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Abstract: The growing use of XML in commercial as well as non-commercial
domains to transport information poses new challenges to concepts to access
these information.  Common ways to  access parts of a document use XPath-
expressions. We provide a transformation of DTDs into a knowledge base in
Description Logic. We will use reasoning capabilities in Logic to decide, if a
given XPath may be satisfied in a document, and to guide the search of XML-
Processors into possibly successful branches of the document, avoiding parts of
the document, that will not yield results. The extension towards objectoriented
subclassing schemes opens this approach towards OODB-queries. Opposed to
other approaches we will not use some kind of graph representing the document
structure,  and  no  steps  towards  incorporation  of  the  XML/OODB-processor
itself will be taken.

Keywords:  XML,  XPath,  Description  Logics,  automated  reasoning,  DTD,
Schema

Introduction
Within  a  short  period  of  time  XML has  become a  widely  accepted  standard  for
information interchange. Starting as a subset of SGML to transport structured text, the
ease of understanding and using XML promoted it's use as an interchange format of
rather large documents. This evolution created the needs for a validation of documents
against an according definition. Most common and basic validation is accomplished
by XML-processors referring a Document Type Definition (DTD). A DTD defines the
structure of elements of the document, that references the DTD. We will detail the
terms element  and structure in following chapters.

Beyond the need to validate data several attempts have been made or are currently
made to access parts of a document. One common idea in these attempts is the access
of parts of a document following a path from it's root to some subtrees. Generally
these  paths  are  not  specified  completely from the  root  to  the  subtree,  but  leaves
unspecified gaps to be filled by the XML/query-processor. Usually a XML-processor
will traverse the document tree, to find instances of the specified parts of a path.

Based  on DTD and XPath-expressions we will  provide  a  way to  optimize this
traversal. This will be accomplished by translating the DTD into a set of description
logics (DL) formulae and a subsequent query of this logic representation. Questions



about the satisfiability of a XPath in a document will be answered as well as Queries
of the starting element of subtrees, that might contain fillers for the path specification.

Due to some shortfalls of DTDs we will show the compatibility of the translation
and reasoning with some sorts of objectoriented extension. This opens our approach to
uses  in  pathcompletion  of  objectoriented  databases  as  well  as  schema-based
definitions of XML-documents.

XML Documents
Starting as a specialisation of the Standard Generalized Markup Language (SGML)
the eXtensible Markup Language (XML) was supposed to provide a better way of
document markup than the widespread HyperText Markup Language (HTML). The
normative definition of XML is available from the w3c [XML00]. Opposed to the
fixed  markup,  and  its  interpretation,  of  HTML  the  XML  approach  offers  a
standardized way to markup arbitrary documents. This may include redefined HTML
documents but is not limited to this application.

A XML document  consists  of  a  prolog  an  an  element,  optionally  followed  by
miscelaneous comments and processing instructions, that are not in the scope of this
paper. An element is either an empty element or a sequence of a starting tag followed
by content and an ending tag. Taken from [XML00]:

[1] document ::= prolog element Misc*
[39] element ::= EmptyElemTag | STag content Etag
[40] STag ::= '<' Name Attribute* '>'
[41] Attribute ::= Name '=' Attvalue
[42] ETag ::= '</' Name '>'
[43] content  ::=  CharData?  ((element  |  Reference  |  CDSect  |  PI  |  Comment)  

CharData?)*
[44] EmptyElemTag ::= '<' Name Attribute* '/>'

Content by itself may contain among others elements, that will be called child-
elements. Tags are identified by their names. We will use this name as the name of an
element.

The  w3c  cares  about  character  codings,  white  spaces  and  miscelaneous
components. Because we are merely interested in the structure of the document we
will omit these otherwise important details. The topmost element will be called root
element. It spans almost all of the document, especially it contains all other elements.
We expect all documents to be wellformed and as explainf in the following section
valid.

Sample Document

According  to  the  above  mentioned  productions  and  constraints  a  wellformed
document may look like this:

<?xml version="1.0"?>
<!DOCTYPE university SYSTEM "university.dtd">
<university name="Universität Koblenz">
  <library>



    <book isbn="978123123">
      <author> </author>
      <title> </title>
    </book>
    <book isbn="978234234">
      <author> </author>
      <title> </title>
    </book>
  </library>
  <department name="cs"/>
  <department name="math"/>
  ...more descriptions...
</university>

The prolog specifies this document to be a XML-document according to version
1.0. This is currently the only possible version. The second line specifies a document
type  definition.  University  ist  the  root  element  of  the  document.  This  university
element contains a library element, that contains several book elements, and several
department elements. The department elements are empty elements. Empty elements
are  empty with respect  to  the  content,  but  may contain attributes.  The university,
department and book elements contain attributes, i.e. name and isbn.

A XML document may be represented by a tree. The root element corresponds to
the root of this tree. The elements are represented as nodes of the tree. An element is
linked to its child elements and attributes. The data of elements will not be represented
in  our  trees  to  reduce  the  information  to  what  we need.  We  are  focused  on  the
structure of documents. The following section introduces a common way to define the
possible structures.

Validation of Documents
Whenever XML is used to transport information between independent applications,
that  is  most  common  in  business-to-business  communication,  there  is  a  need  to
validate the document structure. Validating XML processors offer standardized ways
to  implement  this  validation  process.  These  processors  use  a  Document  Type
Definition  (DTD)  or  a  schema as  a  description  of  accepted  elements,  nesting  of
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elements and type information. In the example document above (2nd line) we already
introduced the reference to an external DTD. This Document Type Declaration names
the root element, university in this case. DTDs may as well be inline. The advantage
of external DTDs derives from onetime central storage of the DTD. Beyond these
differences both kinds of DTDs provide the same set of definitions. DTDs are already
known to SGML [SGML86] and HTML documents. They do not provide significant
type  information  or  any  aspect  of  object  orientation.  To  overcome  these
insufficiencies XML schema has been introduced by the W3C. Schema introduces
some basic type information and a limited support of object orientation. We will start
with  DTDs  and  demonstrate  afterwards  the  opportunities  of  extended  type
information.

A DTD for the above sample document may look like this

<!ELEMENT university (library, department*, #PCDATA)>
<!ATTLIST university name CDATA #REQUIRED)>
<!ELEMENT library (book)+>
<!ELEMENT department EMPTY>
<!ATTLIST department name CDATA #REQUIRED)>
<!ELEMENT book (author+, title, abstract?)>
<!ATTLIST book isbn CDATA #REQUIRED)>
<!ELEMENT author #PCDATA>
<!ELEMENT title #PCDATA>

Focusing on the structure of a document, we will not use any information about the
data of the document that is described. So #PCDATA, CDATA and so on will not be
in the scope of this paper. Crucial to our target of optimization and completion of path
expressions are the definitions of the child elements and attributes of elements. All
elements mentioned in the definition of an element are child elements. The sequence
operator ',' may be used to establish a sibling relation among the child elements. In this
example author,  title and abstract are childs of book. isbn is an attribute of book.
author is a sibling of author and title and so on. Because we limit our presentation to
the abbreviated syntax for XPath the sibling relations will be omitted, although these
relations between elements are covered by our approach.

Different  from  the  tree  like  structure  of  the  XML  documents  themself,  the
description may contain cycles. A wellknown example of a cycle ist the HTML-table.
The TD-element is a child of an TR-element, that is a child of the TABLE-element.
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Because TABLE is part of arbitrary HTML-content, TABLE is a possible child of
TD. The reasoning capabilities used are robust against these cyclical definitions.

Even in our quite small example DTD a cycle can be found. The element author is
a sibling of itself.

Picking the Parts
Common to almost all processing of documents is the adressing of parts of it.  The
basic idea of all adressing schemes is a path expression, that specifies the navigation
through the document. These path expressions may be rooted or relative to an existing
position in the document tree. Severeal notational variants have been developed. We
will use the abbreviated XPath 2.0 notation, that is covered by an W3C-working-draft
[XP02].  Path  expressions  following  these  recommendations  are  incorporated  in
XSLT, Xquery, CSS2 and other standards.

Path expressions are explained by the following rules taken from [XP02]:
path ::= '//' relativePath | '/' relativePath | relativePath
relativePath ::= stepExpr ( '/' | '//' ) stepExpr
stepExpr ::= '.' | '@' nameTest | '..' | nodeTest
The leading '/' and '//' construct a path starting at the document out of an relative

path.  '//'  will expand to a  path of zero or  more steps.  Step expressions access the
current context node, it's attributes by a preceding '@' the parent of an element or
perform node tests, ranging from simple element names to more complex expressions.
Especially a wildcard '*' will match all child elements. A detailed description can be
found in [XP02]. Because we restrict our path expressions to abbreviated syntax, the
names of the axis are not mentioned, but inherently used. '.' uses the self axis. '..' uses
the parent axis. The child axis will be used in nodeTest, as we will demonstrate with
some examples:

/university/library will access the library element
//department will access the two department elements

several ways to access the book elements:
/university/*/* will access all grandchildren of the root
/university/*/book and /university/library/book will do the same
//book will also access the two book elements
//*[@isbn] this expression accesses all elements that have an isbn attribute
//*[author AND title] access all elements that have author and title child elements

The wildcard '*' and the universal path fragment '//' are a huge gain in comfort. A
user may specify correct path expression even if she does not know the structure in
detail, as can be seen in the expression //book. Regardless of the structure all book
elements will be matched.  This  will happen regardless  how many totally different
paths  exist in the document. As a first approach a XML processor may traverse the
document and evaluate all constraints that a path expression carries. The larger the
documents will be the worse this approach may become. We will provide decisions,
that guide the traversal into those subtrees that may yield results with respect to the
path expression. These decisions will be made based on the DTD of the document,
using a description logics representation of the DTD.



The reasoning will also provide informations about empty result sets. If you specify
a path like //book[@isbn=”987001001”] the XML processor will compare the isbn
attribute of all book elements with the given string. In the above sample document no
book  element  will  fulfil  this  condition,  and  the  result  will  be  empty.  But  other
documents according to the DTD may return results. This decision will be made upon
comparison of all book elements. 

An additional empty path expression will be //book/library. Different from the first
empty path expression this expression will never return any book elements, because
the structure in question, library as a child of book, is a contradiction to the DTD.
Again the reasoning capabilities in the logic representation state, that this will always
be empty. Any traversal of the document may be omitted.

Description logic for the Representation of DTDs
The target  of  our  translation is a  description logic (DL) that  provides inverse and
transitive roles and role hierarchies. Examples have been translated into input files of
the RACER [HM01] that offers services of a SHIQ-reasoner. The second target was
krhyper, a Tableaux-prover, including it's preprocessing tool for DL expressions.

Number restrictions have not been used so far, although DTDs provide information
about  singular  or  multiple  occurrences  of  child  elements.  These  informations  are
dropped  right  now,  because  we  didn't  expect  significant  enhancements  towards
optimization of path expressions.

The TBox

The Tbox contains few concepts that correspond to the distinct parts of a DTD. The
concepts  of  our  translation  will  be  the  building blocks  of  the  DTD like  element,
attribute and type. These concepts will be populated by the individual elements of the
specific DTD during the translation process.

The Type-Concept is trivial for DTDs, but allows the integration of the enhanced
typing capabilities of XML-schema. We give details later on.
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An important part of the Tbox are the definitions of roles and their attributes. We
introduce roles to be instantiated in the following translation step as well as roles that
are superroles of these. The following figure depicts the role hierarchy.

Roles with an appended – are inverse roles like hasParent is the inverse of
hasChild. reacheable is a superrole of hasChild and hasAttribute. The appended +
indicates that this role is transitive.

Translation of DTDs
The following translations demonstrate how we setup the Abox of our knowledge

base from the DTD. The root element of the dociument and the correcponding DTD
are mentioned in the prologue of the XML-file.

<!DOCTYPE rootelem Pointer_to_DTD>

This  line  leads  to  the  Abox entry (root,rootelem):hasChild.  root  is  an artificial
individual that has the the document's rootelement as a child. For further translation
we analyse the pointed DTD.

 The  description  of  the  document  structure  contains  information  about  the
relationship of elements.

<!ELEMENT parent child1 child2 ...>

is  translated  to  (parent,  child1):hasChild,  (parent,  child2):hasChild  and  so  on.
(related  parent  child1  hasChild)  in  the  Syntax of  KRSS [PSS93],  that  is  used  by
RACER. In addition to these role assertions we have to declare parent, child1 and
child2  as  individuals  of  the  element  concept  (e.g.  parent:element.)  A  concept
definition  like  (define-concept  element  (some  hasChild  top))  and  (define-concept
element (some hasParent element)) will do that automatically.

The special empty element

<!ELEMENT elem EMPTY>

will lead to the simple assertion elem?element, that reads (instance elem element)
in the KRSS syntax.

Translation of lists of attributes is straigt forward as well.

<!ATTLIST elem att1 type1 att2 type2 ...>

leads  to  the  assertions  (elem,  att1):hasAttrinute,  (elem,  att2):hasAttrinute,
(att1,type1):hasType,  and (att2,type2):hasType. Again the definition (define-concept
attribute  (some hasType  type))  will  insure  that  att1  and  att2  are  elements  of  the
concept attribute. Because of the limited number of types in DTDs, all types may be
declared independent of the document: PCDATA, CDATA... :type.

Querying into the Knowledge Base
In our above example library is a role successor of university for role hasChild.

book is a role successor to library in  hasChild. These relationships are valid for role
reacheable too because reacheable is a superrole of hasChild. Due to the transitive
attribute of reacheable book is a role successor of university.



The  DL  reasoner  provides  queries  like  (individuals-related?  university  book
reacheable)  to  ask,  if  the above mentioned relation is  satisfied,  i.e.  book is  a role
successor  of  university  for  the  role  reacheable.  This  query  will  be  written  as
(university,book):reacheable as in the usual notation of DL.

(individual-fillers book hasParent) reveals all possible parents of book this will be
written as the concept hasChild.{book} in the notation of DL.

Further reasoning support is provided to check the instances of concepts and the
subsumption of concepts.

Empty Result Sets

With  the  Knowledge  Base  (KB)  consisting  of  the  Tbox  and  the  Abox  we are
already able to decide, if a XPATH expression will lead to an empty result set. There
are two reasons, why a XPATH expression will be empty. First of all the expression
will locate optional elements that are not in the specific document. Similar to this an
expression will return an emtpy result, if the expression incorporates comparisons to
attributevalues that are not in the document. The second way to receive empty results
are expressions that try to locate elements in an structurally impossible way. With our
reasoning capabilities we are able to find most of these necessarily empty expressions.
Overall  the  indication  of  an  empty result  due  to  the  knowledge  base  is  a  partial
detection of empty results.

As an example we consider the XPATH expression /book and our example from
above.  To  judge the expression we have to  check if  book is  an individual  of  the
concept element, i.e. book:element? If this is true we have to check if book is a role
successor of hasChild to root. Obviously this is not the case, so the expression /book
will be empty for all documents according to the DTD.

Changing the expression to //book will have an impact on the second condition. We
will query if book is a role successor of reacheable to root. This is true with respect to
our DTD.

To  judge  the  expressions  empty  is  quite  useful  when  expressions  have  to  be
evaluated,  because these  empty result  sets  are  provided  without  any search in the
document  itself.  Furthermore  the  presence  of  permanently empty expressions in  a
software may be an indication that the expression is not useful or contains an error.

For more complex XPATH expression we can combine the parts of the expression
to an conjunctive condition. //book/*@name is possibly not empty if the condition
for //book are satisfied and book has a child that has an attribute 'name'.

We will show a neat way to combine these fragments in a single query.

Optimizing the search in XML documents
Beyond the ability to decide necessarily empty resultsets we are able to predict in

which parts of then  document tree further search may be successful. Thus we avoid
traversal of those parts of the documents, that will not lead to results. In our simple
expression  //book  the  traversal  of  department  elements  cannot  lead  to  any  book
elements. The DTD does not allow for it, and the knowledge base does not contain the
pair (department, book) in reacheableElement. On the traversal of the document tree



the search can be limited to those elements (here library), that contain the requested
structure made up of elements and attributes.

Our approach evaluates a concept expression to obtain all possible child-elements
of the current node of the traversal. If this concept expression return an empty set, no
further traversal of the subtree is required. Consequently no traversable childs of 'root'
indicate  an  empty  result  of  the  XPATH  expression.  This  is  equivalent  to  an
unsatisfiable concept in terms of the used reasoners.

Additionally the traversal of subtrees stops as soon as possible. If for example the
structure  is  extended  in a  way that  library may contain book elements as  well  as
journal elements, the raversal will not deepen the search into the journal elements,
even if there are no book elements present.

The extension of the concept expressions contains a maximum number of possible
elements that have to be cut to the elements found in the document. Thus a query may
be empty in a document even if  the concept expression is  not empty, because the
structure allows for appropriate documents.

How to construct the concept expressions
In order to use the complete information provided by the XPATH expression we

choose a 'bottom-up' approach to contruct the DL concept expression adopteed from
the XPath syntax. Some detailed patterns for this are shown in the following section.
In a path like //library/*[@isbn] we will start at the end to construcht a concept term
for *[@isbn] this searches for some element, name unknown, that has an attribute
named 'isbn'. The corresponding concenpt term is 
hasAttribute.{isbn}

explicit  values  in  an  XPATH  expression  like  @isbn=”987123123”  are  discarded
because we focus on the structural decision. To step back to library we add 

{library}   hasChild.hasAttribute.{isbn}
where the latter part contains the parents of the previous term that is intersected with
the individual concept,  that is  mentioned in the XPATH expression. In case of an
arbitrary element ‘*’ no intersection or specialization will occur. To complete the task
we add the ‘//’ part, that is formed by the child elements of ‘root’ and the parents of
the existing expression. These parents are either immediate or transitive parents.
hasParent.{root}  reacheable.({library} hasChild.hasAttribute.{isbn})

The resulting concept contains all  child  elements of  the root that  may leed to  the
elements in question. To guide the search of the XML processor one has to iterate the
query after each step.
Regarding our sample DTD and the corresponding KB, this expression would yield
{university}. We conclude from this, that the expression in question is structurally
possible. If the resulting concept is empty no search in the document will be needed.
Disjunctive or konjunctive connections of XPATH expressions are easily tranferred
into union or intersection of the concept expressions.



Finite model

While the number of possible path is unlimited in a cyclical structure, the possible
child elements are finite. In fact every concept expression is a subset of the concept
element.

Limitations
A  strict  limitation  to  all  structural  analysis  are  the  ‘pointing’  elements  IDREF.
Because no information is provided where they point to, the optimization is limited to
the path from the root to the IDREF. At the referenced element an optimization or
prediction may start with the remaining  XPATH expression.
The completion of the path through a XML document is perfomed on a step by step
basis. The iteration of the completion is performed by the document processor. While
this  puts  some  tasks  into  the  XML processor,  the  optimization  is  robust  against
cyclical structures.
Further improvements in the decision about possible elements, that lead to non empty
results might be derived from number restriction. A structure with two Y-childs in an
X-element will not satisfy an expression X/Y[3], because there is no third Y-child in
this structure. We have dropped these numberrestrictions because we found no Xpath
expression  in  a  number  of  sample  code,  that  addressed  childs  this  way while the
structure limited the number of childs in an appropriate way.

Extensions
So far we have given patterns for the XPATH expressions used in the abbreviated
syntax.  These  expressions  incorporate  the  child  and  parent  axis.  The  transitive
reacheable role and it’s inverse cover the ancestor and descendant axis. To extend the
KB towards other axis we would simply have to introduce a role for the axis and
integrate these roles into the translation of the DTD.
An important extension is the integration of a type system, that is introduced by XML
schema. The type information is available on two levels. There are more (44) types for
attributes, this can easily be integrated by additional individuals in the type concept. A
type hierarchie is  implemented by some concept subsumption. These types offer a
further  refinement  of  the  concept  expressions.  Similar  to  the  expression
hasAttribute.{isbn} we  could  easily  use  the  hierarchie  of  types  to  query  with
concept expressions like hasAttribute.Number. Using the subsumption of types, as
in NaturalNumber  Number, this query will provide all elements that have attributes
of type Number or NaturalNumber. On a second level XML schema introduces some
very basic kind of extension and restriction mechanism of elements. We expect this
feature to develop in an object  oriented fashion, that would lead to a subsumption
hierarchy of these typed elements. Currently we can deal with this typing mechanism
through the roles hasSpecial and the inverse, or the above introduced subsumption.
A fully object oriented typing might introduce the needs for nonmonotonic reasoning,
beyond the capabilities of a  standard DL system. Experiments with the first  order
prover krhyper [B98, W03, DUN01] indicate the ability to add the hopefully needed
features.



Translation to logic programs
To make use of the model generating proover krhyper, we used Peter Baumgartners
dl2lp  translation  tool,  that  converts  a  DL Tbox  and  Abox  into  a  stratified  logic
program.  Replacing  the  DL  reasoner  with  this  combination  dl2lp  and  krhyper
improved the performance significantly.
Opposed  to  DL  the  queries  into  the  KB  are  performed  under  the  closed  world
assumption. Concerning the queries that are imposed by our approach, there will be no
differences,  because  all  concept  expressions  within  the  queries  are  bound  by  the
concept 'element'.

Conclusion
With the evolving use of DL reasoners in the field of the semantic web the question

arose if the optimization of the document processing has to use different reasoners or
graph oriented  tools.  We have shown so far,  that  a  DL reasoner or  a  compatible
reasoner is suitable for the task of predicting an empty result and the optimization of
the document processing itself.

With the ability to act as a reasoner about the semantic annotation of documents
and the documents and their structure themselv a single reasoning component can be
used to perform both tasks.  This single tool concept may reduce overhead in system
load  and  maintenance.  The  reduced  learning  effort,  to  understand  the  reasoning
component, should help to promote the use of reasoning systems.

The  use  of  a  DL-representation  for  semistructuresd  data  is  not  new at  all.  In
[Calv99, Calv99b] a thorough translation is presented that aims at a Tbox representing
the structure and an Abox containing the content of such data.  Our focus was the
ability  to  guide  an  existing  XPath  processor  through the  document  tree,  not  the
processing  of  data  ourselves.  Furthermore  the  ocurrence  of  cyclical  structures
introduces some challenges for this approach. In contrast to [BS02] we don't want to
introduce an enhanced language for queries.

Our  focus has led  to  the use of  an Abox reflecting the  structural  properties  of
documents. Using the krhyper we could get the results of 20 queries into a document
structure within less than 0.04 seconds on an ordinary PC including the setup of the
knowledge base and the queries.

In contrast to a merely relational calculus, we did not want to sacrifice the ease of
quering for a possible increase in speed, that is still in doubt.

Finally we have to  admit that  the reasoner  has to catch up with the increasing
complexity of the document’s description and the reasoning task. The foreseable task
to integrate some kind of OO type system will lead to some needed improvements in
the  reasoner.  The  enhancements of  the  reasoning component  may offer  additional
reasoning capabilities to all clients of the service. Focussing on a single system may
speed  up  the  process  of  improvement  compared  to  the  development  of  multiple
services.
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