
Optimizing the evaluation of XPath using Description
Logics

U. Furbach, M. Gross-Hardt, T. Kleemann, P. Baumgartner

eMail
{uli | margret | tomkl | peter}@uni-koblenz.de

Abstract: The growing use of XML in commercial as well as non-commercial
domains to transport information poses new challenges to concepts to access
these information. Common ways to access parts of a document use XPath-
expressions. We provide a transformation of DTDs into a knowledge base in
Description Logic. We will use reasoning capabilities in Logic to decide, if a
given XPath may be satisfied in a document, and to guide the search of XML-
Processors into possibly successful branches of the document, avoiding parts of
the document, that will not yield results. The extension towards objectoriented
subclassing schemes opens this approach towards OODB-queries. Opposed to
other approaches we will not use some kind of graph representing the document
structure, and no steps towards incorporation of the XML/OODB-processor
itself will be taken.

Keywords: XML, XPath, Description Logics, automated reasoning, DTD,
Schema

Introduction
Within a short period of time XML has become a widely accepted standard for
information interchange. Starting as a subset of SGML to transport structured text, the
ease of understanding and using XML promoted it's use as an interchange format of
rather large documents. This evolution created the needs for a validation of documents
against an according definition. Most common and basic validation is accomplished
by XML-processors referring a Document Type Definition (DTD). A DTD defines the
structure of elements of the document, that references the DTD. We will detail the
terms element and structure in following chapters.

Beyond the need to validate data several attempts have been made or are currently
made to access parts of a document. One common idea in these attempts is the access
of parts of a document following a path from it's root to some subtrees. Generally
these paths are not specified completely from the root to the subtree, but leaves
unspecified gaps to be filled by the XML/query-processor. Usually a XML-processor
will traverse the document tree, to find instances of the specified parts of a path.

Based on DTD and XPath-expressions we will provide a way to optimize this
traversal. This will be accomplished by translating the DTD into a set of description
logics (DL) formulae and a subsequent query of this logic representation. Questions

about the satisfiability of a XPath in a document will be answered as well as Queries
of the starting element of subtrees, that might contain fillers for the path specification.

Due to some shortfalls of DTDs we will show the compatibility of the translation
and reasoning with some sorts of objectoriented extension. This opens our approach to
uses in pathcompletion of objectoriented databases as well as schema-based
definitions of XML-documents.

XML Documents
Starting as a specialisation of the Standard Generalized Markup Language (SGML)
the eXtensible Markup Language (XML) was supposed to provide a better way of
document markup than the widespread HyperText Markup Language (HTML). The
normative definition of XML is available from the w3c [XML00]. Opposed to the
fixed markup, and its interpretation, of HTML the XML approach offers a
standardized way to markup arbitrary documents. This may include redefined HTML
documents but is not limited to this application.

A XML document consists of a prolog an an element, optionally followed by
miscelaneous comments and processing instructions, that are not in the scope of this
paper. An element is either an empty element or a sequence of a starting tag followed
by content and an ending tag. Taken from [XML00]:

[1] document ::= prolog element Misc*
[39] element ::= EmptyElemTag | STag content Etag
[40] STag ::= '<' Name Attribute* '>'
[41] Attribute ::= Name '=' Attvalue
[42] ETag ::= '</' Name '>'
[43] content ::= CharData? ((element | Reference | CDSect | PI | Comment)

CharData?)*
[44] EmptyElemTag ::= '<' Name Attribute* '/>'

Content by itself may contain among others elements, that will be called child-
elements. Tags are identified by their names. We will use this name as the name of an
element.

The w3c cares about character codings, white spaces and miscelaneous
components. Because we are merely interested in the structure of the document we
will omit these otherwise important details. The topmost element will be called root
element. It spans almost all of the document, especially it contains all other elements.
We expect all documents to be wellformed and as explainf in the following section
valid.

Sample Document

According to the above mentioned productions and constraints a wellformed
document may look like this:

<?xml version="1.0"?>
<!DOCTYPE university SYSTEM "university.dtd">
<university name="Universität Koblenz">
 <library>

 <book isbn="978123123">
 <author> </author>
 <title> </title>
 </book>
 <book isbn="978234234">
 <author> </author>
 <title> </title>
 </book>
 </library>
 <department name="cs"/>
 <department name="math"/>
 ...more descriptions...
</university>

The prolog specifies this document to be a XML-document according to version
1.0. This is currently the only possible version. The second line specifies a document
type definition. University ist the root element of the document. This university
element contains a library element, that contains several book elements, and several
department elements. The department elements are empty elements. Empty elements
are empty with respect to the content, but may contain attributes. The university,
department and book elements contain attributes, i.e. name and isbn.

A XML document may be represented by a tree. The root element corresponds to
the root of this tree. The elements are represented as nodes of the tree. An element is
linked to its child elements and attributes. The data of elements will not be represented
in our trees to reduce the information to what we need. We are focused on the
structure of documents. The following section introduces a common way to define the
possible structures.

Validation of Documents
Whenever XML is used to transport information between independent applications,
that is most common in business-to-business communication, there is a need to
validate the document structure. Validating XML processors offer standardized ways
to implement this validation process. These processors use a Document Type
Definition (DTD) or a schema as a description of accepted elements, nesting of

university

library

book

department

author title

department

book

author title

nam
e

nam
e

nam
e

isbn isbn

elements and type information. In the example document above (2nd line) we already
introduced the reference to an external DTD. This Document Type Declaration names
the root element, university in this case. DTDs may as well be inline. The advantage
of external DTDs derives from onetime central storage of the DTD. Beyond these
differences both kinds of DTDs provide the same set of definitions. DTDs are already
known to SGML [SGML86] and HTML documents. They do not provide significant
type information or any aspect of object orientation. To overcome these
insufficiencies XML schema has been introduced by the W3C. Schema introduces
some basic type information and a limited support of object orientation. We will start
with DTDs and demonstrate afterwards the opportunities of extended type
information.

A DTD for the above sample document may look like this

<!ELEMENT university (library, department*, #PCDATA)>
<!ATTLIST university name CDATA #REQUIRED)>
<!ELEMENT library (book)+>
<!ELEMENT department EMPTY>
<!ATTLIST department name CDATA #REQUIRED)>
<!ELEMENT book (author+, title, abstract?)>
<!ATTLIST book isbn CDATA #REQUIRED)>
<!ELEMENT author #PCDATA>
<!ELEMENT title #PCDATA>

Focusing on the structure of a document, we will not use any information about the
data of the document that is described. So #PCDATA, CDATA and so on will not be
in the scope of this paper. Crucial to our target of optimization and completion of path
expressions are the definitions of the child elements and attributes of elements. All
elements mentioned in the definition of an element are child elements. The sequence
operator ',' may be used to establish a sibling relation among the child elements. In this
example author, title and abstract are childs of book. isbn is an attribute of book.
author is a sibling of author and title and so on. Because we limit our presentation to
the abbreviated syntax for XPath the sibling relations will be omitted, although these
relations between elements are covered by our approach.

Different from the tree like structure of the XML documents themself, the
description may contain cycles. A wellknown example of a cycle ist the HTML-table.
The TD-element is a child of an TR-element, that is a child of the TABLE-element.

university

library

book

department

author title

nam
e

nam
e

isbn abstract

Because TABLE is part of arbitrary HTML-content, TABLE is a possible child of
TD. The reasoning capabilities used are robust against these cyclical definitions.

Even in our quite small example DTD a cycle can be found. The element author is
a sibling of itself.

Picking the Parts
Common to almost all processing of documents is the adressing of parts of it. The
basic idea of all adressing schemes is a path expression, that specifies the navigation
through the document. These path expressions may be rooted or relative to an existing
position in the document tree. Severeal notational variants have been developed. We
will use the abbreviated XPath 2.0 notation, that is covered by an W3C-working-draft
[XP02]. Path expressions following these recommendations are incorporated in
XSLT, Xquery, CSS2 and other standards.

Path expressions are explained by the following rules taken from [XP02]:
path ::= '//' relativePath | '/' relativePath | relativePath
relativePath ::= stepExpr ('/' | '//') stepExpr
stepExpr ::= '.' | '@' nameTest | '..' | nodeTest
The leading '/' and '//' construct a path starting at the document out of an relative

path. '//' will expand to a path of zero or more steps. Step expressions access the
current context node, it's attributes by a preceding '@' the parent of an element or
perform node tests, ranging from simple element names to more complex expressions.
Especially a wildcard '*' will match all child elements. A detailed description can be
found in [XP02]. Because we restrict our path expressions to abbreviated syntax, the
names of the axis are not mentioned, but inherently used. '.' uses the self axis. '..' uses
the parent axis. The child axis will be used in nodeTest, as we will demonstrate with
some examples:

/university/library will access the library element
//department will access the two department elements

several ways to access the book elements:
/university/*/* will access all grandchildren of the root
/university/*/book and /university/library/book will do the same
//book will also access the two book elements
//*[@isbn] this expression accesses all elements that have an isbn attribute
//*[author AND title] access all elements that have author and title child elements

The wildcard '*' and the universal path fragment '//' are a huge gain in comfort. A
user may specify correct path expression even if she does not know the structure in
detail, as can be seen in the expression //book. Regardless of the structure all book
elements will be matched. This will happen regardless how many totally different
paths exist in the document. As a first approach a XML processor may traverse the
document and evaluate all constraints that a path expression carries. The larger the
documents will be the worse this approach may become. We will provide decisions,
that guide the traversal into those subtrees that may yield results with respect to the
path expression. These decisions will be made based on the DTD of the document,
using a description logics representation of the DTD.

The reasoning will also provide informations about empty result sets. If you specify
a path like //book[@isbn=”987001001”] the XML processor will compare the isbn
attribute of all book elements with the given string. In the above sample document no
book element will fulfil this condition, and the result will be empty. But other
documents according to the DTD may return results. This decision will be made upon
comparison of all book elements.

An additional empty path expression will be //book/library. Different from the first
empty path expression this expression will never return any book elements, because
the structure in question, library as a child of book, is a contradiction to the DTD.
Again the reasoning capabilities in the logic representation state, that this will always
be empty. Any traversal of the document may be omitted.

Description logic for the Representation of DTDs
The target of our translation is a description logic (DL) that provides inverse and
transitive roles and role hierarchies. Examples have been translated into input files of
the RACER [HM01] that offers services of a SHIQ-reasoner. The second target was
krhyper, a Tableaux-prover, including it's preprocessing tool for DL expressions.

Number restrictions have not been used so far, although DTDs provide information
about singular or multiple occurrences of child elements. These informations are
dropped right now, because we didn't expect significant enhancements towards
optimization of path expressions.

The TBox

The Tbox contains few concepts that correspond to the distinct parts of a DTD. The
concepts of our translation will be the building blocks of the DTD like element,
attribute and type. These concepts will be populated by the individual elements of the
specific DTD during the translation process.

The Type-Concept is trivial for DTDs, but allows the integration of the enhanced
typing capabilities of XML-schema. We give details later on.

reachable+

hasChild hasAttribute

reachableElement+

hasSpecial

isSpecialOf- hasParent-

hasType

reachablePart+

An important part of the Tbox are the definitions of roles and their attributes. We
introduce roles to be instantiated in the following translation step as well as roles that
are superroles of these. The following figure depicts the role hierarchy.

Roles with an appended – are inverse roles like hasParent is the inverse of
hasChild. reacheable is a superrole of hasChild and hasAttribute. The appended +
indicates that this role is transitive.

Translation of DTDs
The following translations demonstrate how we setup the Abox of our knowledge

base from the DTD. The root element of the dociument and the correcponding DTD
are mentioned in the prologue of the XML-file.

<!DOCTYPE rootelem Pointer_to_DTD>

This line leads to the Abox entry (root,rootelem):hasChild. root is an artificial
individual that has the the document's rootelement as a child. For further translation
we analyse the pointed DTD.

 The description of the document structure contains information about the
relationship of elements.

<!ELEMENT parent child1 child2 ...>

is translated to (parent, child1):hasChild, (parent, child2):hasChild and so on.
(related parent child1 hasChild) in the Syntax of KRSS [PSS93], that is used by
RACER. In addition to these role assertions we have to declare parent, child1 and
child2 as individuals of the element concept (e.g. parent:element.) A concept
definition like (define-concept element (some hasChild top)) and (define-concept
element (some hasParent element)) will do that automatically.

The special empty element

<!ELEMENT elem EMPTY>

will lead to the simple assertion elem?element, that reads (instance elem element)
in the KRSS syntax.

Translation of lists of attributes is straigt forward as well.

<!ATTLIST elem att1 type1 att2 type2 ...>

leads to the assertions (elem, att1):hasAttrinute, (elem, att2):hasAttrinute,
(att1,type1):hasType, and (att2,type2):hasType. Again the definition (define-concept
attribute (some hasType type)) will insure that att1 and att2 are elements of the
concept attribute. Because of the limited number of types in DTDs, all types may be
declared independent of the document: PCDATA, CDATA... :type.

Querying into the Knowledge Base
In our above example library is a role successor of university for role hasChild.

book is a role successor to library in hasChild. These relationships are valid for role
reacheable too because reacheable is a superrole of hasChild. Due to the transitive
attribute of reacheable book is a role successor of university.

The DL reasoner provides queries like (individuals-related? university book
reacheable) to ask, if the above mentioned relation is satisfied, i.e. book is a role
successor of university for the role reacheable. This query will be written as
(university,book):reacheable as in the usual notation of DL.

(individual-fillers book hasParent) reveals all possible parents of book this will be
written as the concept hasChild.{book} in the notation of DL.

Further reasoning support is provided to check the instances of concepts and the
subsumption of concepts.

Empty Result Sets

With the Knowledge Base (KB) consisting of the Tbox and the Abox we are
already able to decide, if a XPATH expression will lead to an empty result set. There
are two reasons, why a XPATH expression will be empty. First of all the expression
will locate optional elements that are not in the specific document. Similar to this an
expression will return an emtpy result, if the expression incorporates comparisons to
attributevalues that are not in the document. The second way to receive empty results
are expressions that try to locate elements in an structurally impossible way. With our
reasoning capabilities we are able to find most of these necessarily empty expressions.
Overall the indication of an empty result due to the knowledge base is a partial
detection of empty results.

As an example we consider the XPATH expression /book and our example from
above. To judge the expression we have to check if book is an individual of the
concept element, i.e. book:element? If this is true we have to check if book is a role
successor of hasChild to root. Obviously this is not the case, so the expression /book
will be empty for all documents according to the DTD.

Changing the expression to //book will have an impact on the second condition. We
will query if book is a role successor of reacheable to root. This is true with respect to
our DTD.

To judge the expressions empty is quite useful when expressions have to be
evaluated, because these empty result sets are provided without any search in the
document itself. Furthermore the presence of permanently empty expressions in a
software may be an indication that the expression is not useful or contains an error.

For more complex XPATH expression we can combine the parts of the expression
to an conjunctive condition. //book/*@name is possibly not empty if the condition
for //book are satisfied and book has a child that has an attribute 'name'.

We will show a neat way to combine these fragments in a single query.

Optimizing the search in XML documents
Beyond the ability to decide necessarily empty resultsets we are able to predict in

which parts of then document tree further search may be successful. Thus we avoid
traversal of those parts of the documents, that will not lead to results. In our simple
expression //book the traversal of department elements cannot lead to any book
elements. The DTD does not allow for it, and the knowledge base does not contain the
pair (department, book) in reacheableElement. On the traversal of the document tree

the search can be limited to those elements (here library), that contain the requested
structure made up of elements and attributes.

Our approach evaluates a concept expression to obtain all possible child-elements
of the current node of the traversal. If this concept expression return an empty set, no
further traversal of the subtree is required. Consequently no traversable childs of 'root'
indicate an empty result of the XPATH expression. This is equivalent to an
unsatisfiable concept in terms of the used reasoners.

Additionally the traversal of subtrees stops as soon as possible. If for example the
structure is extended in a way that library may contain book elements as well as
journal elements, the raversal will not deepen the search into the journal elements,
even if there are no book elements present.

The extension of the concept expressions contains a maximum number of possible
elements that have to be cut to the elements found in the document. Thus a query may
be empty in a document even if the concept expression is not empty, because the
structure allows for appropriate documents.

How to construct the concept expressions
In order to use the complete information provided by the XPATH expression we

choose a 'bottom-up' approach to contruct the DL concept expression adopteed from
the XPath syntax. Some detailed patterns for this are shown in the following section.
In a path like //library/*[@isbn] we will start at the end to construcht a concept term
for *[@isbn] this searches for some element, name unknown, that has an attribute
named 'isbn'. The corresponding concenpt term is
hasAttribute.{isbn}

explicit values in an XPATH expression like @isbn=”987123123” are discarded
because we focus on the structural decision. To step back to library we add

{library}  hasChild.hasAttribute.{isbn}
where the latter part contains the parents of the previous term that is intersected with
the individual concept, that is mentioned in the XPATH expression. In case of an
arbitrary element ‘*’ no intersection or specialization will occur. To complete the task
we add the ‘//’ part, that is formed by the child elements of ‘root’ and the parents of
the existing expression. These parents are either immediate or transitive parents.
hasParent.{root}  reacheable.({library} hasChild.hasAttribute.{isbn})

The resulting concept contains all child elements of the root that may leed to the
elements in question. To guide the search of the XML processor one has to iterate the
query after each step.
Regarding our sample DTD and the corresponding KB, this expression would yield
{university}. We conclude from this, that the expression in question is structurally
possible. If the resulting concept is empty no search in the document will be needed.
Disjunctive or konjunctive connections of XPATH expressions are easily tranferred
into union or intersection of the concept expressions.

Finite model

While the number of possible path is unlimited in a cyclical structure, the possible
child elements are finite. In fact every concept expression is a subset of the concept
element.

Limitations
A strict limitation to all structural analysis are the ‘pointing’ elements IDREF.
Because no information is provided where they point to, the optimization is limited to
the path from the root to the IDREF. At the referenced element an optimization or
prediction may start with the remaining XPATH expression.
The completion of the path through a XML document is perfomed on a step by step
basis. The iteration of the completion is performed by the document processor. While
this puts some tasks into the XML processor, the optimization is robust against
cyclical structures.
Further improvements in the decision about possible elements, that lead to non empty
results might be derived from number restriction. A structure with two Y-childs in an
X-element will not satisfy an expression X/Y[3], because there is no third Y-child in
this structure. We have dropped these numberrestrictions because we found no Xpath
expression in a number of sample code, that addressed childs this way while the
structure limited the number of childs in an appropriate way.

Extensions
So far we have given patterns for the XPATH expressions used in the abbreviated
syntax. These expressions incorporate the child and parent axis. The transitive
reacheable role and it’s inverse cover the ancestor and descendant axis. To extend the
KB towards other axis we would simply have to introduce a role for the axis and
integrate these roles into the translation of the DTD.
An important extension is the integration of a type system, that is introduced by XML
schema. The type information is available on two levels. There are more (44) types for
attributes, this can easily be integrated by additional individuals in the type concept. A
type hierarchie is implemented by some concept subsumption. These types offer a
further refinement of the concept expressions. Similar to the expression
hasAttribute.{isbn} we could easily use the hierarchie of types to query with
concept expressions like hasAttribute.Number. Using the subsumption of types, as
in NaturalNumber  Number, this query will provide all elements that have attributes
of type Number or NaturalNumber. On a second level XML schema introduces some
very basic kind of extension and restriction mechanism of elements. We expect this
feature to develop in an object oriented fashion, that would lead to a subsumption
hierarchy of these typed elements. Currently we can deal with this typing mechanism
through the roles hasSpecial and the inverse, or the above introduced subsumption.
A fully object oriented typing might introduce the needs for nonmonotonic reasoning,
beyond the capabilities of a standard DL system. Experiments with the first order
prover krhyper [B98, W03, DUN01] indicate the ability to add the hopefully needed
features.

Translation to logic programs
To make use of the model generating proover krhyper, we used Peter Baumgartners
dl2lp translation tool, that converts a DL Tbox and Abox into a stratified logic
program. Replacing the DL reasoner with this combination dl2lp and krhyper
improved the performance significantly.
Opposed to DL the queries into the KB are performed under the closed world
assumption. Concerning the queries that are imposed by our approach, there will be no
differences, because all concept expressions within the queries are bound by the
concept 'element'.

Conclusion
With the evolving use of DL reasoners in the field of the semantic web the question

arose if the optimization of the document processing has to use different reasoners or
graph oriented tools. We have shown so far, that a DL reasoner or a compatible
reasoner is suitable for the task of predicting an empty result and the optimization of
the document processing itself.

With the ability to act as a reasoner about the semantic annotation of documents
and the documents and their structure themselv a single reasoning component can be
used to perform both tasks. This single tool concept may reduce overhead in system
load and maintenance. The reduced learning effort, to understand the reasoning
component, should help to promote the use of reasoning systems.

The use of a DL-representation for semistructuresd data is not new at all. In
[Calv99, Calv99b] a thorough translation is presented that aims at a Tbox representing
the structure and an Abox containing the content of such data. Our focus was the
ability to guide an existing XPath processor through the document tree, not the
processing of data ourselves. Furthermore the ocurrence of cyclical structures
introduces some challenges for this approach. In contrast to [BS02] we don't want to
introduce an enhanced language for queries.

Our focus has led to the use of an Abox reflecting the structural properties of
documents. Using the krhyper we could get the results of 20 queries into a document
structure within less than 0.04 seconds on an ordinary PC including the setup of the
knowledge base and the queries.

In contrast to a merely relational calculus, we did not want to sacrifice the ease of
quering for a possible increase in speed, that is still in doubt.

Finally we have to admit that the reasoner has to catch up with the increasing
complexity of the document’s description and the reasoning task. The foreseable task
to integrate some kind of OO type system will lead to some needed improvements in
the reasoner. The enhancements of the reasoning component may offer additional
reasoning capabilities to all clients of the service. Focussing on a single system may
speed up the process of improvement compared to the development of multiple
services.

References
[XML00] Extensible Markup Language (XML) 1.0 (Second Edition), W3C

Recommendation, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, 6 October
2000, http://www.w3.org/TR/REC-xml

[XP02] XML Path Language (XPath) 2.0, W3C Working Draft 15 November 2002,
Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay, Jonathan
Robie, Jérôme Siméons, http://www.w3.org/TR/xpath20

[XS01] XML Schema Part 0: Primer, W3C Recommendation, David C. Fallside, 2 May
2001, http://www.w3c.org/TR/xmlschema-0

[SGML86] ISO8879:1986, Information processing -- Text and office systems -- Standard
Generalized Markup Language (SGML)

[HM01] RACER System Description, Volker Haarslev and Ralf Möller, LNCS vol. 2083,
pages 701ff, 2001

[PSS93] P.F. Patel-Schneider, B. Swartout 'Description Logic Knowledge Representation
System Speci cation from the KRSS Group of the ARPA Knowledge Sharing Effort', 1993,
http.//www-db.research.bell-labs.com/iser/pfps/papers/krss-spec.ps

[W03] KRHYPER System Description, Ch. Wernhard, 2003
[B98] Hyper Tableaux – The Next Generation, H. de Swaart, editor, ‘Automated

Reasoning with Analytic Tableaux and Related Methods’, vol. 1397 LNAI, pages 60-76,
1998

[DUN01] J. Dix, U. Furbach, I. Niemelä, ‘Nonmonotonic Reasoning : Towards Efficient
Calculi and Implementations’, A. Voronkov A. Robinson editors, Handbook of Automated
Reasoning, pages 1121-1234, Elsevie-Science-Press, 2001.

[Calv99] D. Calvanese, G. De Giacomo, M. Lenzerini: Representing and Reasoning on
XML Documents: A Description Logic Approach. Journal of Logic and Computation 9(3):
295-318 (1999)

[Calv99b] D. Calvanese, G. De Giacomo, M. Lenzerini: Queries and Constraints on Semi-
structured Data. CAiSE 1999: 434-438

[BS02] F. Bry, S. Schaffert, ‘Towards a Declarative Query and Transformation Language
for XML and Semistructured Data: Simulation Unification’, in Proceedings of the ICLP02,
2002

