
SQL Based Frequent Pattern Mining with
FP-growth

Shang Xuequn, Sattler Kai-Uwe, and Geist Ingolf

Department of Computer Science
University of Magdeburg

P.O.BOX 4120, 39106 Magdeburg, Germany
{shang, kus, geist}@.iti.cs.uni-magdeburg.de

Abstract. Scalable data mining in large databases is one of today’s
real challenges to database research area. The integration of data mining
with database systems is an essential component for any successful large-
scale data mining application. A fundamental component in data mining
tasks is finding frequent patterns in a given dataset. Most of the previous
studies adopt an Apriori-like candidate set generation-and-test approach.
However, candidate set generation is still costly, especially when there
exist prolific patterns and/or long patterns. In this study we present an
evaluation of SQL based frequent pattern mining with a novel frequent
pattern growth (FP-growth) method, which is efficient and scalable for
mining both long and short patterns without candidate generation. We
examine some techniques to improve performance. In addition, we have
made performance evaluation on DBMS with IBM DB2 UDB EEE V8.

1 Introduction

The integration of data mining with database systems is an emergent trend in
database research and development area. This is particularly driven by explo-
sion of the data amount stored in databases such as Data Warehouses during
recent years, and database systems provide powerful mechanisms for accessing,
filtering, indexing data and SQL parallelization. In addition, SQL-aware data
mining systems have the ability to support ad-hoc mining, ie., allowing to mine
arbitrary query results from multiple abstract layers of database systems or Data
Warehouses. Mining frequent patterns in transaction databases has been stud-
ied popularly in data mining research. Most of the previous studies adopt an
Apriori-like candidate set generation-and-test approach [3, 7, 8], which is based
on an anti-monotone Apriori heuristic: if any length k pattern is not frequent in
the database, its length (k+1) super-pattern can never be frequent. The above
Apriori heuristic achieves good performance gain by reducing significantly the
size of candidate sets. However, in situations with prolific frequent patterns, long
patterns, or quite low minimum support thresholds, this kind of algorithm may
still suffer from the following two nontrivial costs:

1. It is costly to handle a huge number of candidate sets.



2. It is tedious to repeatedly scan the database and check a large set of candi-
dates by pattern matching, which is especially true for mining long patterns.

Recently, an FP-tree based frequent pattern mining method [4], called FP-
growth, developed by Han et al achieves high efficiency, compared with Apriori-
like approach. The FP-growth method adopts the divide-and-conquer strategy,
uses only two full I/O scans of the database, and avoids iterative candidate
generation.

There are some SQL based approaches proposed to mine frequent patterns
[9, 12], but they are on the base of Apriori-like approach. This fact motivated us
to examine if we can get sufficient performance by the utilization of SQL based
frequent pattern mining using FP-growth-like approach. We propose mining al-
gorithms based on FP-growth to work on DBMS and compare the performance
of these approaches using synthetic datasets.

The remainder of this paper is organized as follows: In section 2, we introduce
the method of FP-tree construction and FP-growth algorithm. In section 3, we
discuss different SQL based frequent pattern mining implementations using FP-
growth-like approach. Experimental results of the performance test are given in
section 4. We present related work in section 5 and finally conclude our study
and point out some future research issues in section 6.

2 Frequent Pattern Tree and Frequent Pattern Growth
Algorithm

The frequent Pattern mining problem can be formally defined as follows. Let I =
{i1, i2, ..., im} be a set of items, and DB be a transaction database, where each
transaction T is a set of items and T ⊆ I. An unique identifer, called its TID,
is assigned with each transaction. A transaction T contains a pattern P , a set of
items in I, if P ⊆ T . The support of a pattern P is the number of transactions
containing P in DB. We say that P is a frequent pattern if P

′
s support is no

less than a predefined minimum support threshold ξ.
In [4], frequent pattern mining consists of two steps:

1. Construct a compact data structure, frequent pattern tree (FP-tree), which
can store more information in less space.

2. Develop an FP-tree based pattern growth (FP-growth) method to uncover
all frequent patterns recursively.

2.1 Construction of FP-tree

The construction of FP-tree requires two scans on transaction database. The first
scan accumulates the support of each item and then selects items that satisfy
minimum support. In fact, this procedure generates frequent-1 items and then
stores them in frequency descending order. The second scan constructs FP-tree.

A FP-tree is a prefix-tree structure storing frequent patterns for the transac-
tion database, where the support of each tree node is no less than a predefined



minimum support threshold ξ. Each node in the item prefix subtree consists
of three fields: item-name, count, and node-link. Where node-link links to the
next node in the FP-tree carrying the same item-name, or null if there is none.
For any frequent item ai, all the possible frequent patterns that contain ai can
be obtained by following ai’s node-links, starting from ai’s head in the FP-tree
header. The frequent items in each path are stored in their frequency descending
order. We give the following FP-tree construction algorithm introduced in [4].

Algorithm 1 (FP-tree construction)
Input: A transaction database DB and a minimum support threshold ξ.
Output: It’s frequent pattern tree, FP-tree
Method: The FP-tree is constructed in the following steps.

1. Scan the transaction database DB once, get the frequent sets F and absolute
frequencies. Sort F in frequency descending order as L, the list of frequent items.

2. Initialize the FP-tree T : T = node labelled ”null”. For each transaction in DB,
remove infrequent items and sort the frequent ones according to the order of L. Let
the sorted frequent item list in transaction be [p | P ], where p is the first element
and P is the remaining list. Call insert-tree (p | P , T ) to add the resulting string
to T , update counts as necessary.

Function insert-tree (p | P , T )
If T has a child N such that N.item− name = p.item− name
Then increment N ’s count by 1;
Else do {create a new node N ;

N ’s count = 1;
N ’s parent link be linked to T ;
N ’s node-link be linked to the nodes with the same item-name
via the node-link structure;}

If P is nonempty, call insert-tree (P , N).

Fig. 1. Algorithm for FP-tree construction

FP-tree is a highly compact and much smaller than its original database, and
thus saves the costly database scans in the subsequent mining processes. Let’s
give an example with four transactions in Table 1, we get an FP-tree in Figure
2.

TID Transaction (Ordered)FrequentItems

1 1, 3, 4 3, 1

2 2, 3, 5 2, 3, 5

3 1, 2, 3, 5 2, 3, 5, 1

4 2, 5 2, 5

Table 1. A transaction database and ξ = 2



Fig. 2. An FP-tree for Table 1

2.2 FP-growth

Based on FP-tree structure, an efficient frequent pattern mining algorithm, FP-
growth method is proposed, which is a divide-and-conquer methodology: decom-
pose mining task into smaller ones, and only need sub-database test.

FP-growth performed as follows:

1. For each node in the FP-tree construct its conditional pattern base, which is
a ”subdatabase” constructed with the prefix subpath set co-occurring with
the suffix pattern in the FP-tree. FP-growth traverses nodes in the FP-tree
from the least frequent item in L;

2. Construct conditional FP-tree from each conditional pattern base;
3. Execute the frequent pattern mining recursively upon the conditional FP-

tree. If the conditional FP-tree contains a single path, simply enumerate all
the patterns.

With the FP-tree in Figure 2, the mining process and result is listed in Table
2.

Item ConditionalPatternBases ConditionalFP − tree FrequentPattern

1 {(3 : 1), (2 : 1, 3 : 1, 5 : 1)} 〈3 : 2〉 3 1 : 2

5 {(2 : 2, 3 : 2), (2 : 1)} 〈2 : 3, 3 : 2〉 2 5 : 3, 3 5 : 2, 2 3 5 : 2

3 {(2 : 2)} 〈2 : 2〉 2 3 : 2

2 φ φ φ

Table 2. Mining of all-patterns based on FP-tree in Figure 2



3 Frequent Pattern Mining Based on SQL

Although an FP-tree is rather compact, it is unrealistic to construct a main
memory-based FP-tree when the database is large. However using RDBMSs
provides us the benefits of using their buffer management systems specifically
developed for freeing the user applications from the size considerations of the
data. And moreover, there are several potential advantages of building mining
algorithms to work on RDBMSs. An interesting alternative is to store a FP-
tree in a table. We studied two approaches in this category - FP, EFP (Expand
Frequent Pattern). They are different in the construction of frequent pattern
tree table, named FP . FP approach checks each frequent item whether it should
be inserted into a table FP or not one by one to construct FP. EFP approach
introduces a temporary table EFP , thus table FP can generate from EFP .

Transaction data, as the input, is transformed into a table T with two column
attributes: transaction identifier (tid) and item identifier (item). For a given
tid, typically there are multiple rows in the transaction table corresponding to
different items in the transaction. The number of items per transaction is variable
and unknown during table creation time.

FP-tree is a good compact tree structure. In addition, it has two good prop-
erties: node-link property (all the possible frequent patterns can be obtained by
following each frequent’s node-links) and prefix path property (to calculate the
frequent patterns for a node ai in a path, only the prefix sub-path of ai in P
need to be accumulated). For storing the tree in a RDBMS a flat table structure
is necessary. According to the properties of FP-tree, we represent an FP-tree by
a table FP with three column attributes: item identifier (item), the number of
transactions that contain this item in a sub-path (count), and item prefix sub-
tree (path). The field path is beneficial not only to construct the table FP but
also to find all frequent patterns from FP . In the construction of table FP , the
field path is an important condition to judge if an item in frequent item table F
should be insert into the table FP or update the table FP by incrementing the
item’s count by 1. If an item does not exist in the table FP or there exist the
same items as this item in the table FP but their corresponding path are dif-
ferent, insert the item into table FP . In the process of construction conditional
pattern base for each frequent item, we only need to derive its all path in the
table FP as a set of conditional paths, which co-occurs with it.

3.1 Construction of table FP

The process of the table FP construction is as following:

1. Transfer the transaction table T into table T ′, in which infrequent items are
excluded and frequent ones are sorted in descending order by frequency, i.e.
frequent 1-itemsets. SQL query using to generate T ′ from T in figure 3.

2. Construct the table FP . The algorithm for constructing the table FP is
show in Figure 4.



insert into T ′

select t.id, t.item from T t,
((select item, count(*) from T
group by item
having count(*) ≥ minsupp
order by count(*) desc ) as F (item, count))

where t.item = F.item
order by t.id, F.count desc

Fig. 3. SQL query to generate T ′

Algorithm 2 (table FP construction)
Input: a transferred transaction table T ′

Output: a table FP
Procedure:
for items with the first identical tid in the table T ′

insert into the table FP
for items with the other identical tids in the table T ′

insertFP (items);

insertFP (items)
count := 1;
curpath := null;
if FP has an item f = i1 (the first item in the items) and f. path = null

for each item ik in the items
insert ik into the table FP ;
curpath += ik;

else
for each item ik in the items

if FP has not an item f = ik
insert ik into the table FP ;

else
if f. path != ik. path

insert ik into the table FP ;
else

curcount = ik. count + 1;
update the table FP ;

curpath += ik;

Fig. 4. Algorithm for constructing table FP



3.2 Finding frequent pattern from FP

After the construction of a table FP , we can use this table to efficiently mine
the complete set of frequent patterns. For each frequent item ai we construct
its conditional pattern base table PB − ai, which has three column attributes
(tid, item, count). The table PB−ai includes items that co-occur with ai in the
table FP . As we said above, the path attribute in the table FP represent the
information of prefix subpath set of each frequent itemset in a transaction. So
this process is implemented by a select query to get all corresponding counts
and paths, then split these paths into multiple items with the same count.

select count, path from FP where item = ai;
for each count cnr, path p

id := 1;
item[ ] = split(p);
for each item i in item[ ]

insert into PB − ai values (id, cnr, i);
id += 1;

After then, we construct the table ConFP−ai from each conditional pattern
base table PB− ai using the same algorithm as the table FP construction, and
mine recursively in the table ConFP − ai. The algorithm of finding frequent
patterns from table FP is showed in Figure 5.

Algorithm 3 (FindFP)
Input: table FP constructed based on Algorithm 2 and table F collects all

frequent itemsets.
Output: a table Pattern, which collects the complete set of frequent patterns.
Procedure:
If items in the table FP in a single path

combine all the items and suffix, insert into Pattern;
else

for each item ai in the table F
construct table ConFP − ai;
if ConFP − ai 6= φ

call FindFP(ConFP − ai);

Fig. 5. Algorithm for finding frequent patterns from table FP

3.3 EFP approach

In the whole procedure, the construction of table FP (table ConFP ) is a time-
consuming procedure. The important reason is that each frequent item must be
tested one by one to construct the table FP (table ConFP ). In that case, the
test process is inefficient.



From the above discussions, we expect significant performance improvement
by introducing an extended FP table, called EFP , which has the same format
as table FP (item, count, path). We can obtain EFP by directly transforming
frequent items in the transaction table T ′. We initialize the path of the first
frequent item a1 in each transaction and set it as null. The path of the second
frequent item a2 is null : a1, and the path of the third frequent item a3 is
null : a1 : a2, and so on. Table EFP represents all information of frequent
itemsets and their prefix path in each transaction. We combine the items with
identical path to get the table FP . However, compare to the construction of table
FP , we do not need to test each frequent item to construct the table EFP and
can make use of the database powerful query processing capability. For example,
with the transactions in Table 1, we get a table FP and a table EFP in Figure
6.

Item Count Path

3 1 null

1 1 null : 3

2 3 null

3 2 null : 2

5 2 null : 2 : 3

1 1 null : 2 : 3 : 5

5 1 null : 2

(a) An FP table for Table
1

Item Count Path

3 1 null

1 1 null : 3

2 1 null

3 1 null : 2

5 1 null : 2 : 3

2 1 null

3 1 null : 2

5 1 null : 2 : 3

1 1 null : 2 : 3 : 5

2 1 null

5 1 null : 2

(b) An EFP table for Ta-
ble 1

Fig. 6. table FP and table EFP
for Table 1

3.4 Using SQL with object-relational extension

In the following section, we study approaches that use object-relational exten-
sion in SQL to improve performance. We consider an approach that use a table
function path. As a matter of fact, all approaches above have to materialize its
temporary table namely T ′ and PB′. Those temporary tables are only required
in the construction of table FP and table ConFP . They are not needed for gen-
erating the frequent patterns. So we further use subquery instead of temporary
tables. The data table T is scanned in the (id, item) order and combined with
frequent itemsets table F to remove all infrequent items and sort in support
descending order as F , and then passed to the user defined function Path, which
collects all the prefixes of items in a transaction. SQL query to generate FP



using Path as follows:

insert into FP select tt2.item, tt2.count (*), tt2.path
from (select T.id, T.item from T, F
where T.item = F.item
order by T.id, F.count desc) as tt1,
table (Path (tt1.id, tt1.item)) as tt2
group by tt2.item, tt2.path
order by tt2.path

4 Performance Evaluation

4.1 Dataset

We use synthetic transaction data generation with program describe in Apriori
algorithm paper [3] for experiment. The nomenclature of these data sets is of
the form TxxIyyDzzzK. Where xx denotes the average number of items present
per transaction. yy denotes the average support of each item in the data set and
zzzK denotes the total number of transactions in K (1000’s). We report exper-
imental results on four data sets, they are respectively T5I5D1K, T5I5D10K,
T25I10D10K, T25I20D100K.

4.2 Performance Comparison

Our experiments were performed on DBMS with IBM DB2 UDB EEE V8. For
comparison, we also implemented a loose-coupling approach, in which access to
data in DBMS was provided through a JDBC interface, then construct an FP-
tree in memory and a k-way join approach, that proposed in [12]. We built a (id,
item) index on the data table T and a (item) Index on the frequent itemsets table
F . The goal was to let the optimizer choose the best plan possible. In figure 7
(a)(b) we show the total time taken by the four approaches on data set T5I5D1K
and T5I5D10K: k-way join approach, loose-coupling approach, SQL-based FP,
and improved SQL-based EFP (without object-relational extension in SQL).
From the graph we can make the following observation: k-way join, FP, EFP
has the better performance than loose-coupling approach. EFP approach can
get competitive performance out of FP implementation. An important reason
for superior performance of EFP over FP is the avoid testing each frequent item
one by one in the construction of table FP . For instance, for dataset T5I5D10K
with the support value of 0.5%, in the FP approach, almost 50% of execution time
belongs to the construction of table FP . However, in the EFP approach, almost
less 24% of execution time belongs to the construction of table FP . Since the
recursive construction of table ConFP use the same method as the construction
of table FP . In that case, the overall execution time is highly reduced.

We compare the four approaches on data sets T25I10D10K and T25I20D100K:
k-way join approach, loose-couple approach, EFP approach, and Path approach



(a) (b)

(c) (d)

Fig. 7. Comparison of four approaches. In (c), for k-way join approach with the support
value of 0.2% , and in (d), for Loose and k-way join approach with the support value
of 0.3% and 0.2%, the running times were so large that we had to abort the runs in
many cases.



using a user defined table functions (Path). Figure 7 (c)(d) shows the results of
experiments. From the graph we can make the following observation: EFP and
Path approach can get better performance than k-way join on large data sets or
long patterns. The main reason is that generating candidate-k table Ck is time-
consuming procedure when T is large or minimum support threshold is quite
low. In addition, with the extended SQL we can get the improved performance.

5 Related Work

The work on frequent pattern mining started with the development of the AIS
algorithm, and was further modified and extended in [3]. Since then, there have
been several attempts in improving the performance of these algorithms. [7]
presents a hash based algorithm, which is especially effective for the generation
of candidate set for large2-itemsets. [8] presents a partition algorithm, which im-
prove the overall performance by reducing the number of passes needed over the
complete database to at most two. [1] presents a TreeProjection method, which
represents frequent patterns as nodes of a lexicographic tree and uses the hierar-
chical structure of the lexicographic tree to successively project transactions and
uses matrix counting on the reduced set of transactions for finding frequent pat-
terns. [4] builds a special tree structure in main memory to avoid multiple scans
of database. However, most of these algorithms are applicable to data stored in
flat files. The basic characteristics of these algorithms are that they are main
memory algorithms, where the data is either read directly from flat files or is
first extracted from the DBMS and then processed in main memory.

Recently researchers have started to focus on issues related to integrating
mining with databases. There have been language proposals to extend SQL to
support mining operators. The data mining Query Language DMQL [5] pro-
posed a collection of such operators for classification rules, characteristics rule,
association rules, etc. The Mine Rule operator [6] was proposed for a generalized
version of the association rule discover problem. [2] presents a methodology for
tightly-coupled integration of data mining applications with a relational database
system. [9] has tried to highlight the implications of various architecture alter-
natives for coupling data mining with relational database systems. They have
also compared the performance of the SQL-92 architecture with SQL-OR based
architecture, and they are on the base of Apriori-like approach.

6 Summary and Conclusion

We have implemented SQL based frequent pattern mining using FP-growth-like
approach. We represent FP-tree using a relational table FP and proposed a
method to construct this table. To improve its performance, a table called EFP
is introduced, which is in fact stores all information of frequent item sets and
their prefix path in each transaction. And then, table FP can derived from table
EFP . Compare to the construction of FP , the process of the construction of
EFP avoid testing each frequent item one by one. We next experimented with



an approach that made use of the object-relational extensions like table function.
The experimental results show that SQL based frequent pattern mining approach
using FP-growth can get better performance than Apriori on large data sets or
long patterns.

There remain lots of further investigations. We plan to implement our SQL
based frequent pattern mining approach on parallel RDBMS, and to check how
efficiently our approach can be parallelized and seeded up using parallel database
system. Additionally, is there an SQL based algorithm which combine Apriori
and FP-growth to scale both small and large data sets?
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