
Web Services based onPROLOG and XML

Bernd D. Heumesser1, Andreas Ludwig1, and Dietmar Seipel2

1 University of Tübingen, Wilhelm Schickard Institute for Computer Science
Sand 13, D – 72076 T̈ubingen, Germany

{heumesser,ludwig }@informatik.uni-tuebingen.de

2 University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Ẅurzburg, Germany

seipel@informatik.uni-wuerzburg.de

Abstract. This paper describes how the deductive power of PROLOG can be
made available across the Internet using standardized Web service technologies.
This facilitates the use of PROLOG as a component of distributed information
systems and in many new application scenarios. Since a lot of information avail-
able on the Internet is nowadays XML based and since Web service technologies
use XML based encodings, it is both necessary and useful to be able to process
XML documents in PROLOG itself. To make this possible, a new PROLOG pack-
age calledX2P is introduced, making available to PROLOG many of the XML

processing facilities of theLibxml2 library, which is a very up–to–date and
efficient implementation of most of the current XML related standards.

1 Motivation and Overview

The World Wide Web as we know it today, was initially designed as a platform for
information sharing. The core Web technologies, i.e. HTTP, HTML , Web servers and
Web browsers, enable the exchange of information in the form of documents.

Web browsers soon became standard tools and it was realized that they can also be
used as universal clients to information systems, if these information systems expose
their user interface using HTML documents. Most modern information systems use such
a Web based architecture. Tools like application servers simplify the development of
Web based information systems at the server side.

The development and deployment of distributed information systems, which inte-
grate applications that are distributed on an Intranet or even on the Internet, is still a lot
more difficult. The need for such an (enterprise) application integration over the Web
was initially generated mainly by business to business (B2B) applications. However,
there are a lot of interesting application scenarios aside fromB2B.

While the traditional Web is concerned with the interaction between applications
and humans, Web services technologies and standards aim at taking the Web one step
further by enabling interaction between applications and thereby facilitating application
integration.

Web services are still at an early stage of development, but they certainly have the
potential to solve many interoperability problems and are likely to play an important
role as a means of implementing distributed information systems in the near future.

We believe that making applications based on the deductive power of PROLOG

available across the Internet is very useful and promising, because PROLOG is a very
widely used logic programming language, which at the same time enables rule–based
programming and rapid prototyping of applications. By adopting the new Web services
technologies and standards to facilitate the use of PROLOG based applications across
the Internet, we enable the widest range of platforms to integrate such applications.

All Web services standards use XML based document encodings and not all of those
documents are transparently handled by the Web services toolkits or middleware. Fur-
thermore, a lot of information is made available on the Internet in the form of XML

documents. In the context of Web services based on PROLOG, this illustrates that it is
both necessary and useful to be able to process XML documents in PROLOG programs.

The rest of the paper is structured as follows: Section 2 describes how XML docu-
ment processing can be handled in PROLOG using a new PROLOG package calledX2P,
which is compared with another standard package. Web services, their underlying tech-
nologies, standards and tools are the topic of Section 3, while Section 4 shows how in
practice all those tools and libraries together can be used to make available Web service
based on PROLOG. Following this, the next section discusses some application scenar-
ios, and the paper concludes with a summary and an outlook on future developments in
Section 6.

2 XML Document Processing inPROLOG

XML ([14]) provides a standard way to define the structure of documents that is suit-
able for automatic processing. This enables the development of generic tools that parse
documents and extract their content as well as their structure. Restrictions on the struc-
ture of a document can be specified by Document Type Definitions (DTDs) or XML

SCHEMAs (however, neither of these provide any semantic information). XML has been
widely adopted as the foundation for data representation and formats on the Web. Many
parsers and toolkits exist for different programming environments, which implement
the XML related standards.

2.1 XML and PROLOG

Since every element in an XML document (except the root element) is nested into an-
other element, we can consider XML documents term structures, which can be handled
nicely by PROLOG, which can then be used to process those terms in a very compact
and efficient way.

SWI–PROLOG ([13]) offers a package calledSgml2pl which contains a SGML/-
XML parser. This parser can parse a document from a file and tranform the content
into a PROLOG data structure. The data structure used is a nested term of the functor
element with three arguments: the name of an XML element, the list of its attributes
and the content of this element. The parser also uses some other kinds of functors to
represent other constructs in an XML document (e.g. entities, a DTD or processing
instructions). The parsing process can optionally be controlled, e.g. to influence the
treatment of spaces.

Libxml2 1 is the XML parser and toolkit that was developed for the Gnome project,
but it can also be used standalone and outside of the Gnome platform. This library of
C functions implements XML parsers and toolkits for a number of existing standards
related to XML , e.g. XPATH ([15]). Libxml2 contains functions to parse XML docu-
ments supporting validation against a (internal or external) DTD or an XML SCHEMA.
It can also handle namespaces and different XML document encodings. The internal
document representation follows the DOM interface. The library can also be used to
evaluate XPATH expressions.

2.2 TheX2P Package

SWI–PROLOG offers aforeign language interface, which can be used to combine code
written in a foreign programming language like C with PROLOG programs. This in-
terface can be used in two different ways: It provides data types and functions to im-
plement PROLOG predicates in a foreign language, e.g. in C and hence may use other
C functions and libraries. The C code is compiled to a shared object, and the predi-
cates must be properly registered with SWI–PROLOG as so–called foreign predicates.
When an foreign predicate is used, SWI–PROLOGcalls the respective function from the
shared object. On the other hand, the foreign language interface can be used to embed
the PROLOG engine into a foreign language program. For instance, PROLOG goals can
be called and evaluated from a C program.

We use the foreign language interface of SWI–PROLOG in both ways. First, to make
some of the functionalities ofLibxml2 available to SWI–PROLOG for efficient XML

document processing. Secondly, to provide PROLOGbased applications as Web services
(see Section 4).

We have developed a package calledX2P, which makes available through the for-
eign language interface some of the functionalities ofLibxml2 within PROLOG. X2P

is therefore implemented in C and PROLOG and consists of several foreign predicates
that encapsulateLibxml2 functions and convert arguments from PROLOG to C and
vice versa.

X2P offers predicates for reading, parsing and validating XML documents and for
making their content available in PROLOG. There are options available to control some
details of this processing, such as the handling of whitespaces, namespaces and enti-
ties. Furthermore,X2P allows for the evaluation of an XPATH expression on an XML

document.
There are some differences between theX2P package and the SGML parser from

SWI ’s Sgml2pl package that stem from the different concepts and history of the two
packages.X2P offers the broader range of functionalities for XML documents and the
more up–to–date support and implementation of XML related standards. Only withX2P

documents can be validated with an XML SCHEMA or XPATH expressions can be evalu-
ated.X2P can be easily extended to incorporate a current version ofLibxml2 offering
new functionalities.X2P offers many more detailed options, influencing the handling of
entities, namespaces, comments or processing instructions. However,X2P is limited to
XML documents, whereasSgml2pl can parse all SGML based documents including
HTML documents.

1 http://www.xmlsoft.org

SIGMODDocument SIGMOD
(Old version)

DBLP

Size 478KB 704KB 184MB
Parsing time X2P 0.34s 0.62s 233.17s
Parsing timeSgml2pl 0.32s 0.67s NA

Fig. 1.Comparison of documents and parsing times

In practice it turned out, that in terms of parsing timesSgml2pl andX2P are com-
parable. However, for large documentsX2P seems to be far more efficient: Even with
the biggest possible trail stack for SWI (about 8 MB)Sgml2pl could not parse the
XML document containing the data from the Digital Bibliography & Library Project
(DBLP2), while X2P could in acceptable time. See Figure 1 for a more detailed com-
parison of runtimes for parsing the XML editions of DBLP and SIGMOD Record3.

2.3 Field Notation andFNPATH

Instead of using term structures as the result of parsing an XML document, we map
them to the so–calledfield notation(cf. [7]), which we use as the Document Object
Model (DOM) for PROLOG. We represent an XML element, which can have attributes
and nested elements, by a tripleT : A : C, whereT is the name of the element,A is a
list of attribute/value–pairs representing the attributes and their values andC represents
the content of the element or the nested elements.

Consider the following fragment of the DBLP XML document:

<article mdate="2002-12-04" key="journals/cacm/Codd70">

<author>E. F. Codd</author>

<title>A Relational Model of Data for Large Shared Data Banks.</title>

<pages>377-387</pages>

<year>1970</year>

<volume>13</volume>

<journal>CACM</journal>

<number>6</number> ...

</article>

Let us take a look at the predicate, which parses an XML document and transforms
it into field notation. Its implementation indicates how PROLOG andLibxml2 work
together:

xmlfile_to_fn(XMLFile, FN, Options) :-

process_options(Options, Options1)

new_parser(Parser),

set_parser_options(Parser, Options1, Options2),

parse_xml_doc(Parser, [source(XMLFile), document(FN) | Options2]),

free_parser(Parser).

2 http://dblp.uni-trier.de/xml/
3 http://www.acm.org/sigmod/record/xml/

First, some options influencing the parsing are preprocessed. The foreign predicate
new parser usesLibxml2 to initialize a new parser object. The PROLOG predicate
set parser options calls another foreign predicate to pass the parsing options to
the parser object created before. The actual parsing process is initiated by the predicate
parse xml doc . This predicate calls the foreign parsing routine ofLibxml2 and
transforms the resulting parse tree into field notation. Finally,free parser frees the
resources allocated by the parsing process.

The resulting field notation representation of the document fragment is shown be-
low:

article:[mdate:’2002-12-04’, key:’journals/cacm/Codd70’]:[

author:[]:[’E. F. Codd’],

title:[]:[’A Relational Model of Data for Large Shared Data Banks.’],

pages:[]:[’377-387’],

year:[]:[’1970’],

volume:[]:[’13’],

journal:[]:[’CACM’],

number:[]:[’6’], ...]

All the content is enclosed in single quotes, since we transform the data contained
in elements into atoms.

Based on this field notation we use a powerful and flexiblequery languagecalled
FNPATH, which have been introduced in [7]. A detailed description of the field notation
and FNPATH can be found there. The FNPATH language allows to address, select and
change any part of an XML document. In terms of functionality is FNPATH comparable
to XPATH, but it is much more appropriate for using in PROLOG.

3 Web Services

The term Web services ([1]) is not always used with the same meaning. Often, in a very
generic meaning, a Web service is simply seen as an application accessible over the
Web. We want to use the more specific and restrictive definition given by the W3C’s
Web Service Architecture Working Group ([10]) defining a Web service as”a software
system identified by a URI, whose public interfaces and bindings are defined and de-
scribed usingXML . Its definition can be discovered by other software systems. These
systems may then interact with the Web service in a manner prescribed by its definition,
usingXML based messages conveyed by Internet protocols”.

Web services are still at a very early stage of development and some say that they
currently are not more than yet another attempt to master the complexity of enterprise
application integration.

But if the ongoing standardization effort succeeds and Web services standards be-
come as widely adopted as the Web technologies already have, Web services could
become the basis for a seamless and almost completely automated infrastructure for
enterprise application integration, because the use of standard technologies reduces het-
erogeneity drastically.

So the Web services activities try to bridge the gap between what the Web already
provides (originally for the interaction between humans and applications, e.g. HTTP as

a standard interaction protocol and XML as a standard data format) and what applica-
tion integration still requires (e.g. interface definition languages, name and directory
services, transaction protocols and so on).

Web services assume that some functionality (performed by internal systems) will
be exposed as a service and made discoverable and accessible for applications (not hu-
mans) through the Web in a controlled manner. Today, three components and proposed
standards are the core of Web services, all of them covering different aspects of appli-
cation integration over the Web: The Simple Object Access Protocol (SOAP) as a way
to communicate, the Web Services Description Language (WSDL) as a way to describe
services and the Universal Description, Discovery, and Integration (UDDI) project as a
name and directory server. Besides these fundamental specifications, which have gone
quite some way in terms of standardization and are already implemented and used in
practice, some other more high–level concepts are being developed: coordination pro-
tocols (concerned for example with transactions) and Web service composition or flow
languages (concerned with the composition of Web services clients and services into
complex business processes). However, those specifications are at a very early stage of
standardization and are still changing rapidly.

3.1 SOAP, WSDL, and UDDI

The Simple Object Access Protocol (SOAP, [8]) is the communication protocol for Web
Services. The SOAP specification describes in detail a message format, i.e. how infor-
mation can be packaged into an XML document, a set of conventions for using SOAP

messages to implement different interaction patterns (among others the traditional RPC
interaction pattern), a set of processing rules that each entity that processes SOAP mes-
sages must comply to, and how SOAP messages should be transported on top of HTTP

or SMTP. Bindings to other transport protocols can also be defined, but currently HTTP

is the most commonly used transport protocol.
SOAP exchanges information using messages. These messages are used as an enve-

lope where the application encloses whatever information needs to be sent. In essence,
there are two different interaction styles: document–style and RPC–style. When using
document–style interaction, two interacting applications have to agree upon the struc-
ture of XML documents exchanged between them, which are then transported from one
application to another in SOAP messages. For RPC–style interaction on the other hand,
two interacting applications have to agree upon the RPC method signature. The SOAP

specification then governs how XML documents representing the request with input pa-
rameters and the response with output parameters have to be constructed. This task is
typically hidden by the SOAP middleware.

We use gSOAP (see Section 3.2) as a SOAP middleware to provide standalone Web
services that make the functionality of PROLOG applications available on the Internet.
gSOAP handles the SOAP messaging transparently, so that we are not really concerned
with the exchange of messages, the handling of message envelopes or the underlying
transport protocol HTTP etc. This leaves us with the task of providing the implementa-
tion for the functionality that is to be exposed as a Web service. This implementation
differs depending on which interaction style is actually used for the Web service: for

RPC–style interaction, we have to provide a function that receives some input param-
eters (of simple types) from the SOAP middleware and returns the output parameters,
while for document–style interaction the implementation must be able to process an
XML document as input and produce another XML document as output.

Both interaction styles can be used in conjunction with PROLOG based Web ser-
vices, but in particular Web services using a document–style interaction make it neces-
sary to be able to process XML documents using PROLOG.

The Web Services Description Language (WSDL, [12] and [11]), is an XML based
language that is used both as an advanced form of interface definition language and to
describe several aspects of a service that are unique to Web services. This includes the
transport protocol (e.g. HTTP) to use when invoking the service and the address where
the service can be requested (e.g. an URL when using HTTP as the transport protocol).

The Universal Description, Discovery, and Integration (UDDI) specification ([9])
describes how to organize information about Web services and how to build registries
where such information can be published (by service providers) and queried (by client
service requesters). UDDI is currently not used in conjunction with the PROLOG based
Web services, although it could of course be used to register the available Web services
at the UDDI registry.

3.2 gSOAP

gSOAP ([3]) is a Web services middleware toolkit for C and C++ developed by Robert
van Engelen at the Florida State University. The gSOAP compiler tools offer full SOAP

interoperability using a simple API which relieves the user from the burden of SOAP

details and thereby ease the development of Web services and client application in C
and/or C++. The included WSDL parser automates server and client application devel-
opment and also generates WSDL documents to publish the Web services. gSOAP is
available for almost any platform, has shown to be very fast and efficient, and is very
well maintained and up–to–date in terms of supporting the latest standards.

4 Putting it all Together

Figure 2 shows how all the technologies and concepts presented so far work together to
provide for PROLOG based Web services.

The implementation of a PROLOG based Web service starts with the specification
of the function that will be exposed as a service. This is done by supplying a C/C++
header file containing the definitions of data types and a function prototype. The gSOAP

compiler generates a C/C++ stub from this header file and a corresponding WSDL doc-
ument. The stub can then be used to implement the Web service’s functionality. In our
case, the implementation is merely a C wrapper function, which uses the foreign lan-
guage interface of SWI–PROLOG to embed the PROLOG engine into the application.
For this purpose, a so–calledsaved stateof SWI–PROLOG is used, where the predicates
of the X2P package already have been consulted and can be used immediately. These
predicates again use the foreign language interface to access functions of theLibxml2
library, which leads to the inclusion of this library as a shared object. The top layer

gSOAP
SOAP server

gSOAP server stub
C wrapper function

SWI Prolog
(saved state)

x2p
Libxml2

Foreign Language
Interface

Web Service

SOAP
request
SOAP

response

HTTP

WSDL

Foreign Language
Interface

gSOAP
compiler/toolkit

HTTP

Fig. 2.Architecture of PROLOG based Web services

of the Web service application consists of a gSOAP runtime library acting as a SOAP

server, which transparently handles the SOAP requests and responses.
The WSDL document describing the Web service can be used by a Web service

client to locate and request the Web service (HTTP is used as the transport protocol).
Upon such a request, depending on the interaction style used, the SOAP server extracts
the input parameters (RPC–style) or an XML document (document–style) and passes
them to the C function handling the request. In our case, this function uses a PROLOG

engine to process the request and produce output parameters or another XML document
as a result. This result is returned to the SOAP server, which packages it into a SOAP

response that is sent back to the client.

5 Applications

The framework for PROLOG based Web services presented in the last section can be
used in many different application scenarios. PROLOG itself can be used as an inference
engine for many purposes, and with the advent of the Semantic Web this will gain
even more importance. Furthermore, PROLOG enables rapid prototyping of heuristic
approaches, especially together with the extensions for XML document processing. The
Web services framework for PROLOG then allows us to quickly make such functionality
available on the Web as standardized components.

As a simple example (due to space restrictions), consider a PROLOG based Web
service which offers a fuzzy search on the SIGMOD Record XML document. The PRO-
LOG program implementing this Web service receives through the gSOAP middleware

and the wrapping C function an XML document (document–style interaction) contain-
ing the name of an author. This XML document is then parsed and the author’s name is
extracted. The SIGMOD Record document is also parsed and transformed into the field
notation. The actual search for articles by the given author is fuzzy or fault–tolerant
as it can deal (with respect to both the query document and the author names in the
SIGMOD Record document) with different name formats, e.g. ”firstname(s) lastname”,
”lastname, firstname(s)”, firstnames abbreviated to initials and so on. This heuristic
approach is well supported by PROLOG, the XML processing facilities and FNPATH

resulting in a very compact and elegant program that is easy to maintain.
The main predicate of the search is shown below:

search_articles(Qname, Titles) :-

data(sigmod, S),

process_name(Qname, Query),

findall(T,

(Article := S^’SigmodRecord’^issues^issue^articles^article,

[Author] := Article^authors^author,

process_name(Author, Aname),

match_names(Query, Aname),

T := Article^title),

Titles).

Notice how the relevant parts of the SIGMOD Record XML document are addressed
using FNPATH expressions. The predicateprocess name does some preprocessing
for the author name used as a query, while the fuzzy matching is done by the predicate
match names, which is a simple and compact rule–based algorithm. The predicate
returns a list of article titles, which are then converted into an XML document and
passed back through the layers of the Web services framework.

An approach like this is very promising when used in conjunction with serveral
different XML documents from the same domain (e.g. the DBLP and SIGMOD Record
documents) or in general for information fusion or information integration tasks.

6 Summary and Outlook

We have presented how the ability to efficiently process XML documents in PROLOG

together with the gSOAP Web services toolkit and middleware make it possible to ex-
pose the functionalities of PROLOG programs on the Internet as Web services. Due to
the thorough standardization of Web services technologies, this enables generic clients
to autonomously use such Web services.

Until now, there is very few related work on the topic of combining PROLOG and
Web services: In [2], Chen et al. describe the architecture of an intelligent agent that
integrates concepts from the Semantic Web with Web Services. This agent system uses
SWI–PROLOG as its inference engine for processing semantic information extracted
from DAML+OIL documents and SOAP to access other Web services, but it only in-
cludes a Web services client and does not provide PROLOG based applications directly
as Web services.

Web services technologies are rapidly being adopted by the industry. They are very
likely to become the dominant platform for implementing distributed information sys-
tems. Just like Web browsers became the universal client for the interaction of hu-
mans with information systems, generic Web services clients will be used to discover
and autonomously access information systems. For example, major Database Manage-
ment Systems like IBM’s DB2 offer extensions ([6]) to support Web services both as
a provider (i.e. exposing relational data through a Web service) and as a requester (i.e.
invoking Web services from within SQL statements using user defined functions). This
is also an interesting perspective for our project, because it makes the deductive power
of PROLOG available to Database Management Systems.

We think that PROLOG based Web services can be valuable components of many
distributed information systems, for example in an information broker ([5]) to support
complex information gathering and integration strategies or to control a mulit–agent
system ([4]).

References

1. G. Alonso, F. Casati, H. Kuno, V. Machiraju.Web Services: Concepts, Architectures and
Applications. Springer, 2004.

2. Y. Chen, W. Hsu, P. Hung.Towards Web Automation by Integrating Semantic Web and Web
Service. Proc. of the 12th Intl. World Wide Web Conference, 2003.

3. R. van Engelen.The gSOAP toolkit. Florida State University,
http://www.cs.fsu.edu/˜engelen/soap.html

4. B. Heumesser, R. Schimkat.Deduction onXML Documents: A Case Study. Proc. of the 14th
Intl. Conf. on Applications of PROLOG (INAP), 2001.

5. A. Ludwig, U. G̈untzer. An Information Brokering Framework. Proc. of the 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI), 2003.

6. S. Malaika, C. J. Nelin, R. Qu, B. Reinwald, D. C. Wolfson.DB2 and Web services. IBM
Systems Journal, 41 (4), 2002.

7. D. Seipel. ProcessingXML–Documents inPROLOG. Workshop on Logic Programming
(WLP), 2002.

8. Simple Object Access Protocol (SOAP) Version 1.2, W3C Recommendation,
http://www.w3.org/TR/soap12-part0/

9. Universal Description, Discovery and Integration (UDDI) protocol, OASIS Standards Con-
sortium,http://uddi.org/

10. Web Services Architecture Working Group.Web Services Architecture Requirements, W3C
Working Draft,http://www.w3.org/TR/wsa-reqs

11. Web Services Description Language (WSDL) Version 2.0, W3C Working Draft,
http://www.w3.org/TR/wsdl20/

12. Web Services Description Working Group, http://www.w3.org/2002/ws/desc/
13. J. Wielenmaker. SWI–PROLOG Reference Manual, http://www.swi-prolog.org/
14. Extensible Markup Language (XML) 1.1, W3C Proposed Recommendation,

http://www.w3.org/XML/Core/#Publication
15. XML Path Language (XPATH) Version 1.0, W3C Recommendation,

http://www.w3.org/TR/xpath

