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Abstract. This paper presents a forward chaining (model-based) 
constraint exploration of simulation trajectories, as a method for 
systematically investigating the content of a simulation model. Possible 
applications of this exploration in in MAS-based modelling are: proving 
tendencies in a fragment of the theory of a simulation model, to tease 
out what affects the envelope of a tendency, and more exhaustive 
scenario analysis than traditional ones. The proposed exploration allows 
for all simulation trajectories (possible worlds) associated to and 
constraint by a range of parameters of the simulation model and a range 
of choices of the agents. The characteristics and advantages of SDML, a 
declarative MAS-builder simulation language, for doing this 
exploration are explained. It is verified that the exploration is coNP-
complete. This paper represents an effort in bringing closer the 
constraint logic community and the simulation community. 
KEYWORDS: Simulation, Constraint Search, Constraint Logic 
Programming, Constraint Forward Chaining, Proof, Tendencies 

1 Introduction  

There is a call for relating the content of a simulation with a theory the simulation 
model corresponds to, in someway. Discussions about this subject can be found, for 
instance, in the list of the social simulation community 
(http://www.jiscmail.ac.uk/lists/SIMSOC.html). It is of interest for the social 
simulation community the analysis of ‘emergent’ tendencies observed in the 
simulation output, more specifically in simulation trajectories. Common methods for 
studying simulation outputs are scenario analysis and Monte Carlo Techniques, or a 
combination of both (e.g., Carley’s Virtual Experiments). Recently, researchers have 
been wandering about proving aspects in the content of a simulation model, a task 
traditional methods cannot support. More precisely, there is a need, specially in those 
works related with elaborating or testing theories [4, 5, 14], for studying and proving 
(emergent) tendencies in the simulation of social systems.  

On the other hand, Constraint Logic Programming (CLP) appeared as the first 
answer to the need for a declarative programming with a more flexible manipulation 
of the semantic than traditional Logic Programming (LP) and forward chaining 
systems. The idea is to allow a semantic driven search using backward inference, 
initially using Prolog as a platform and as a programming style [8].  
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A second answer, namely Constraint Forward Chaining (CFC), came from Rule 
Based Forward Chaining methods. Examples are Constraint Handling Rules (CHR 
and its improved version CHRv; [1]), Constraint Rule Base Programming (CRP) [9], 
Satchmo and CPUHR-tableux calculus [2-3]. Among the advantages of these systems 
over CLP there are: allowing alternative logical extensions via split and backtracking 
(e.g., Satchmo, CHRv, CRP), introduction of user defined constraints (e.g., CHR) and 
Meta and Higher-Order reasoning via re-writing of rules (e. g., Satchmo).  

Usually CLP systems are aimed at looking for a proof (like in LP) while CFC 
systems are intended at finding a “logical model”1 satisfying certain conditions. In the 
former situation, a conclusion is based (in some sense) in a whole exploration of the 
space of possibilities while in latter situation only one among the possible solutions is 
searched for (one logical extension). However, this is not always the case, particularly 
in this paper the interest is in a CFC exploration of all possible logical extensions – 
more specifically, in a constraint exploration of simulation trajectories where a 
trajectory would correspond to a logical extension. 

Consequently, CLP and especially CFC hold a potential for exploring the content 
of a simulation model due to their flexibility, expressiveness and the correspondence 
of a logical extension to a simulation trajectory allowing formalisations and a promise 
for formal proofs. Thus, declarative programs open new ways for exploring the 
content of a simulation model.  

Constraint logic programming would allow a systematic and controlled constraint 
search for alternative trajectories in a simulation, authorising stronger conclusions and 
the possibility of a more assertive and fruitful comparison between the content of a 
simulation model and theoretical descriptions of the modelled phenomena than 
traditional methods 

In a previous paper  [18], a hierarchy of computational architectures for searching 
for and proving tendencies in Multi-Agent Based Simulation (MABS) models has 
been proposed. The first architecture, that at the higher level, consists of the MABS 
model where tendencies will be searched for by the modeller itself. After a tendency 
is found, at a second architectural level, a constraint logic model proof of the 
envelope of the simulation trajectory is proposed. In [18-19] a computational 
technique for doing this proof efficiently is implemented and illustrate by using an 
example. And, at a third architectural level, a more general proof of the envelope of 
the found tendency would be implemented by exploring a wider fragment of the 
simulation theory by using a syntactic driven search.  

The main aim of the present paper is to describe the second architectural level and 
its computational complexity in terms of constraint logic programming, contributing 
in bringing closer the simulation and the logic programming communities.  

A declarative simulation language (SDML: Strictly Declarative Modelling 
Language; [13]), suited for constraint searches because of its facilities for backward 
and forward simulation, backtracking, re-writing of rules (by using a meta-agent) and 
an internal assumption manager allowing certain predefined manipulations of 
constraints, has been used for experimenting. 

The paper is organised as follows. First, in section 2, the proposed constraint 
exploration of simulation trajectories and its usefulness for analysing the content of a 
simulation model are described. Then, in section 3, the main features of SDML for a 
constraint search are described. Following, in section 4, it is verified that the proposed 
exploration is coNP-complete. Finally, in section 5, some conclusions are drawn. 

                                                           
1 The term “logical model” means model in the logical sense, which is different to the idea of 

model in modeling and simulation theory. In the terminology used in this paper, a logical 
model corresponds to a simulation trajectory. 
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2 Constraint Model-based Exploration of Simulation Trajectories 
in a MABS Model 

2.1 Logical Model-Constrained Exploration of Simulation Trajectories 

In [17-18] to study the emergence of tendencies in a simulation via exploring a 
subspace of the set of trajectories in the ‘theory’ of a simulation model has been 
proposed. A logical model-based constraint search where constraints stand for 
selected parameters and choices was implemented. Such exploration allows to explore 
that fragment of the simulation theory constrained by the selected range of parameters 
and choices. The resulting conclusions and proofs are valid over the covered fragment 
of the theory and, under appropriate justifications, they could be extrapolated to the 
bigger part of the simulation theory.  

We understand a simulation trajectory as a logical model embedded in a simulation 
program (a ‘possible world’ in semantic terms), involving trajectories of entities (e.g., 
agents) inside the simulation and, hence, different from trajectories of these entities. It 
is a cross-product of all settings of the structure of the simulation model and all 
processes (e.g., agents’ choices) into one path through a high-dimensional space (see 
Figure 1). It is assumed that the transition function of the processes, such as the agent 
behaviour or the simulation model behaviour are nondeterministic. 

The character of the search implemented in our models [17-18] has been 
predominantly logical model, constraint, and forward-chaining oriented, as well as 
clausal ordered. A logical model is generated for each combination of parameters and 
choices, and for a finite iteration number, n. Given a combination of parameters and 
choices a deterministic transition function may be defined to generate the logical 
model by iterating from the initial state until reaching the iteration number, n.  

In the suggested exploration, first, each combination of parameters provides a 
different structure of the simulation model (see Figure 2). Following, ‘paths’ 
representing trajectories are generated for each structure. Then, while the simulation 
is going on, choices produce branch points where alternative settings for each choice 
turn out into a different simulation trajectory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Representation of a simulation theory in terms of the simulation 
trajectories, and of these in terms of agents’ choices (for a single parameter-setting 
and two agents) 
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Figure 2. A model constraint-based exploration of the content of a simulation model 

2.2 Proving Tendencies and Other Applications 

Probably the most remarkable application of the described exploration of simulation 
trajectories is proving tendencies in the content of a simulation model. The idea is to 
generalise about tendencies going from the observation of individual trajectories to 
observation of a group of trajectories generated for certain parameters and choices. In 
particular, it is intended to know if a certain tendency is necessary or contingent in the 
explored trajectories. 

This exhaustive constraint-based search over a range of possible trajectories makes 
it possible to establish the necessity of postulated emergent tendencies. In [17-19], 
following a procedure similar to that used in theorem-proving [6,10,12,21,22], an 
emergent tendency (a theorem) is prearranged in the form of a negative constraint and 
then an automatic search is performed over all possible trajectories constrained by a 
subset of parameterizations of the model, a range of agents’ choices, and a certain 
iteration number. Tendencies are shown to be necessary for a finite number of 
iterations, a range of parameterisations of the model, and a range of non-deterministic 
choices of the agents, by, first, finding a possible trajectory without the negative 
constraint to show the rules are consistent, and, second, showing that all possible 
trajectories violate the negation of the hypothetical tendency (this is added as a further 
constraint).  

Obviously, the proposed exploration of simulation trajectories would also be useful 
for scenario analysis. In this case, the interest is not in proving but more in 
investigating likely tendencies in pertinent and possible trajectories. For doing this, 
the range of parameters of the model and choices of the agents to be examined would 
be defined by expert domains [7]. 

In [19] enveloping a tendency of interest is proposed for analyzing simulation 
outputs, as an alternative to central statistical measures. A constraint exploration of 
simulation trajectories is useful to tease out what affects the envelope of a tendency, 
i.e., to find out the factors affecting the shape, the size or any other aspect of the 
envelope of a certain tendency observed in the content of a simulation model.  The 
range of parameters and choices would be selected in accordance to this goal. 
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3 Towards the Implementation of a Suitable Platform for a 
Constraint Envelope of Trajectories Using SDML 

The experiments reported in [17-19] were developed in the MAS builder SDML 
(Strictly Declarative Modelling Language; [13]). As a source of comparisons the 
model was also programmed in the Theorem Prover OTTER [12]. In [17-18] a MABS 
model is reduced via a sort of unencapsulation of the hierarchy of agents into an 
appropriate architecture. In the original MABS architecture, each agent has its own 
rulebase (RB) and database (DB). In the proposed architecture, the hierarchy of 
agents disappear and is replaced by a single DB-RB. 

3.1 SDML Characteristics and Features for Constraint Exploration of 
Simulation Trajectories 

• Good underlying logical properties. SDML’s logic corresponds to the Strongly 
Grounded Autoepistemic Logic (SGAL) described by Kurt Konolige [11, 15]. 

• Its backtracking procedure facilitates the exploration of alternative trajectories via 
the splitting of simulation paths according to agents’ choices and parameters of the 
model. 

• The assumptions manager tracks the use of assumptions. Assumptions result, for 
instance, from agent’s choices. 

• A good collection of useful primitives relevant to, for instance, social simulation. 
• The type meta-agent used here not as an agent per se but as a module to ‘compile’ 

and re-write rules into an efficient form. 

3.2 Internal Manipulation of Constraints in SDML 

In SDML, a partition is a grouping of rules in accordance to their dependencies. 
Dependencies among rules in different partitions determine dependencies among 
partitions. Rules in a partition do not have dependencies on the subsequent partitions. 
Assumptions are made for each partition in accordance to agents’ choices in such a 
partition. SDML’s assumption manipulator is a sort of Truth Maintenance System 
(TMS) for each partition (see Figure 3). For instance, shall a variable get a certain 
value deduced under two different assumptions, then a disjunction of the two original 
assumptions is placed for this datum in the database.  

Once a contradiction (e.g., the predicate false in the consequent of a rule) is found 
the system backtracks and a new choice is made in that partition. When all choices 
have been unsuccessfully tested in a partition the system backtracks to a previous 
partition to make a different choice. 

As said above, “meta-module” or "meta” is a module to write rules in the system at 
the beginning of the simulation. It allows semantic-driven manipulation increasing 
flexibility of the exploration, e.g., to write rules referring explicitly to instances 
(individual occurrence of a type) rather than to types of instances. Such a 
manipulation will be very useful both, for driving the search and for making it 
efficient in terms of computational time. 

In SDML, choices are introduced via built in predicates. For example, the primitive 
randomChoice allows choosing randomly from several alternative values. Each 
choice will define a different simulation path labelled with a certain assumption. 
Another interesting primitive is notInferred, one of the primitives allowing non-
monotonic reasoning. NotInferred allows generation of data when a certain fact is not 
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present in the database, e.g. notInferred b, implies c, will put c in the database if b is 
not in the database. If this value, b, is written later during the search in the database, 
then the assumption becomes false. In case the rule yielding b is in a different 
partition from the one where the assumption was made, then c and any other data 
supported by the assumption is withdrawn via backtracking to the partition where the 
assumption was made. 

3.3 Comparing SDML with Satchmo and Other Constraint Logic Systems 

While some of Satchmo’s and other constraint programming languages’ facilities are 
similar to SDML’s, for example, backtracking and the false predicate, other facilities, 
e.g., some built-in facilities for manipulation of constraints, are not present in SDML. 
Among these, we have reasoning about terms in CLP(X) or consistence techniques to 
prune the range of trajectories in other CLP systems [8]. Instead, SDML allows 
facilities to introduce alternative values for some manipulated entities (e.g., 
predicates, clauses, integer variables) which can be used as constraints (clauses for 
choosing, e.g., randomChoice) as well as a meta module able to reason about terms or 
rules. Because of all this, SDML is able to control the manipulation of constraints 
flexibly and transparently for the user. 

4 Determining the Complexity of a Constraint Model-based Proof 
of (the Envelope of) a Tendency 

The aim of this section is to demonstrate that the exploration of trajectories proposed 
in the previous sections applied over an infinite (theoretically) number of simulation 
iterations is coNP-complete [16, 20]. To make clearer the exposition, the 
simulation exploration subject of this paper will be called the target 
problem. As is usual for this sort of verification, two steps are followed: First, it will 
be proved that the target problem is in coNP by expressing it as a binary tree of depth 
n. Second, it will be proved that the problem is also coNP-complete by translating the 
validity (of Boolean expressions) problem, a typical coNP-complete problem, into the 
target problem.  
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Figure 3. Overview of SDML’s framework. 
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For the first part of the proof the aim is to form a Boolean quantified expression:  
                   ∀x1 ∀ x2 ∀ x3 ∀ x4 ∀ x5 …∀ x2n-1 ∀ x2n (F)                (1) 
where F is the formula to be evaluated over the variables x1 … x2n and n is the number 
of iterations. 

 The deterministic part in the state transition of the simulation will be called 
environment’s actions, and it will be assumed that it corresponds to the impair 
variables in (1). It captures changes not associated with agents’ choices – and 
basically that part of the simulation where “agents are placed”. Consequently, there is 
only one alternative action for the impair variables2. The even variables correspond to 
the agents’ choices (which are going to be called agents’ actions). More precisely, for 
iteration i, i = 1, 2, …, n, there are two subsets of variables: {x2i-1} and  { x2i}, where 
{x2i-1} is used to represent the environment actions and {x2i} stands for the agent’s 
actions. Thus, a whole simulation path or simulation trajectory is represented by a 
concatenation of branches, where each branch corresponds to a unique assignment of 
values to each variable in the whole set {xi}. 

Finally, F will be the question: whether the searched tendency has occurred in a 
simulation trajectory. The whole expression (1) is true if for all possible assignments 
of values to the variables the tendency occurs. As each particular assignment of 
values to the whole set of quantified variables corresponds to a simulation trajectory, 
the proof is successful if this expression is valid for all possible values the quantified 
variables can take! (e.g., for all possible agents’ choices3). 

To check if the proof is successful, a Boolean circuit, where an AND gate stands 
for the∀  quantifier, can be written. A leaf in this circuit is evaluated to true if the 
tendency is found in the corresponding simulation path and to false otherwise. The 
whole circuit will be true if and only if the tendency appears in all simulation paths. 
Hence, the proof is successful if and only if the circuit is true (e.g., the tendency is 
found in all paths).  

These two expressions of the problem (that is, the Boolean circuit and the 
expression of equation (1)) are sufficient to prove that the target problem is coNP.  

The next task is to prove that the problem is coNP-complete. It is easy to see the 
similarities between the target problem and the validity of a Boolean expression. A 
Boolean expression is an expression: (a) x, where x is a Boolean variable (variable 
that takes the values True and False), (b) ¬φ,where ¬  is the logical not, and φ is a 
Boolean expression c) φ1 ∨  φ2, where φ1 and φ2 are Boolean expressions and ∨  is the 
logical symbol or (d) φ1 ∧  φ2, where φ1 and φ2 are Boolean expressions and ∧  is the 
logical  symbol  and. Validity  of  a  Boolean  expression  φ,  consists   in  determining 
whether the Boolean expression φ is valid under all truth assignments 
(interpretations). If φ is not a valid formula, it can be disqualified by exhibiting a truth 
assignment that does not satisfy it. 

We may evaluate a Boolean expression by using a Boolean circuit (see Figure 4). 
A first variable is chosen from the Boolean expression φ and represented by the first 
node, and then two branches are generated from this node: one the case the variable is 
given the false value and the other for the case the variable is given the true value. 
Then a node is aggregated to each of these branches representing a second selected 
variable, and two branches from each of these new nodes will represent the true and 
false value assignments to this second variable. Imagine that this procedure is 
continued until all variables in the expression φ are considered. A leaf of this tree (i.e., 
a path) will be evaluated to true if the Boolean expression φ is true for the particular 
                                                           
2 Environment’s actions are assumed deterministic. The results of this paper are easily 

extendible to the case the environment’s actions are non-deterministic. 
3 And, for all environment’s actions, in case of a nondeterministic environment. 
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(an unique) value assignments the variables have in that path of the Boolean tree. 
Consequently, the expression φ is valid iff all leaves of the Boolean tree have been 
evaluated to true.This tree corresponds to a target problem, where:  

a. The number of iterations, n, corresponds to the number of variables in the 
Boolean expression φ, 

b. The environment decisions are not considered (do not change the state of the 
system), 

c. The agents have only two nondeterministic choices: true or false (corresponding 
to the two possible assignment of values a Boolean variable can be given), 

d. The question: is the Boolean expression φ true for the assignment of values the 
variables hold in a certain path?, corresponds (in the translation of the validity 
problem into the target problem) to the question: does the tendency appears in 
the corresponding path where agents take decisions in accordance to the 
assignment of values to the variables?, 

e. The tendency appears in a simulation path if the expression φ is true for the 
assignment of values to the variables in accordance to the decisions of the agents 
in that path. 

f. Finally, the expression φ is valid iff the tendency appears in all simulation paths.  

z2=F z2=T 

 Initial State 

   z1 first variable of φ 

Deterministic environment transition 
(the state of the system is not changed) 

Nondeterministic Agents’ choices 
of T (True) and F (False) 

  

…        …   … 

Leaf 1 is: 
true, if t φ is 
true for the 
assignment of 
values to the 
variables in this 
path; 
 false, otherwise 

…             …   … 

 Leaf 2n is 

true, if t φ is true 
for the assignment 
of values to the 
variables in this 
path; 
 false, otherwise 

Deterministic environment transition 
 (the state of the system is not changed) 

 z2 second variable of φ    z2 second variable of φ 

Nondeterministic agents’
choices of True and False 

z1=T z1=F 

z2=F z2=F 

Figure 4. Boolean circuit for the validity problem 
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Thus, the output of the validity problem has been reduced to the target problem. 
The validity of a Boolean expression φ can be checked simulating the equivalent 
MABS problem. Therefore, the target problem is coNP-complete. 

5 Conclusions and Further Work 

This paper proposes a methodology for studying simulation outputs as a complement 
to traditional methods dealing with post-hoc analysis of simulation trajectories, 
namely a constrained exploration (of the envelope) of simulation trajectories. In 
particular a forward chaining semantically constrained generation of trajectories is 
suggested.  

Like in Constraint Logic Programming a constraint generation of simulation 
trajectories (or extensions, in some way) responds to a need for a systematic and 
controlled exploration of the content of a model.  

The language SDML was used for experimenting. It enjoys many desirable 
properties for the aimed task, including control of the search and rewriting of rules via 
a meta-module, forward and backward inference, backtracking, and an assumption 
manager. In particular, the meta-module makes the constraints manipulation flexible, 
transparent and handy for the user. Constrains are context-dependent (over the 
semantic of the trajectory itself) as the meta-module is able to access the semantics of 
the simulation and to set up, in advance, one among the possible combination of 
agents’ choices. 

This paper also verifies that the complexity of the suggested constraint model 
based exploration of simulation trajectories for proving (the envelope of) tendencies 
in relation to the content of a MABS model is coNP-complete. 

As explained better in [19], constraint exploration of simulation trajectories brings 
closer the simulation and the logic programming communities.  This paper contributes 
in making clearer this relationship. 

Acknowledgements. The research reported here was funded by the CDCHT (the 
Council for Scientific, Humanistic and Technological Development) of the 
Universidad de Los Andes, Venezuela, under project I-524-AA, by CONICIT (the 
Venezuelan Governmental Organisation for promoting Science), and by the Faculty 
of Management and Business, Manchester Metropolitan University. 

References 

1. Abdennadher S., “Constraint Handling Rules: Applications and Extensions”, Invited Talk, 
2nd International Workshop on Optimization and Simulation of Complex Industrial 
Systems. Extensions and Applications of Constraint-Logic Programming and 7th 
International Workshop on Deductive Databases and Logic Programming, Tokyo, Japan, in 
conjunction with the 12th International Conference on Applications of Prolog, INAP'99. 

2. Abdennadher. S. and H. Schütz, “Model Generation with Existentially Quantified 
Variables and Constraints”, Sixth International Conference on Algebraic and Logic 
Programming, Springer LNCS, 1997. 

3. Abdennadher, S., F. Bry, N. Eisinger and T. Geisler, “The Theorem Prover Satchmo: 
Strategies, Heuristics, and Applications - System Description”, Journées Francophones de 
Programmation en Logique, JFPL'95, Dijon, 1995. 



 10 

4. Axtell, R., R. Axelrod, J. M. Epstein, and M. D. Cohen, “Aligning Simulation Models: A 
Case Study and Results”, Computational Mathematical Organization Theory, 1(2), pp. 
123-141, 1996.  

5. Carley K., M. Prietula, and Z. Lin, “Design Versus Cognition: The Interaction of Agent 
Cognition and Organizational Design on Organizational Performance”, Journal of Artificial 
Societies and Social Simuation 1(3), 1998 (accessible at: 
http://www.soc.surrey.ac.uk/JASSS/1/3/4.html). 

6. Chiang, C.L., and R. C.T.  Lee, Symbolic Logic and Mechanical Theorem Proving, 
Academic Press, London, UK, 1973. 

7. Domingo C., G. Tonella and O. Terán, “Generating Scenarios by Structural Simulation”, in 
AI, Simulation and Planning High Autonomy Systems, The Univ. of Arizona, pp 331-336, 
1996. 

8. Frühwirth, T., A. Herold, V. Küchenhoff, T. Le Provost, P. Lim, E. Monfroy and M. 
Wallace. Constraint Logic Programming -  An Informal Introduction”, Chapter in Logic 
Programming in Action (G. Comyn et al., Eds.), Springer LNCS 636,  September, 1992. 

9. Liu, B., Jaffar J. and Yap R., "Constraint Rule-Based Programming", School of Computing, 
National University of Singapore, Singapore. Accessible at:          
http://www.comp.nus.edu.sg/~joxan/res.html. 

10. Loveland, D. W., Automated Theorem-proving: A Logical Basis, North-Holland Pub., 
Amsterdam, 1978. 

11. Konolige, K., “Autoepistemic Logic”, in Handbook of Logic in Artificial Intelligence and 
Logic Programming (4),Oxford Science Publications,  pp. 217-295, 1995. 

12. McCune, W., OTTER 3.0 Reference Manual Guide, Argonne National Laboratory, 
Argonne, IL, 1995. 

13. Moss, S., H. Gaylard, S. Wallis, B. Edmonds, “SDML: A Multi-Agent Language for 
Organizational Modelling”, Computational Mathematical Organization Theory, 4(1), 43-
69, 1998. 

14. Moss, S., “Social Simulation Models and Reality: Three Approaches”, MAB’s 98: Multi-
agent Systems and Agent-Based Simulation, Paris, 1998 (accessible at 
http://www.cpm.mmu.ac.uk/cpmrep35.html).  

15. Moss, S., B. Edmonds, S. Wallis, "Validation and Verification of Computational Models 
with Multiple Cognitive Agents", Centre for Policy Modelling, 1997, CPM report 97-25, 
http://www.cpm.mmu.ac.uk/cpmrep25.html 

16. Papadimitriou, Christos, Computational Complexity, Addison-Wesley Publishing 
Company, California, USA, 1994. 

17. Terán Oswaldo, Bruce  Edmonds and Steve Wallis, “Mapping the Envelope of Social 
Simulation Trajectories”,  MABS2000 @ ICMAS-2000: The Second Workshop on Multi 
Agent Based Simulation, Boston, July 9, 2000. Published in: Moss, Scott and Paul 
Davidsson (Editors), Multi Agent Based Simulation (MABS-2000), Lecture Notes in 
Artificial Intelligence, Vol. 1979, Springer Verlag, Berlin 

18. Terán Oswaldo, Bruce Edmonds and Steve Wallis, “Determining the Envelope of 
Emergent Agent Behaviour via Architectural Transformation”, ATAL-2000: The Seventh 
International Workshop on  Agent Theories, Architectures, and Languages, Boston, July 7-
9, 2000. Published in: Castelfranchi, C. and Y. Lesperance (Editors), Intelligent Agents VII. 
Agent Theories, Architectures, and Languages. Lecture Notes in Artificial Intelligence, Vol. 
1986, Springer-Verlag, Berlin. 

19. Terán Oswaldo, Emergent Tendencies in Multi-Agent Based Simulations Using Constraint-
Based Methods to Effect Practical Proofs Over Finite Subsets of Simulation Outcomes, 
Doctoral Thesis, Centre for Policy Modelling, Manchester Metropolitan University, 2001 
(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=292408). 

20. Woolridge, Mike “The Computational Complexity of Agent Design Problems”, 
in Proceedings Fourth International Conference on MultiAgent Systems 
(ICMAS-2000), Boston, MA, USA, July 10-12, 2000, pp. 341-348. 

21. Wos, L., Automated Reasoning: Introduction and Applications, Prentice Hall, London, 
1984. 

22. Wos, L., Robinson, G. A., and Carson, D. F., “Efficiency and Completeness of the Set of 
Support Strategy in Theorem Proving”, J. ACM 14, N° 4, 698-709, 1965. 


