JSquash: Source Code Analysis of Embedded Database
Applications for Determining SQL Statements

Dietmar Seipél, Andreas M. Boehrly and Markus Fréhlich

University of Wirzburg, Department of Computer Science
Am Hubland, D-97074 Wirzburg, Germany
seipel@informatik.uni-wuerzburg.de, markusfroehlichl@gmxaté&@andiboehm.de

Abstract. In this paper, we analyse Java source code of embedded database ap
plications by means of static code analysis. If the underlying databasmadk
changed due to refactoring or database tuning, thenghesgtements in the em-
bedding Java program need to be adapted correspondingly. Thilsl sf@done
mostly automatically, since changing software manually is error—prodi¢irze
consuming.

For determining the §L statements that access the database, we can either look at
the database logfile, an audit file, or at the Java source code itself.wkeshow

how to statically determine even the strings for dynamically bugit Statements
directly from the Java source code. We do this without using a debugger o
virtual machine technique; instead, we trace the values of variablethzitte

to a query string backwards to predict the values as precisely as possible

We use ROLOGS declarative features and its backtracking mechanism for code
analysis, refactoring, and tuning.

1 Introduction

During the software life—cycle, enterprise—class datebasdergo a lot of changes in
order to keep up with the ever—changing requirements. Téwigg space requirements
and complexity of productive databases make the task oftaiaing a good perfor-
mance of the database query execution more and more coteplicthe performance
is highly dependent on the database schema design [14],daliibaally, a complex
database schema is more prone to design errors.

Increasing the performance and the manageability of a dagabsually requires
analysingandrestructuringthe database schema and therefore affects the application
code indirectly. The application code highly depends onddt@base schema, because
the database queries are embedded in the source code.yJdugllare contained in
string variables or, more dynamically, statements are rg¢@@ step by step by using
control structures and string concatenations.

Nearly any type of database schema modification impliesdbption of the queries
embedded in the application code. Sometimes, the logicaidhstruction of the query
strings has to be changed, too. Some efforts have been mpaEstind the applications
code from the data persistence in the database [11]. Theogetbimethods require a
configuration that tells the database service the mappitwees database tables and

application objects. Moreover, the relationships betwdentables must also be in-
cluded in that configuration. Therefore, such approacheslao affected by database
changes and need to be adjusted accordingly.

Recently, we have developed a standardized Xepresentation of @L statements
and database schemas namegbSsHML, that was introduced within the FOLOG
based toolset Squash feefactoring and tuning relational database applications [1].
Squash is the first tool that supports the analysis and thetmfng of database appli-
cations with coordinated simultaneous modification of tige. 8ode and the database
schema definition. Squash also detects inconsistenciesoamahon flaws in §L state-
ments. It can determine an optimized configuration of indeswell as of tables, and
propose modifications of the database schema that resuit gff@iency gain. The
changes are applied automatically to both the schema arfsithstatements.

In this paper, we develop an extension named JSquash of ISthetsanalyses a
given Java source code and presents all expressions indleetrat influence the con-
struction of the embeddedys statements. Our approach estimates or even determines
the values of variables in the source code of the databagdisaon by static code
analysis; this is used to predict the embedded databasiestizat can be generated by
the application.

Related research osource code analysisas mainly focussed on static analysis
providing information about security issues (secure c@®leg], model extraction [10],
code smells [7], obvious errors [15, 13], code metrics [6] #ow analysis [5]. Re-
cently published results were mainly about supporting tirapdex task of understand-
ing the run—time behaviour of legacy and non—legacy sofvggstems [18, 6]. An ex-
tensive amount of research has been dedicated to systeysiarmgl extracting informa-
tion generated during the run—time of a software systemi[égse approaches require
the code being instrumented prior to execution by variocisrigues, such as wrapping,
logging or extended virtual machines. The output of suchralyais is an execution
trace containing information about the run—time behavifuhe system, such as call
hierarchies of methods and object creation. Such tracesodtiptive software systems
are often very voluminous, and usually the values of intargsariables are missing.

The rest of the paper is organized as follows: Section 2 sumesathe basic con-
cepts of managing source code witR® 0G in the JSquash repository. Section 3 de-
scribes some basic methods of static code analysis sugdgoyt@Squash, such as the
calculation of metrics and the detection of code smellsti&ed presents the strategies
of JSquash used for recursively evaluating the control flbthe source code in order
to determine values of variables at run—time for predicéntgbedded 8L statements.
Section 5 shows how JSquash can visualise the creation cédeld ®L statements
using HrML 4, CSS, and JavaScript technology, and how Squash can igesyain
conditions of complex BLECT statements. Finally, Section 6 summarizes our work.

2 Management of Java Source Code with ROLOG

In JSquash, Java code is first parsed and transformed interaneépresentation called
JAML [9]. Subsequently, a source codpositoryis built from the XvL representa-

tion, which suitably represents the constructs of the asalyprogramming language.
It is essential to choose an adequate format for the reppsgoch that the analysis
can handle the data efficiently. The analysis is implemeungta the declarative logic
programming system8—PROLOG [4, 19].

2.1 Representation of Java Source Code in ML

The XML representationaML completely resembles the Java source code; it even con-
serves the layout of the source codemil enables standardised access to the source
code. Generally, XiL is a markup language for representing hierarchically stinec
data, which is often used for the exchange of data betweéerelit applications; as

a particular XL language, AML is a very good candidate for an intermediate repre-
sentation during the creation of the repository out of theaJource code. It comes
with a plugin that can be installed as an online update in itegrated development
environment Eclipse, that performs the transformatiomfitava to XL on—the—fly
while programming. For every type of expressions, i.e.iades, statements and con-
trol structures, there is a speciaMX element in AML, which holds the hierarchical
design of the program as well as detailed information aboair¢épresented Java com-
ponent.

According to the W3C XML1.1 recommendation, the terseness iMXmarkup
is of minimal importance, andadiL increases the volume by a factor of ab60t To
meet our requirements, the contained information has twhdensed; e.g., the single
indenting white spaces are of no interest.

For example, the Java variable declarafiot a = 5, that additionally includes
an initialisation, is presented imML, as shown in the listing below; for clarity, the
representation has been strongly simplified. The Java déida is represented by a
vari abl e- decl ar ati on- st at enent elementin AmL. The included ype el-
ement sets the data type of the variabl® integer. The assignment is represented by
thevari abl e- decl ar at i on subelement: the identifier of the variable is given by
thei denti fier element, and the literal expression is given byeapr essi on
element.

<vari abl e-decl ar ati on-st at enent >
<type kind="primtive-type">
<primtive-type> <int>int</int> </primtive-type>
</type>
<whi t espace/ >
<vari abl e-decl aration-Ilist>
<vari abl e-decl arati on>
<identifier>a</identifier> <whitespace/>
<initializer>
<equal >=</ equal > <whi t espace/ >
<expressi on>
<literal -expression type-ref="int">
<literal >
<nunber-literal >5</ nunber-literal >

</literal >
</literal -expression>
</ expressi on>
</initializer>
</vari abl e-decl arati on>
</vari abl e-decl aration-1ist>
</ vari abl e-decl ar ati on- st at enent >

For deriving the JSquash repository, tkeid data are represented in field notation
and processed using theviX query, transformation, and update languag&€kEery [16,
17]. The query part of the language resembles an extensitimeokell-known XL
query language XQuery [2]; butNQuery is implemented in and fully interleaved with
PrRoLOG. The usual axes of XPath are provided for selection and neadiin of XmL
documents. Moreover,NQuery embodies transformation features, which go beyond
XsLT, and also update features.

2.2 The JSquash Repository

The JSquash repository stores the relevant elements ofatlzecdde, which are ex-
tracted from the ML representation, in the form ofR®LOG facts. These facts repre-
sentinformation that at least consists of the type and arigien of the location within
the source code including the locations of the surroundodgdlocks. Additionally,
necessary parameters can be added, depending on the type.

The construct of @athreflects the hierarchy of the code nesting. A path starts with
the file number of the source code; the further elements gfalieare derived from the
position attributesgos) of the AML representation.

The JSquash repository supports access to variables,t@bfasses as well as
method calls. E.g., a variable declaration is stored in ¢ip@sitory using a fact

j squash_reposi tory(
Pat h: ' vari abl e-decl aration’, Type, 1d, P:T).

wherePat h is the path of the statemerity pe is the type and d is the name of the
variable, andP: T is an optional reference to the in—place initialisation.

For example, the representation of the following fragmera dava source code,
which starts at positiod01 in the Java source file, in the JSquash repository will be
explained in more detail.

1:int a = 5;
2:int b = 10;
3:int ¢ = a + b;
4:int d = c;

Due to surrounding blocks and preceding statements, dispgetve the common prefix
"0, 49, 3, 49, 94" which we abbreviate by.”. . . Sincea starts at position

105 and5 starts at positior1 09, the declaratiomnt a = 5 inlinel is represented

by the following two facts:

j squash_reposi tory(

[..., 105]:’variable-declaration’, int, a,
[..., 105, 109]:'literal -expression’).

j squash_reposi tory(
[..., 105, 109]:'literal-expression’, int, 5).

The typevari abl e- decl ar at i on requires two parameters: the type of the vari-
able and its name. In this example, the in—place initiabsatvith the values is rep-
resented in the repository by the path of that expressionrateeence, herg¢. . .,
105, 109], together with the fact of the referenced expression. Syphessions are
represented in JSquash by the type er al - expr essi on.

The source code of lingis represented by two similar facts, whetg' s replaced
by ”10”, 7 105" is replaced by 119", and 109" is replaced by 123".

Line 3 is more complex, because it contains the sura ahdb in the initialisation,
a binary expression that comes in the repository as thelfypar y- expr essi on.

j squash_reposi tory(

[..., 134]:’variable-declaration’, int, c,
[..., 134, 138]:’binary-expression’).
j squash_reposi tory(
[..., 134, 138]:’'binary-expression’
[..., 134, 138, 138]:’'variabl e-access-expression’, +,
[..., 134, 138, 142]:’'vari abl e-access-expression’)
j squash_reposi tory(
[..., 134, 138, 138]:’variabl e-access-expression’, a)
j squash_reposi tory(
[..., 134, 138, 142]:’vari abl e-access-expression’, b)

The reference of the declaration fact points to the deserif the binary expression,
which holds two references, one for the left and one for thhtrexpression; in our
case, both are accesses to variables.

Line 4 contains an access to a variable instead of a literal expresEhis is rep-
resented in the repository by the typari abl e- access- expr essi on, which
works likel i t er al - expr essi on, but it has no qualifier for local variables — as in
our example.

j squash_reposi tory(

[..., 152]:'variable-declaration’, int, d,
[..., 152, 156]:'vari abl e-access-expression’').
j squash_reposi tory(
[..., 152, 156]:'vari abl e-access-expression’, c).

The notation described above has been used for convenieneptove the read-
ability of rules referring to the repository. Fefficiencyreasons, we store different facts
with the predicate symbojssquash_r eposi tory_/ 3, 4, 5 in the repository; then
we can make use of the index on the first argument to searcladts 6f a given type.
The predicates from above are derived using the followingpk rules:

j squash_repository(P1: T1, Type, Id, P2:T2) :-
jsquash_repository (T1, Type, 1d, P2:T2, Pl).

j squash_repository(P1: T1, P2:T2, Op, P3:T3) :-
jsquash_repository (T1, P2:T2, Op, P3:T3, P1).

jsquash_repository(P: T, 1d) :-
jsquash_repository (T, 1d, P).

Using the design of the repository described here, JSqaadie to work efficiently
with application code of any complexity.

3 Static Code Analysis

Source code analysis comprises the manual, tooled or atédmaerification of source
code regarding errors, coding conventions, programmiylg,dest coverage, etc.

The tool JSquash supports some standard methods of stdgcaoalysis, such as
the calculation of metrics and the detection of code smkillshe following, we will
show some examples.

3.1 Local and Global Variables

The following rule determines the classes and identifieelddcal (if Ty pe is given by
"vari abl e-decl arati on’) or global (if Type is’ fi el d-decl aration’)
variables within the source code, respectively:

vari abl es_in_system(Type, Cass, 1d) :-
jsquash_repository([N:'java-class', _, dass),
jsquash_repository([N _]: Type, _, 1d, _).

Note, that the repository facts for Java classes have a pa#isting of only one num-
ber. Every variable in a Java class must have this numbereaBrgt element of its
path.

3.2 Detection of Flaws and Code Smells

JSquash supports the detection of some types of code flayscade sections that
could be sources of potential errors.

The following rule determines the method signatures of athnds having more
than one et ur n statement:

nmet hods_wi t h_several _returns(
Cl ass, Method, Signature) :-
jsquash_repository([N:'java-class’, _, dass),
j squash_repository([N Ns]: ' nmet hod-decl aration’,
Met hod, Signature, _),
findall (Path,

(jsquash_repository(

Path:’ return-expression’, _,),
append([N| Ns], _, Path)),
Paths),
| engt h(Pat hs, Length),
Length > 1.

The method declarations within a Java class have the posifithe class as the first
element in their path. Similarly, the return expressiona nfethod have the path of the
method as a prefix of their path.

The following rule detects allf conditions that always evaluate tal se. It de-
termines the sections of all sucli statements within the analysed code. If all possible
evaluations of amf condition aref al se, then the f statement is unnecessary.

unnecessary_if_statenments(lf_Path) :-
j squash_reposi tory(
If _Path:’if-statement’, P: T, _,),
init_run_tinme(R),
set_run_time(R R2, [
sear ched_expr essi on@at h=P,
sear ched_expressi on@ype=T]),
forall (eval (R2: P: T, Value),
Val ue = [bool ean, false|_]).

After initialising the run—time, which will be explained the following section, with
init_run_tine/1,the path and the type of the searched expression are stored i
the run—time usinget _run_ti me/ 3.

All of these features make use of the basic code analysissisatpported and in-
tegrated in JSquash. This comprises the detection of thawfiolg facts: which code
sections influence the values of variables, which methodscalling other methods
(call dependencies), and which objects are created at wim@hby which other ob-
jects. The predicateval / 2 for backward tracing the flow of control leading to the
values of variables will be explained in the following seati

4 Backward Tracing of the Control Flow

While looking for actual values of variables, JSquash recels calls the predicate
eval / 2 until the evaluation reaches assignments having condteteallexpressions
on their right hand side. As literal expressions need notet@\mluated, their values
can immediately be used as arguments in complex expresgiftes the recursion is
rolled out completely, the calculated values of the pagigiressions are returned until
the value of the examined expression is determined.

For example, during the search for the current valué iof line 4 of the code frag-
ment from Section 2.2, first the varialdein the right hand side of the assignment has
to be evaluated. Therefore, JSquash detects the assigimrlam 3, wherec can be

public | |class| |sender| {
public void sendMessage() {

String tCondColumns = { "_’a'-'_'_,-"'[if'_,f',c-f' ¥
String tCondValues = { 1", "2","3" };
String tOrderByColumns = { e, "d" };

String tSQL = "SELECT * FROM training™;

tSQL += " WHERE "; \

tSQL += tCondColumns[0] + ¥ =" + tCondValues[0] + ™ AND *;
tSQL += tCondColumns[1] + " = " + tCondValues[1] + " AND ";
tSQL += tCondColumns[2] + ' =" + tCondValues[2];

tSQL += " ORDER BY ";)
tsQL += tOrderByColumns[o] + [, %;
tSQL += tOrderByColumns[1];

tSQL += " ASCENDING";

Connection con = DBTools.getConnection();

try {
PreparedStatement st = con.prepareStatement(tSQL);
st.execute();

Ycatch {Exception e)
e.printStackTrace();

b

b
Fig. 1. A code example that uses arrays of strings to constructansgtement.

evaluated by determining the current values @i line 1 andb in line 2 and by return-
ing their sum. Another example using arrays of strings tstoict an ®L statement is
shown in Figure 1.

The current state of the analysed program plays an importdatfor eval / 2 ,
because it determines the control flow of the applicatiocalsulations. The program
state is the set of all variables and their current valuesateneeded for evaluation of
the control structures involved in the calculation of thkuezof the examined variable.

4.1 Overview of the Evaluation Strategy

Evaluating a specific variable means accessing it at a speafint of run—time. As
variables always receive their values strictly via assignirexpressions, the analysis
component has to find the last assignment before the exaragtwess to the variable.

Therefore, the possible assignments have to be examineth 3o, a simulation of
the control flow has been implemented in JSquash that cassidatrol flow statements
such as loops anidf - t hen- el se constructs. This machine recognizes, if a program
block directly or indirectly influences the value of the exaed variable.

The search for the current value of a variable has been ingsieed in the predicate
eval / 2 . Given the reference to a variable, it returns the corredipgrvalue, depend-
ing on the current state. On backtracking, it determine$uaiher value assignments
for the given variable. E.gi,f statements may lead to alternative value assignments,

if the condition cannot be evaluated and theen or el se part assigns a value to the
examined variable. But, often there is only one possiblaezalsignment.

eval / 2 is always called with the first argument of the foRnP: T. Therun—time
objectR holds fundamental information for determining the valuésariables. It is
represented as an\{ object in field notation, which holds the following infornat:

— the current position of the analysis in the source code,

— the analysed control structure,

— the state of the variables defining the current state andadiuw,
— the currently examined variable, and

— the currently examined assignment.

The run—time is needed as a supporting data structure ftysimgithe lifetime behavior
of loops and other constructs that have nested blocks,dimguecursive method calls.
In these cases, it is used for holding the distinct statekebtocks passed during the
analysis. The value history of the run—time is used extehgio reflect the construction
and dependencies of each single value of a variable.

P: T referenceghe currently searched expression. Based on the type ofefhe r
erenced expressions, JSquash can decide which ridealf/ 2 has to be used for
determining the actual value of the given expression. Inctse of variable accesses,
theeval / 2 rule —which is shown in Section 4.2 — determines the curraluevof the
referenced variable at the time of the access.

For each typ€l of control structure a rule has been developed that simulates its
behaviour and functionality. These rules implement ev@uastrategies that yield the
current value for all type primitives. The handling of loeadd global variables (class
fields) is implemented separately, since the evaluatiategjies differ. In the following,
we will show some examples; more complicated cases, sudheasandling of Java
loops, cannot be shown due to the inherent complexity of thailuation.

4.2 Variable Access Expressions

While processing the Java code fragment of Section 2.2, 3Bchas at first to resolve
the identifierd. The JSquash repository fact

j squash_reposi tory(
[..., 152, 156]:'vari abl e-access-expression’, c).

shows that the variable access expression.at., 152, 156] refers to the vari-
ablec. Based on the repository fact

j squash_reposi tory(
[..., 134]:'variable-declaration, int, c,
[..., 134, 138]:’'binary-expression’).

the predicatenext / 2 finds out that the most recent assignment defiringas the
binary expression 4t. . ., 134, 138], cf. line 3 of the Java code fragment:

eval (R P: T, Value) :-

T = ’vari abl e-access-expression’,

jsquash_repository(P: T, 1d),

set_run_tine(R R2, |
@ear ched_i d=Id,
@earch_node=vari abl e,
@cope=T]),

next (R2: P: T, R3:P3:T3),

eval (R3: P3: T3, V),

handl e_postfix(P3: T3, V, Value).

Similarly, the repository fact

j squash_reposi tory(
[..., 105]:’variable-declaration’, int, a,
[..., 105, 109]:'literal-expression’).

is used later during the computation to find out that the Yideia is declared using a
literal expression.

For finding the most recent assignment to the examined \lasathe predicate
next/ 2 has to traverse the JSquash repository facts in inverse @aige. This can
be supported by furtherdLOG facts in the repository, which link a statement to its
preceding statement in the code order.

4.3 Binary Expressions

The repository fact

jsquash_repository([..., 134, 138]:’bi nary-expression’,
[..., 134, 138, 138]:'variabl e-access-expression’, +,
[..., 134, 138, 142]:’vari abl e-access-expression’).

shows that the binary expression forefers to two variable access expressions. After
evaluating them, the resulting values are combined usiagihary operator (in our
caset) indicated by the fact from the repository:

eval (R P: T, Value) :-
T = ’binary-expression’,
jsquash_repository(P: T, P1:T1, Op, P2:T2),
eval (R P1: T1, V1),
eval (R P2: T2, V2),
appl y(Op, [V1, V2, Value]).

If we evaluate the following code fragment, then both exgi@ss within the binary
expressionin line 2 are evaluated w.r.t. the same run@nbeit with different references
P1: T1 andP2: T2, respectively:

1:int a
2:int ¢

5;
a++ + a;

10

The calleval (R P1: T1, V1) evaluates the left expressia+ to 5; only after-
wards, the value of is incremented to the new val@e The calleval (R P2: T2,

V2) for the right expressioa re—evaluates the left expression, since the new valae of
is relevant. Thus, the right expressiaicorrectly evaluates t6, and finally,c evaluates
tol1l,ie.,5 + 6.

4.4 Literal Expressions
The repository fact

j squash_reposi tory(
[..., 105, 109]:'literal-expression’, int, 5).

shows that the value of the literal expressiorp at ., 105, 109] is 5. This type
of expression is evaluated using the following rule:

eval (R P: T, Value) :-
T ="literal -expression’,
jsquash_repository(P: T, _, Value).

5 Visualisation of Embedded ®L Statements

The tool JSquash can detect and analyge Satements embedded in the Java source
code of database applications.

5.1 QL Statements Embedded in the Source Code

For presenting the results of the analysis to the user, $8qneludes a generator com-
ponent, that produces anTML document containing the complete information about
the detected §L statements, including the full@& code and the source code that
contributes to each@. statement. This ML document comprises a fully functional
graphical user interfacéGUI) that can be opened and used with any Web browser. The
GUI is implemented in HML 4 using cascading style sheets (CSS) and
JavaScript; the JavaScript helps building a dynamic GUI.

The expressions that contribute to the following gener&@dstatement have been
detected by JSquash and are automatically highlightedsigeee 1. JSquash was also
able to build the full ®L statement by only analyzing the source code:

SELECT * FROM trai ni ng
WHERE a =1 ANDb =2 ANDc = 3
ORDER BY c, d ASCENDI NG

This statement — which is the seconqiSstatement in the GUI of Figure 2 — is visu-

alised in Figure 3. The left side in of the GUI shown in Figurdi§plays all the class
files of the source code that contribute to the detected Satements. Clicking on the

11

I_} startpackage.RunClass | Generated SQL Statements
+ SELECT count{*} FROM owner WHERE city = 5 2]
[example.sender | + SELECT * FROM training WHERE a = 1 AND b = 2 AND c = 3 ORDER BY
¢, d DESCENDING
+ SELECT id, owner_name FROM accounts WHERE owner = 6 AND bank =
& example.ConditionHelper | 42

+ SELECT id FROM training WHERE a =6 AND c = &

]

example.OrderByHelper |

Please select a statement in order to mark the involved variables.

Settings

Color

monochrome « multicolor {scaled)

Fig. 2. The GUI of JSquash. No@. statement is selected.

E startpackage.RunClass ‘ Generated SQL Statements
— ~SELECT count(*) FROM owner WHERE city = 5 B
[0 exampte.sender | ~ SELECT * FROM training WHERE a = 1 AND b = 2 AND c = 3 ORDER BY
c d
; = . SELECT id, owner_name FROM accounts WHERE owner = 6 AND bank =
package example;]

; + SELECT id FROM training WHERE a = 6 AND < = &
[import jaua.sal.Connection;

|import java.sql.Preparedstatement;
{import startpaket.DBTools;

ipubiic [[class| [sender[{

private String[] iCondColumns = { ¥
private String[] iCondvalues = { "1
private String[] iOrderByColumns =

public uoid sendMessage() {

[tC -(iCondColr iCondvalues); . 1+
yHelp: Y yHelper il ¥ s
Please select a statement in order to mark the involved variables.
String tSQL = MSELECT I FROM EFaining;
501 += tCondHelper.getConditionSQL();
15QL += tordersyHelper.getorderySQL);
Connection con = DBTools.getConnection();
Y L .
Jim % Settings

st.execute(); _—
} catch {Exception e) olan
e.printStackTrace(); # monochreme « multicelor {scaled)

|2 cxamle.conditiontielper]

[package enample;]

lpubiic [[class| [ConditionHelper| {
private String[] iCondColumns , iCondvalues ;

public all string[])

this.iCondColumns = GEaRACEIumMNS;
this.iCondValues = aCondValues;
3

Fig. 3. All contributing values and variables of the selected secapd Satement are marked.

buttons at the left side of the class name opet)sof closes {) the source code, re-
spectively. At the upper right side, all detectedLSstatements are shown. Below is the
block of settings, that allow for changing the highlightiegjors.

If an SQL statement of the list is selected, then the correspondidg sections and
expressions are automatically highlighted in the listing$he left side, cf. Figure 3.
Thus, the user can easily analyse all code sections thatlmatetto the selected@

12

statement. This feature is implemented in JavaScript ang, @fking extensive use of
the path information from the repository.

5.2 Representation and Visualisation of §L Statements

Recently, we have developed the tool Squash for analysingd and refactoring re-
lational database applications [1]. It uses an extensitdeflexible XML representation
for SQL database schema definitions and queries cali@daSHML, that is designed
for representing schema objects, as well as database sjaedalata modification state-
ments.

The core of UASHML follows the SQL standard, but it also allows for system—
specific constructs of different@ dialects; for example, some definitions and storage
parameters from the Oracle database management systerhdavéntegrated as op-
tional XML elements.

The KUASHML format allows for easily processing and evaluating theadase
schema information. Currently, supported schema objactade table and index def-
initions. Other existing XiL representations of databases, such @as/$mML, usually
focus on representing the database contents, i.e., treedabtents, and not the schema
definition itself [12]. QUASHML was developed specifically to map the database sche-
ma and queries, without the current contents of the database

The L statements detected by JSquash are transformegua$iML, and then
the tool Squash can be used for the visualisation of theestgtements. E.g., the fol-
lowing SELECT statement from a biological application joifigables; the table names
have been replaced by aliasks . ., :

SELECT * FROMA, B, C D, E F, G H
WHERE A. 1D DI CT_PEPTIDE IN (

SELECT | D_PEPTI DE FROM |

WHERE | .1 D _SEARCH = 2025

GROUP BY | D_PEPTI DE

HAVI NG COUNT(| D_SEARCH_PEPTI DE) >=1)
AND A. | D_SEARCH = 2025
AND c1 AND c2 AND A. FLAG DELETED = 0
AND c3 AND c6 (+) AND c7 (+) AND c4 AND c5
AND E. LEN >= 6 AND A. NORMALI ZED SCORE >= 1.5
ORDER BY ...

The following 7 join conditions are used:

cl: A | D _SEARCH PEPTIDE = B.|D_SEARCH PEPTI DE
c2: A 1D _SPECTRUM = G | D_SPECTRUM

c3: A | D _SEARCH PEPTIDE = C.|D_PEPTI DE

c4: C.1D_SEQUENCE = D.|D_SEQUENCE

c5: A | D _SEARCH = H. | D_SEARCH

c6: B.1D_PEPTIDE = E.|D_DI CT_PEPTI DE

c7: B.1D_PEPTIDE_MOD = F. 1D DI CT_PEPTI DE

13

Sir

o

E F D

Fig. 4. Join Conditions in a Query

This query is parsed into the followingd®AsSHML element; we leave out some open-
ing and closing tags, respectively:

<sel ect >
<subquery i d="subquery_1">
<sel ect _| i st> <expr> <sinpl e_expr>
<obj ect table_view="A" colum="1D SEARCH'/> ...
<from> <table_reference> ...
<si nmpl e_query_t abl e_expressi on
obj ect="A" schema="USER'/> ...
<where> ...
<order_by> ...
</ sel ect >

The conditions in the WERE part (e.g., the join conditionl) look like follows:

<condi ti on>
<si npl e_conpari son_condi ti on operator="=">
<l ef t _expr> <expr> <si npl e_expr>
<obj ect table_view="A" colum="1D_SEARCH PEPTIDE"/> ...
<right_expr> ...
<obj ect tabl e_view="B" col um="1D_SEARCH PEPTIDE"/> ...
</ condi tion>

Squash provides a number of different visualization mettodthe database schema
and the queries. Complex select statements tend to inclasy tables in join opera-
tions. Therefore, Squash uses a graph representation éoy gisualization, cf. Fig-
ure 4. If a ELECT statement contains nested subqueries (like the staterhewnins
above), then these queries can be included in the graphigalioif desired.

14

6 Conclusions

We have shown, how to derive the content of application ég&in Java programs us-
ing means of static code analysis. Our tool JSquash, whichpiemented in ROLOG,
predicts the values of variables as precisely as possibléposly, some values cannot
be discovered at compile—time, e.g., if a value was obtatimexligh 1/0 operations.

Now, we are able to analysambedde®qQL statement®f a given database appli-
cation, either by analysing audit files of the database odioreusing the basic tool
Squash [1], or by static source code analysis with the exigtabl JSquash. The state-
ments derived from the source code of the database applicedin be imported into
Squash, which can then generate database modificatiomsgooving the performance
of the application.

Future work will be on developing methods that preserve ititeate between the
detected single @ statement fragments and their positions as well as eacheof th
effects in the completed statement. This extensiongoA&AHML will then allow for
injecting the changes proposed by Squash into the origmakts code of the applica-
tion, and it will help conducting the appropriate changeseh

Moreover, we will try to apply similar techniques of statmde analysis to ROLOG
programs with embeddeds statements as well.

References

1. BoEHM, A. M., SEIPEL, D., SCKMANN, A., WETZKA, M.: Squash: A Tool for Analyzing,
Tuning and Refactoring Relational Database Applicatidh®c. 17th International Confer-
ence on Declarative Programming and Knowledge Management, [IAP, pp. 113-124

2. CHAMBERLIN, D.: XQuery: a Query Language for XMProc. ACM International Confer-
ence on Management of Data, SIGMOD 2003. ACM Press, 2003,823-682

3. CHESS B., MCGRAwW, G.: Static Analysis for SecurityEEE Security & Privacy 2(6). 2004,

pp. 76-79

. CLOCKSIN, W. F.; MELLISH, C. S.:Programming inPROLOG. 5th Edition, Springer, 2003

. CorBETT, J. C.; DNYER, M. B.; HATCLIFF, J.; LAUBACH, S.; ASAREANU, C. S.; ZHENG,

R. H.: Bandera: Extracting Finite State Models From Java Source CBdec. International

Conference on Software Engineering, ICSE 2000, pp. 439-448

6. DUCASSE S., LANzA, M., BERTULI, R.: High—Level Polymetric Views of Condensed Run—
Time Information.Proc. 8th European Conference on Software Maintenance and iReeng
neering, CSMR 2004, pp. 309-318

7. VAN EMDEN, E.; MOONEN, L.: Java Quality Assurance by Detecting Code Sméltec.
9th Working Conference on Reverse Engineering, WCRE 2002. |IE&BpDter Society,
pp. 97-108

8. EvaNsS, D., LAROCHELLE, D.: Improving Security Using Extensible Lightweight Static
Analysis|EEE Software 19(1). 2002, pp. 42-51

9. FISCHER D.; LUSIARDI, J.: AML: XML Representation of Java Source Codlechnical
Report, University of Wirzburg, Department of Computer Scien@@82

10. HoLzMmANN, G. J.; SMITH, M. H.; Extracting Verification Models by Extracting Verification

Models.Proc. Joint International Conference on Formal Description TeclesigFORTE
1999, and Protocol Specification, Testing, and Verification, PSTV 1KAfver, pp. 481—
497

[S20F

15

11

12.

13.

14.

15.

16.

17.

18.

19.

20

JBoss ReD HAT: Hybernateht t ps: // www. hi ber nat e. or g/

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: ISO/IEC 9075-14:2003 In-
formation Technology — Database Languages — SQL — ParkKMl: Related Specifications
(SQL/XML) 2003

MARINESCU, R.: Detection Strategies: Metrics—Based Rules for Detecting Design Flaws.
Proc. 20th IEEE International Conference on Software Maintend@&\ 2004, pp. 350—
359

RAMAKRISHNAN, R.; GEHRKE, J.:Database Management Syste®isl Edition, McGraw—
Hill, 2003

REN, X.; SHAH, F.; TIP, F.; RrDER, B. G.; CHESLEY, O.: Chianti: A Tool for Change Impact
Analysis of Java Program#&CM SIGPLAN Notices 39(10). 2004, pp. 432-448

FIPEL, D.: Processing XML Documents PROLOG. Proc. 17th Workshop on Logic Pro-
grammierung, WLP 2002

SEIPEL, D.; BAUMEISTER, J.; HOPFNER M.: Declarative Querying and Visualizing Knowl-
edge Bases in XMLProc. 15th International Conference on Declarative Programmidg an
Knowledge Management, INAP 2004, pp. 140-151

SYSTA, T.; Yu, P.; MULLER, H.: Analyzing Java Software by Combining Metrics and Pro-
gram VisualizationProc. 4th European Conference on Software Maintenance and iReeng
neering, CSMR 2000, IEEE Computer Society, pp. 199-208

WIELEMAKER, J.:An Overview of th&wI1—PROLOG Programming EnvironmenPRroc. 13th
International Workshop on Logic Programming Environments, WLPE20p. 1-16
WIELEMAKER, J.: SNI-PROLOG. Version: 2007ht t p: / / www. swi - pr ol og. or g/

16

