idea is to show that if a point p € P\ B is far
enough from the faulty set, then, with high probability, there exist monotone paths reaching
far from p in both directions.

» Definition 4.2 (Stairway). Let p € P be an arbitrary point. The path p = po,p1,...,p;
is a right (resp., left) stairway of p to level j, if

(i) p=po<p1 <---<pj(resp.,p>p1 > > pj),
(11) lfpl #pi+1a then PiPi+1 € E7 fori:O,l,...,j— 1,
(iii) p; € Py, fori=1,...,4.

Furthermore, a stairway is safe if none of its points are in the attack set B. A right (resp.,
left) stairway is usable, if [p; ...n]NP; (resp., [1...p;]NP;) forms a clique in G. Let T'C P
denote the set of points that have a safe and usable stairway to both directions. Finally,
a point p is bad if it belongs to B, or it does not have safe and usable stairways to both
directions, that is, p € P\ T.

Let p,q € T be two points such that p < ¢. Intuitively, it is clear that the right stairway
of p and the left stairway of ¢ must cross each other at some level. Combining these stairways,
with some care at the point where they cross, we obtain a monotone path between p and gq.
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Figure 4.1 The interval J; = [p. < Dpgi T (A; —1)- Qi].

» Lemma 4.3. For any two points p,q € T that are not bad, there is a monotone path
connecting p and q in the residual graph G\ B.

Let o, = a/2F, for k = 0,1,...,logn. Let S, = S(ax, B) be the aj-shadow of B,
for k = 0,1,...,logn. Observe that S C S; C -+ C Siogn, and there is an index j such
that S; = P, if B # (). A point is classified according to when it gets “buried” in the shadow.
A point p, for k > 1, is a kth round point, if p € Sk \ Sk—1. Intuitively, a kth round point
is more likely to have a safe stairway the larger the value of k is.

» Lemma 4.4. Assume that 9 € (0,1/2) and let p € Sk \ Sk—1 be a kth round point for some
k > 1. The probability that p is bad is at most (9/2)*/32.

Proof (idea). By symmetry, it is enough to consider right stairways. We define a sequence of
intervals Jy, Js, ..., see Figure 4.1, such that each interval starts at p, their length increases
exponentially, and J; N P; contains exactly A; or A; — 1 points. We set A; to ensure that
any pair of points p; € J;NP; and p;11 € J;41 NPy are connected. Thus, if the sets J; N P;,
for all ¢ > 1, contain at least one point outside of B, then we have a possible candidate for
a safe and usable stairway. It is not hard to see that, for example, by choosing the leftmost
available point in each set, we obtain a monotone path. |

We obtain bounds on the expected number of bad kth round points by using Lemma 2.3
and Lemma 4.4 to bound the number of such points and the probability of a kth round
point being bad, respectively. Then, we sum up for all rounds to obtain the desired bound.

» Lemma 4.5. Let ¥ € (0,1/2) and B C P be an oblivious attack. Recall, that T is the set
of bad points. Then, we have E[|T¢|]] < (14 9)|B].

» Theorem 4.6. Let ¥ € (0,1/2) and P = [n] be fixzed. The graph G, constructed in
Section 3, has (9(m9’1 log 1971) edges, and it is a ¥-reliable 1-spanner of P in expectation.
Formally, for any oblivious attack B, we have E[A(G, B)] < ¥.

Proof. By Lemma 4.1, the size of G is (’)(m?_l log 19_1). Let B C P be an oblivious attack
and consider the bad set P\T. By Lemma 4.3, for any two points outside the bad set, there is
a monotone path connecting them. Further, by Lemma 4.5, we have E[|P \ T|] < (1+¢) |B|
for any oblivious attack. Thus, we obtain E[A(G, B)] < E[|T°\ B|/|B|] < 9. <

Using Theorem 4.6 and a result of Chan et al. [5] on orderings of a set of points in R?, we
can construct spanners for higher dimensional point sets that are reliable in expectation.

» Theorem 4.7. Let 9, e € (0,1) be fived and P C RY be a set of n points. We can construct a
(1 + &)-spanner of P that is ¥-reliable in expectation and has size O(n log log? n log log log n)

EuroCG’'20
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