
JSquash: Source Code Analysis of Embedded Database
Applications for Determining SQL Statements

Dietmar Seipel1, Andreas M. Boehm1, and Markus Fröhlich1

University of Würzburg, Department of Computer Science
Am Hubland, D–97074 Würzburg, Germany

seipel@informatik.uni-wuerzburg.de, markusfroehlich1@gmx.de,ab@andiboehm.de

Abstract. In this paper, we analyse Java source code of embedded database ap-
plications by means of static code analysis. If the underlying database schema is
changed due to refactoring or database tuning, then the SQL statements in the em-
bedding Java program need to be adapted correspondingly. This should be done
mostly automatically, since changing software manually is error–prone and time
consuming.
For determining the SQL statements that access the database, we can either look at
the database logfile, an audit file, or at the Java source code itself. Here, we show
how to statically determine even the strings for dynamically built SQL statements
directly from the Java source code. We do this without using a debugger or a
virtual machine technique; instead, we trace the values of variables that contribute
to a query string backwards to predict the values as precisely as possible.
We use PROLOG’s declarative features and its backtracking mechanism for code
analysis, refactoring, and tuning.

1 Introduction

During the software life–cycle, enterprise–class databases undergo a lot of changes in
order to keep up with the ever–changing requirements. The growing space requirements
and complexity of productive databases make the task of maintaining a good perfor-
mance of the database query execution more and more complicated. The performance
is highly dependent on the database schema design [14], and additionally, a complex
database schema is more prone to design errors.

Increasing the performance and the manageability of a database usually requires
analysingandrestructuringthe database schema and therefore affects the application
code indirectly. The application code highly depends on thedatabase schema, because
the database queries are embedded in the source code. Usually, they are contained in
string variables or, more dynamically, statements are generated step by step by using
control structures and string concatenations.

Nearly any type of database schema modification implies the adaption of the queries
embedded in the application code. Sometimes, the logic of the construction of the query
strings has to be changed, too. Some efforts have been made toprescind the applications
code from the data persistence in the database [11]. The employed methods require a
configuration that tells the database service the mapping between database tables and

application objects. Moreover, the relationships betweenthe tables must also be in-
cluded in that configuration. Therefore, such approaches are also affected by database
changes and need to be adjusted accordingly.

Recently, we have developed a standardized XML representation of SQL statements
and database schemas named SQUASHML, that was introduced within the PROLOG

based toolset Squash forrefactoring and tuning relational database applications [1].
Squash is the first tool that supports the analysis and the refactoring of database appli-
cations with coordinated simultaneous modification of the SQL code and the database
schema definition. Squash also detects inconsistencies andcommon flaws in SQL state-
ments. It can determine an optimized configuration of indexes as well as of tables, and
propose modifications of the database schema that result in an efficiency gain. The
changes are applied automatically to both the schema and theSQL statements.

In this paper, we develop an extension named JSquash of Squash that analyses a
given Java source code and presents all expressions in the code that influence the con-
struction of the embedded SQL statements. Our approach estimates or even determines
the values of variables in the source code of the databases application by static code
analysis; this is used to predict the embedded database queries that can be generated by
the application.

Related research onsource code analysishas mainly focussed on static analysis
providing information about security issues (secure code)[8, 3], model extraction [10],
code smells [7], obvious errors [15, 13], code metrics [6], and flow analysis [5]. Re-
cently published results were mainly about supporting the complex task of understand-
ing the run–time behaviour of legacy and non–legacy software systems [18, 6]. An ex-
tensive amount of research has been dedicated to system analysis by extracting informa-
tion generated during the run–time of a software system [6].These approaches require
the code being instrumented prior to execution by various techniques, such as wrapping,
logging or extended virtual machines. The output of such an analysis is an execution
trace containing information about the run–time behaviourof the system, such as call
hierarchies of methods and object creation. Such traces of productive software systems
are often very voluminous, and usually the values of interesting variables are missing.

The rest of the paper is organized as follows: Section 2 summarizes the basic con-
cepts of managing source code with PROLOG in the JSquash repository. Section 3 de-
scribes some basic methods of static code analysis supported by JSquash, such as the
calculation of metrics and the detection of code smells. Section 4 presents the strategies
of JSquash used for recursively evaluating the control flow of the source code in order
to determine values of variables at run–time for predictingembedded SQL statements.
Section 5 shows how JSquash can visualise the creation of embedded SQL statements
using HTML 4, CSS, and JavaScript technology, and how Squash can visualise join
conditions of complex SELECT statements. Finally, Section 6 summarizes our work.

2 Management of Java Source Code with PROLOG

In JSquash, Java code is first parsed and transformed into an XML representation called
JAML [9]. Subsequently, a source coderepository is built from the XML representa-

2

tion, which suitably represents the constructs of the analysed programming language.
It is essential to choose an adequate format for the repository, such that the analysis
can handle the data efficiently. The analysis is implementedusing the declarative logic
programming system SWI–PROLOG [4, 19].

2.1 Representation of Java Source Code in XML

The XML representation JAML completely resembles the Java source code; it even con-
serves the layout of the source code. JAML enables standardised access to the source
code. Generally, XML is a markup language for representing hierarchically structured
data, which is often used for the exchange of data between different applications; as
a particular XML language, JAML is a very good candidate for an intermediate repre-
sentation during the creation of the repository out of the Java source code. It comes
with a plugin that can be installed as an online update in the integrated development
environment Eclipse, that performs the transformation from Java to XML on–the–fly
while programming. For every type of expressions, i.e., variables, statements and con-
trol structures, there is a special XML element in JAML , which holds the hierarchical
design of the program as well as detailed information about the represented Java com-
ponent.

According to the W3C XML1.1 recommendation, the terseness in XML markup
is of minimal importance, and JAML increases the volume by a factor of about50. To
meet our requirements, the contained information has to be condensed; e.g., the single
indenting white spaces are of no interest.

For example, the Java variable declarationint a = 5, that additionally includes
an initialisation, is presented in JAML , as shown in the listing below; for clarity, the
representation has been strongly simplified. The Java declaration is represented by a
variable-declaration-statement element in JAML . The includedtype el-
ement sets the data type of the variablea to integer. The assignment is represented by
thevariable-declaration subelement: the identifier of the variable is given by
the identifier element, and the literal expression is given by anexpression
element.

<variable-declaration-statement>
<type kind="primitive-type">

<primitive-type> <int>int</int> </primitive-type>
</type>
<whitespace/>
<variable-declaration-list>

<variable-declaration>
<identifier>a</identifier> <whitespace/>
<initializer>

<equal>=</equal> <whitespace/>
<expression>
<literal-expression type-ref="int">

<literal>
<number-literal>5</number-literal>

3

</literal>
</literal-expression>

</expression>
</initializer>

</variable-declaration>
</variable-declaration-list>

</variable-declaration-statement>

For deriving the JSquash repository, the JAML data are represented in field notation
and processed using the XML query, transformation, and update language FNQuery [16,
17]. The query part of the language resembles an extension ofthe well–known XML

query language XQuery [2]; but FNQuery is implemented in and fully interleaved with
PROLOG. The usual axes of XPath are provided for selection and modification of XML

documents. Moreover, FNQuery embodies transformation features, which go beyond
XSLT, and also update features.

2.2 The JSquash Repository

The JSquash repository stores the relevant elements of the Java code, which are ex-
tracted from the JAML representation, in the form of PROLOG facts. These facts repre-
sent information that at least consists of the type and a description of the location within
the source code including the locations of the surrounding code blocks. Additionally,
necessary parameters can be added, depending on the type.

The construct of apathreflects the hierarchy of the code nesting. A path starts with
the file number of the source code; the further elements of thepath are derived from the
position attributes (pos) of the JAML representation.

The JSquash repository supports access to variables, objects, classes as well as
method calls. E.g., a variable declaration is stored in the repository using a fact

jsquash_repository(
Path:’variable-declaration’, Type, Id, P:T).

wherePath is the path of the statement,Type is the type andId is the name of the
variable, andP:T is an optional reference to the in–place initialisation.

For example, the representation of the following fragment of a Java source code,
which starts at position101 in the Java source file, in the JSquash repository will be
explained in more detail.

1: int a = 5;
2: int b = 10;
3: int c = a + b;
4: int d = c;

Due to surrounding blocks and preceding statements, all paths have the common prefix
”0, 49, 3, 49, 94”, which we abbreviate by ”...”. Sincea starts at position
105 and5 starts at position109, the declarationint a = 5 in line 1 is represented
by the following two facts:

4

jsquash_repository(
[..., 105]:’variable-declaration’, int, a,
[..., 105, 109]:’literal-expression’).

jsquash_repository(
[..., 105, 109]:’literal-expression’, int, 5).

The typevariable-declaration requires two parameters: the type of the vari-
able and its name. In this example, the in–place initialisation with the value5 is rep-
resented in the repository by the path of that expression as areference, here[...,
105, 109], together with the fact of the referenced expression. Such expressions are
represented in JSquash by the typeliteral-expression.

The source code of line2 is represented by two similar facts, where ”5” is replaced
by ”10”, ” 105” is replaced by ”119”, and ”109” is replaced by ”123”.

Line 3 is more complex, because it contains the sum ofa andb in the initialisation,
a binary expression that comes in the repository as the typebinary-expression.

jsquash_repository(
[..., 134]:’variable-declaration’, int, c,
[..., 134, 138]:’binary-expression’).

jsquash_repository(
[..., 134, 138]:’binary-expression’,
[..., 134, 138, 138]:’variable-access-expression’, +,
[..., 134, 138, 142]:’variable-access-expression’).

jsquash_repository(
[..., 134, 138, 138]:’variable-access-expression’, a).

jsquash_repository(
[..., 134, 138, 142]:’variable-access-expression’, b).

The reference of the declaration fact points to the description of the binary expression,
which holds two references, one for the left and one for the right expression; in our
case, both are accesses to variables.

Line 4 contains an access to a variable instead of a literal expression. This is rep-
resented in the repository by the typevariable-access-expression, which
works likeliteral-expression, but it has no qualifier for local variables – as in
our example.

jsquash_repository(
[..., 152]:’variable-declaration’, int, d,
[..., 152, 156]:’variable-access-expression’).

jsquash_repository(
[..., 152, 156]:’variable-access-expression’, c).

The notation described above has been used for convenience to improve the read-
ability of rules referring to the repository. Forefficiencyreasons, we store different facts
with the predicate symbolsjsquash_repository_/3,4,5 in the repository; then
we can make use of the index on the first argument to search for facts of a given type.
The predicates from above are derived using the following simple rules:

5

jsquash_repository(P1:T1, Type, Id, P2:T2) :-
jsquash_repository_(T1, Type, Id, P2:T2, P1).

jsquash_repository(P1:T1, P2:T2, Op, P3:T3) :-
jsquash_repository_(T1, P2:T2, Op, P3:T3, P1).

jsquash_repository(P:T, Id) :-
jsquash_repository_(T, Id, P).

Using the design of the repository described here, JSquash is able to work efficiently
with application code of any complexity.

3 Static Code Analysis

Source code analysis comprises the manual, tooled or automated verification of source
code regarding errors, coding conventions, programming style, test coverage, etc.

The tool JSquash supports some standard methods of static code analysis, such as
the calculation of metrics and the detection of code smells.In the following, we will
show some examples.

3.1 Local and Global Variables

The following rule determines the classes and identifiers ofall local (if Type is given by
’variable-declaration’) or global (if Type is ’field-declaration’)
variables within the source code, respectively:

variables_in_system(Type, Class, Id) :-
jsquash_repository([N]:’java-class’, _, Class),
jsquash_repository([N|_]:Type, _, Id, _).

Note, that the repository facts for Java classes have a path consisting of only one num-
ber. Every variable in a Java class must have this number as the first element of its
path.

3.2 Detection of Flaws and Code Smells

JSquash supports the detection of some types of code flaws, i.e., code sections that
could be sources of potential errors.

The following rule determines the method signatures of all methods having more
than onereturn statement:

methods_with_several_returns(
Class, Method, Signature) :-

jsquash_repository([N]:’java-class’, _, Class),
jsquash_repository([N|Ns]:’method-declaration’,

Method, Signature, _),
findall(Path,

6

(jsquash_repository(
Path:’return-expression’, _, _),

append([N|Ns], _, Path)),
Paths),

length(Paths, Length),
Length > 1.

The method declarations within a Java class have the position of the class as the first
element in their path. Similarly, the return expressions ofa method have the path of the
method as a prefix of their path.

The following rule detects allif conditions that always evaluate tofalse. It de-
termines the sections of all suchif statements within the analysed code. If all possible
evaluations of anif condition arefalse, then theif statement is unnecessary.

unnecessary_if_statements(If_Path) :-
jsquash_repository(

If_Path:’if-statement’, P:T, _, _),
init_run_time(R),
set_run_time(R, R2, [

searched_expression@path=P,
searched_expression@type=T]),

forall(eval(R2:P:T, Value),
Value = [boolean, false|_]).

After initialising the run–time, which will be explained inthe following section, with
init_run_time/1, the path and the type of the searched expression are stored in
the run–time usingset_run_time/3.

All of these features make use of the basic code analysis thatis supported and in-
tegrated in JSquash. This comprises the detection of the following facts: which code
sections influence the values of variables, which methods are calling other methods
(call dependencies), and which objects are created at whichtime by which other ob-
jects. The predicateeval/2 for backward tracing the flow of control leading to the
values of variables will be explained in the following section.

4 Backward Tracing of the Control Flow

While looking for actual values of variables, JSquash recursively calls the predicate
eval/2 until the evaluation reaches assignments having concrete literal expressions
on their right hand side. As literal expressions need not to be evaluated, their values
can immediately be used as arguments in complex expressions. After the recursion is
rolled out completely, the calculated values of the partialexpressions are returned until
the value of the examined expression is determined.

For example, during the search for the current value ofd in line 4 of the code frag-
ment from Section 2.2, first the variablec in the right hand side of the assignment has
to be evaluated. Therefore, JSquash detects the assignmentin line 3, wherec can be

7

Fig. 1. A code example that uses arrays of strings to construct an SQL statement.

evaluated by determining the current values ofa in line 1 andb in line 2 and by return-
ing their sum. Another example using arrays of strings to construct an SQL statement is
shown in Figure 1.

The current state of the analysed program plays an importantrole for eval/2 ,
because it determines the control flow of the applications’scalculations. The program
state is the set of all variables and their current values that are needed for evaluation of
the control structures involved in the calculation of the value of the examined variable.

4.1 Overview of the Evaluation Strategy

Evaluating a specific variable means accessing it at a specific point of run–time. As
variables always receive their values strictly via assignment expressions, the analysis
component has to find the last assignment before the examinedaccess to the variable.

Therefore, the possible assignments have to be examined. Todo so, a simulation of
the control flow has been implemented in JSquash that considers control flow statements
such as loops andif-then-else constructs. This machine recognizes, if a program
block directly or indirectly influences the value of the examined variable.

The search for the current value of a variable has been implemented in the predicate
eval/2 . Given the reference to a variable, it returns the corresponding value, depend-
ing on the current state. On backtracking, it determines allfurther value assignments
for the given variable. E.g.,if statements may lead to alternative value assignments,

8

if the condition cannot be evaluated and thethen or else part assigns a value to the
examined variable. But, often there is only one possible value assignment.

eval/2 is always called with the first argument of the formR:P:T. Therun–time
objectR holds fundamental information for determining the values of variables. It is
represented as an XML object in field notation, which holds the following information:

– the current position of the analysis in the source code,
– the analysed control structure,
– the state of the variables defining the current state and control flow,
– the currently examined variable, and
– the currently examined assignment.

The run–time is needed as a supporting data structure for analysing the lifetime behavior
of loops and other constructs that have nested blocks, including recursive method calls.
In these cases, it is used for holding the distinct states of the blocks passed during the
analysis. The value history of the run–time is used extensively to reflect the construction
and dependencies of each single value of a variable.

P:T referencesthe currently searched expression. Based on the type of the ref-
erenced expressions, JSquash can decide which rule ofeval/2 has to be used for
determining the actual value of the given expression. In thecase of variable accesses,
theeval/2 rule – which is shown in Section 4.2 – determines the current value of the
referenced variable at the time of the access.

For each typeT of control structure, a rule has been developed that simulates its
behaviour and functionality. These rules implement evaluation strategies that yield the
current value for all type primitives. The handling of localand global variables (class
fields) is implemented separately, since the evaluation strategies differ. In the following,
we will show some examples; more complicated cases, such as the handling of Java
loops, cannot be shown due to the inherent complexity of their evaluation.

4.2 Variable Access Expressions

While processing the Java code fragment of Section 2.2, JSquash has at first to resolve
the identifierd. The JSquash repository fact

jsquash_repository(
[..., 152, 156]:’variable-access-expression’, c).

shows that the variable access expression at[..., 152, 156] refers to the vari-
ablec. Based on the repository fact

jsquash_repository(
[..., 134]:’variable-declaration’, int, c,
[..., 134, 138]:’binary-expression’).

the predicatenext/2 finds out that the most recent assignment definingc was the
binary expression at[..., 134, 138], cf. line 3 of the Java code fragment:

9

eval(R:P:T, Value) :-
T = ’variable-access-expression’,
jsquash_repository(P:T, Id),
set_run_time(R, R2, [

@searched_id=Id,
@search_mode=variable,
@scope=T]),

next(R2:P:T, R3:P3:T3),
eval(R3:P3:T3, V),
handle_postfix(P3:T3, V, Value).

Similarly, the repository fact

jsquash_repository(
[..., 105]:’variable-declaration’, int, a,
[..., 105, 109]:’literal-expression’).

is used later during the computation to find out that the variable a is declared using a
literal expression.

For finding the most recent assignment to the examined variables, the predicate
next/2 has to traverse the JSquash repository facts in inverse codeorder. This can
be supported by further PROLOG facts in the repository, which link a statement to its
preceding statement in the code order.

4.3 Binary Expressions

The repository fact

jsquash_repository([..., 134, 138]:’binary-expression’,
[..., 134, 138, 138]:’variable-access-expression’, +,
[..., 134, 138, 142]:’variable-access-expression’).

shows that the binary expression forc refers to two variable access expressions. After
evaluating them, the resulting values are combined using the binary operator (in our
case+) indicated by the fact from the repository:

eval(R:P:T, Value) :-
T = ’binary-expression’,
jsquash_repository(P:T, P1:T1, Op, P2:T2),
eval(R:P1:T1, V1),
eval(R:P2:T2, V2),
apply(Op, [V1, V2, Value]).

If we evaluate the following code fragment, then both expressions within the binary
expression in line 2 are evaluated w.r.t. the same runtimeR, but with different references
P1:T1 andP2:T2, respectively:

1: int a = 5;
2: int c = a++ + a;

10

The calleval(R:P1:T1, V1) evaluates the left expressiona++ to 5; only after-
wards, the value ofa is incremented to the new value6. The calleval(R:P2:T2,
V2) for the right expressiona re–evaluates the left expression, since the new value ofa
is relevant. Thus, the right expressiona correctly evaluates to6, and finally,c evaluates
to 11, i.e.,5 + 6.

4.4 Literal Expressions

The repository fact

jsquash_repository(
[..., 105, 109]:’literal-expression’, int, 5).

shows that the value of the literal expression at[..., 105, 109] is 5. This type
of expression is evaluated using the following rule:

eval(R:P:T, Value) :-
T = ’literal-expression’,
jsquash_repository(P:T, _, Value).

5 Visualisation of Embedded SQL Statements

The tool JSquash can detect and analyse SQL statements embedded in the Java source
code of database applications.

5.1 SQL Statements Embedded in the Source Code

For presenting the results of the analysis to the user, JSquash includes a generator com-
ponent, that produces an HTML document containing the complete information about
the detected SQL statements, including the full SQL code and the source code that
contributes to each SQL statement. This HTML document comprises a fully functional
graphical user interface(GUI) that can be opened and used with any Web browser. The
GUI is implemented in HTML 4 using cascading style sheets (CSS) and
JavaScript; the JavaScript helps building a dynamic GUI.

The expressions that contribute to the following generatedSQL statement have been
detected by JSquash and are automatically highlighted, seeFigure 1. JSquash was also
able to build the full SQL statement by only analyzing the source code:

SELECT * FROM training
WHERE a = 1 AND b = 2 AND c = 3
ORDER BY c, d ASCENDING

This statement – which is the second SQL statement in the GUI of Figure 2 – is visu-
alised in Figure 3. The left side in of the GUI shown in Figure 3displays all the class
files of the source code that contribute to the detected SQL statements. Clicking on the

11

Fig. 2.The GUI of JSquash. No SQL statement is selected.

Fig. 3.All contributing values and variables of the selected second SQL statement are marked.

buttons at the left side of the class name opens (+) or closes (-) the source code, re-
spectively. At the upper right side, all detected SQL statements are shown. Below is the
block of settings, that allow for changing the highlightingcolors.

If an SQL statement of the list is selected, then the corresponding code sections and
expressions are automatically highlighted in the listingsat the left side, cf. Figure 3.
Thus, the user can easily analyse all code sections that contribute to the selected SQL

12

statement. This feature is implemented in JavaScript and CSS, making extensive use of
the path information from the repository.

5.2 Representation and Visualisation of SQL Statements

Recently, we have developed the tool Squash for analysing, tuning and refactoring re-
lational database applications [1]. It uses an extensible and flexible XML representation
for SQL database schema definitions and queries called SQUASHML, that is designed
for representing schema objects, as well as database queries and data modification state-
ments.

The core of SQUASHML follows the SQL standard, but it also allows for system–
specific constructs of different SQL dialects; for example, some definitions and storage
parameters from the Oracle database management system havebeen integrated as op-
tional XML elements.

The SQUASHML format allows for easily processing and evaluating the database
schema information. Currently, supported schema objects include table and index def-
initions. Other existing XML representations of databases, such as SQL/XML , usually
focus on representing the database contents, i.e., the table contents, and not the schema
definition itself [12]. SQUASHML was developed specifically to map the database sche-
ma and queries, without the current contents of the database.

The SQL statements detected by JSquash are transformed to SQUASHML, and then
the tool Squash can be used for the visualisation of the single statements. E.g., the fol-
lowing SELECT statement from a biological application joins9 tables; the table names
have been replaced by aliasesA, . . . ,I:

SELECT * FROM A, B, C, D, E, F, G, H
WHERE A.ID_DICT_PEPTIDE IN (

SELECT ID_PEPTIDE FROM I
WHERE I.ID_SEARCH = 2025
GROUP BY ID_PEPTIDE
HAVING COUNT(ID_SEARCH_PEPTIDE) >=1)

AND A.ID_SEARCH = 2025
AND c1 AND c2 AND A.FLAG_DELETED = 0
AND c3 AND c6 (+) AND c7 (+) AND c4 AND c5
AND E.LEN >= 6 AND A.NORMALIZED_SCORE >= 1.5
ORDER BY ...

The following7 join conditions are used:

c1: A.ID_SEARCH_PEPTIDE = B.ID_SEARCH_PEPTIDE
c2: A.ID_SPECTRUM = G.ID_SPECTRUM
c3: A.ID_SEARCH_PEPTIDE = C.ID_PEPTIDE
c4: C.ID_SEQUENCE = D.ID_SEQUENCE
c5: A.ID_SEARCH = H.ID_SEARCH
c6: B.ID_PEPTIDE = E.ID_DICT_PEPTIDE
c7: B.ID_PEPTIDE_MOD = F.ID_DICT_PEPTIDE

13

Fig. 4. Join Conditions in a Query

This query is parsed into the following SQUASHML element; we leave out some open-
ing and closing tags, respectively:

<select>
<subquery id="subquery_1">

<select_list> <expr> <simple_expr>
<object table_view="A" column="ID_SEARCH"/> ...

<from> <table_reference> ...
<simple_query_table_expression

object="A" schema="USER"/> ...
<where> ...
<order_by> ...

</select>

The conditions in the WHERE part (e.g., the join conditionc1) look like follows:

<condition>
<simple_comparison_condition operator="=">

<left_expr> <expr> <simple_expr>
<object table_view="A" column="ID_SEARCH_PEPTIDE"/> ...

<right_expr> ...
<object table_view="B" column="ID_SEARCH_PEPTIDE"/> ...

</condition>

Squash provides a number of different visualization methods for the database schema
and the queries. Complex select statements tend to include many tables in join opera-
tions. Therefore, Squash uses a graph representation for query visualization, cf. Fig-
ure 4. If a SELECT statement contains nested subqueries (like the statement shown
above), then these queries can be included in the graphical output if desired.

14

6 Conclusions

We have shown, how to derive the content of application variables in Java programs us-
ing means of static code analysis. Our tool JSquash, which isimplemented in PROLOG,
predicts the values of variables as precisely as possible; obviously, some values cannot
be discovered at compile–time, e.g., if a value was obtainedthrough I/O operations.

Now, we are able to analyseembeddedSQL statementsof a given database appli-
cation, either by analysing audit files of the database connection using the basic tool
Squash [1], or by static source code analysis with the extended tool JSquash. The state-
ments derived from the source code of the database application can be imported into
Squash, which can then generate database modifications for improving the performance
of the application.

Future work will be on developing methods that preserve the linkage between the
detected single SQL statement fragments and their positions as well as each of their
effects in the completed statement. This extension to SQUASHML will then allow for
injecting the changes proposed by Squash into the original source code of the applica-
tion, and it will help conducting the appropriate changes there.

Moreover, we will try to apply similar techniques of static code analysis to PROLOG

programs with embedded SQL statements as well.

References

1. BOEHM, A. M., SEIPEL, D., SICKMANN , A., WETZKA, M.: Squash: A Tool for Analyzing,
Tuning and Refactoring Relational Database Applications.Proc. 17th International Confer-
ence on Declarative Programming and Knowledge Management, INAP 2007, pp. 113–124

2. CHAMBERLIN , D.: XQuery: a Query Language for XML.Proc. ACM International Confer-
ence on Management of Data, SIGMOD 2003. ACM Press, 2003, pp. 682–682

3. CHESS, B., MCGRAW, G.:Static Analysis for Security.IEEE Security & Privacy 2(6). 2004,
pp. 76–79

4. CLOCKSIN, W. F.; MELLISH, C. S.:Programming inPROLOG. 5th Edition, Springer, 2003
5. CORBETT, J. C.; DWYER, M. B.; HATCLIFF, J.; LAUBACH, S.; PASAREANU, C. S.; ZHENG,

R. H.: Bandera: Extracting Finite State Models From Java Source Code.Proc. International
Conference on Software Engineering, ICSE 2000, pp. 439–448

6. DUCASSE, S., LANZA , M., BERTULI, R.: High–Level Polymetric Views of Condensed Run–
Time Information.Proc. 8th European Conference on Software Maintenance and Reengi-
neering, CSMR 2004, pp. 309–318

7. VAN EMDEN, E.; MOONEN, L.: Java Quality Assurance by Detecting Code Smells.Proc.
9th Working Conference on Reverse Engineering, WCRE 2002. IEEE Computer Society,
pp. 97–108

8. EVANS, D., LAROCHELLE, D.: Improving Security Using Extensible Lightweight Static
Analysis.IEEE Software 19(1). 2002, pp. 42–51

9. FISCHER, D.; LUSIARDI, J.: JAML : XML Representation of Java Source Code.Technical
Report, University of Würzburg, Department of Computer Science. 2008

10. HOLZMANN , G. J.; SMITH , M. H.; Extracting Verification Models by Extracting Verification
Models.Proc. Joint International Conference on Formal Description Techniques, FORTE
1999, and Protocol Specification, Testing, and Verification, PSTV 1999, Kluwer, pp. 481–
497

15

11. JBOSS; RED HAT: Hybernate.https://www.hibernate.org/
12. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION : ISO/IEC 9075–14:2003 In-

formation Technology – Database Languages – SQL – Part 14:XML Related Specifications
(SQL/XML). 2003

13. MARINESCU, R.: Detection Strategies: Metrics–Based Rules for Detecting Design Flaws.
Proc. 20th IEEE International Conference on Software Maintenance,ICSM 2004, pp. 350–
359

14. RAMAKRISHNAN , R.; GEHRKE, J.:Database Management Systems.3rd Edition, McGraw–
Hill, 2003

15. REN, X.; SHAH, F.; TIP, F.; RYDER, B. G.; CHESLEY, O.:Chianti: A Tool for Change Impact
Analysis of Java Programs.ACM SIGPLAN Notices 39(10). 2004, pp. 432–448

16. SEIPEL, D.: Processing XML Documents inPROLOG. Proc. 17th Workshop on Logic Pro-
grammierung, WLP 2002

17. SEIPEL, D.; BAUMEISTER, J.; HOPFNER, M.: Declarative Querying and Visualizing Knowl-
edge Bases in XML.Proc. 15th International Conference on Declarative Programming and
Knowledge Management, INAP 2004, pp. 140–151

18. SYSTÄ, T.; YU, P.; MÜLLER, H.: Analyzing Java Software by Combining Metrics and Pro-
gram Visualization.Proc. 4th European Conference on Software Maintenance and Reengi-
neering, CSMR 2000, IEEE Computer Society, pp. 199–208

19. WIELEMAKER, J.:An Overview of theSWI–PROLOGProgramming Environment.Proc. 13th
International Workshop on Logic Programming Environments, WLPE 2003, pp. 1–16

20. WIELEMAKER, J.: SWI–PROLOG. Version: 2007.http://www.swi-prolog.org/

16

