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Abstract. We study a temporary planning problem in polyduct pipelines
in order to minimize the time necessary to satisfy demand and the num-
ber of changes of product type occurring along every polyduct. In this
paper the problem is modeled and solved using Optimization and Con-
straint Programming: In Optimization two objective funtions have been
defined. In Constraint Programming a optimized solution is obtained.
In both resolutions the constraints of the problem has been defined, lin-
earizing some of them. An example of working is given, exposing the
benefits of both problem solutions.

1 Introduction

Polyducts are pipeline networks designed to transport hydrocarbons and oil-
derived products. Unlike conventional pipelines, which transport only crude oil,
polyducts transport a great variety of fuels treated in refineries: kerosene, naph-
thas, gas oil, etc. Transport is carried out in successive packages (Fig. 1). A
package is a changeable quantity of the same product class located along a
polyduct. A long polyduct can contain four or five different products each occu-
pying respective extensions along its route. The entry points and supply sources
of the polyducts usually receive products directly from refineries or ports where
ships coming from refineries unload. The delivery points are receipt terminals
or intermediate stations with storage tanks located along the route. Providing
that certain constraints are fulfilled in the package arrangement, the mixing of
sucessive products affects only a minimal fraction, and the mixed products can
be recovered as low quality product.

Fig. 1. Polyduct



The polyducts in a specific geographical area (region, country, etc.) are inter-
linked to form polyduct pipelines. To move the products, pumps are distributed
strategically along the network. From an operative point of view, a polyduct
network will be constituted by a set of nodes with storage capacity, and a set of
edges (the polyducts) which interconnect the nodes. The edges are mostly unidi-
rectional, but for reasons of operative flexibility, there can also be bidirectional
edges. The network topology can be very varied, depending on the oil activity
and geographical region conditions. The nodes, in general, will have the capacity
to supply, store and receive product.

On a logistic level, the problem posed by polyduct pipelines is planning how
different products will be temporarily transported from source nodes to demand
nodes, passing through an intermediate node series. Planning must satisfy a set
of temporary constraints, relative to the minimum and maximum dates for the
delivery of different products. Also, constraints relative to the products avail-
ability must be dealt with at the sources and the proper physical conditions after
network utilization must be satisfied. The qualityof the solutions to these prob-
lems is usually measured in terms of minimization of planning time, and the
appropriate arrangement of the successive packages to obtain interfaces with-
out mixing. This quality measurement is usually formulated as a multiobjective
function of an optimization problem [1]. The storage capacity of the intermediate
nodes can be used as a strategic element in dealing with temporary constraints
and the optimalization of the overall objective function. For example, a product
that must be transported from a distant supply source to a final node through
an edge that is being used at the time for another shipment is sent to an interme-
diate node, and then resumes its journey to its destination as soon as mentioned
edge is free.

In this paper we present a solution to a simplified problem of the optimal
distribution of products through pipeline networks. With respect to the prob-
lem model, the model is defined according to two mathematical fields, namely,
Optimization and Constraint Programming [2, 3], and solved using ILOG OPL
[4]. In Section 2 we study the model of the problem. In Section 3 the model
representation is given. The objective functions in Optimization and Constraint
Programming are stated in Sections 4 and 5. An example is presented in Section
6, and the conclusions are stated in Section 7.

2 Model of the Network

We consider a simplified model of an actual network. The network has a set of
nodes made up of a set of sources, a set of sinks or receiving terminals, such as
delivery points or storage terminals, and a set of intermediate connections that
actuate as receiving and delivering points with storage capacity.

Every source and intermediate connections may have different polyducts to
different nodes and can deliver different products in different polyducts simulta-
neously.



We consider that the different products are delivered as discrete packages.
There might be as many different types of packages as number of different prod-
ucts. A unit package is the minimum fluid volume delivered by a source or
intermediate node in a unit time, that is, the minimum volume of the polyduct
filled by a fluid. Every sink and intermediate node have as many tanks as prod-
ucts he can receive, to store the different products. Also we can assume that the
sources take the fluids from tanks. In order to simplify the problem we assume
that all polyducts have the same diameter and characteristics.

We also assume that all packages flow with the same speed and that they
occupy a similar volume in the polyduct. If two packages of different fluids follow
one another there exist the possibility of both products to become contaminated.
In a number of polyducts the fluids may flow in both directions from one node
to the other. A simple network can be seen in Figure 2. This network has one
source (node N1), three sinks (nodes N5, N6 and N7) and three intermediate
nodes (N2, N3 and N4). In polyduct joining nodes (N2,N3) and nodes (N4,N5)
the fluid can flow in both directions. Numbers in links joining two nodes give
the normalized distance in terms of units of time needed by a given package to
cover the whole polyduct. For instance, number 12 in polyduct linking nodes N1
and N2 means that one package spends twelve periods of unit time to go from
node N1 to node N2, or that the polyduct may contain twelve packets.

Fig. 2. Simple network model

3 Model Representation

The polyduct pipelines in study can be represented initially by a set of nodes,
edges (polyducts) and product types R = 〈N,C,P〉, and whose activity is de-
termined by a time interval T. Demand must be satified in this time interval.
For the network components N is the set of network nodes, where ND is the



set of nodes that require a certain demand. C = CU ∪CB is the set of network
edges, where CU is the set of unidirectional edges and CB is the set of bidirec-
tional edges. P is the set of product types that is going to be distributed in the
polyducts.

For the system variables and system parameters, a is defined as a store vari-
able, indexed in time, node and product 〈t, n, p〉. Its lower and upper limits are
denoted as ainf and asup respectively. s is the transport variable, indexed in
time, origin, destination and product 〈t, n1, n2, p〉, and represents the quantity
of product that flows from the point of origin to the destination within the spec-
ified time. Its lower and upper limits are sinf and ssup respectively. stra is a
parameter indexed for origin and destination 〈n1, n2〉, and defines the edge sec-
tions that join both network nodes; provided that a product p crosses a section
for a time unit, this quantity indicates the time units that the product takes to
cross the polyduct, the edge.

Also auxiliary variables are needed to determine the different changes of
product type that is made in each polyduct. In this way, δ, indexed for time,
origin, destiny and product, is defined. It represents whether or not the product
is transported within its index, taking values one and zero in each case. Never-
theless, given the transport normalization for amounts, it is assumed that δ ≡ s.
In addition c is time, origin and destination indexed, and counts the product
changes produced in the edge in the time specified.

For constraint problem modelling, the standard network topology constraints
are defined first, i.e., node balances in nodes and edgelimits, later adding other
dependent constraints directly of the treated problem characteristics, since they
might be the product changes or conditions derived from polyduct bidirection-
ality.

In this case, the problem constraints can be classified by examining the lin-
earity or nonlinearity of the same [5, 6].

3.1 Linear Constraints

First, the storage constraint is presented. For each t ∈ T, n ∈ N, p ∈ P it is
required that

at,n,p ≥ ainf
t,n,p

at,n,p ≤ asup
t,n,p

(1)

Secondly, the balance constraint is defined in every network node, i.e., for
each t ∈ T, n ∈ N, p ∈ P it is required that

at−1,n,p +
∑

〈n1,n2〉∈C:n2=n∧t>stra
n1,n2

st−stra
n1,n2

,n1,n2,p

=
at,n,p +

∑
〈n1,n2〉∈C:n1=n st,n1,n2,p

(2)

In the third situation, the maximum and minimum transporting capacities
are defined. Provided that the product transport is normalized, for each t ∈
T, 〈n1, n2〉 ∈ C, p ∈ P



st,n1,n2,p ≥ 0
st,n1,n2,p ≤ 1 (3)

Next, the constraint based on only one product entering a polyduct per time
unit is defined, for each t ∈ T, 〈n1, n2〉 ∈ C, p ∈ P∑

p∈P st,n1,n2,p ≥ 0∑
p∈P st,n1,n2,p ≤ 1 (4)

The fifth point is that it is important to emphasize that a product will not
leave the polyduct if it does not arrive at its destination, i.e., for each t ∈
T, 〈n1, n2〉 ∈ C, p ∈ P : t + stra

n1,n2
> max(T)

st,n1,n2,p = 0 (5)

To conclude the examination of linear constraints the fact that in bidirec-
tional polyduts product can only be sent in one direction should be considered.
If product, at a given moment in time t is sent through a bidirectional polyduct
formed by r sections in one direction, product in [t, t + 1, t + 2, . . . , t + r − 1]
cannot be sent in another direction, for each t1 ∈ T, 〈n1, n2〉 ∈ CB, t2 ∈
[t1 . . . t1 + stra

n1,n2
− 1] ∑

p∈P

st1,n1,n2,p +
∑
p∈P

st2,n2,n1,p ≤ 1 (6)

3.2 Nonlinear Constraints

As has already been mentioned, one of the optimization objectives consists of
minimizing the number of packages transported through the polyducts. With this
objective in mind, the product changes for each polyduct must been counted,
since the number of packages is defined by the amount of product of the same
type transported through each polyduct. This calculation is going to be made
taking into account the values of s, and adding the number of product changes
as a constraint.

ct,n1,n2 = 0.5 ·
∑

p∈P(st,n1,n2,p ⊕ st−1,n1,n2,p)
ct0,n1,n2 = 0

(7)

The sum is calculated for the first section of each polyduct in consecutive
time periods. Being a function xor, only those occasions in which product changes
are counted, which is precisely the calculation that is sought. Constraint (7) is
a nonlinear constraint, and in most of the optimization tools it is not possible
to specify it. Nevertheless, the product of the two variable logics can be lin-
earized easily. Equation (7) can be replaced by the following constraints using
the auxiliary variable η as

ηt,n1,n2,p = st,n1,n2,p · st−1,n1,n2,p (8)



when requiring that each t ∈ T : t > t0, 〈n1, n2〉 ∈ C, p ∈ P

ηt,n1,n2,p − st,n1,n2,p ≤ 0
ηt,n1,n2,p − st−1,n1,n2,p ≤ 0
st,n1,n2,p + st−1,n1,n2,p − ηt,n1,n2,p ≤ 1

(9)

c can be defined in the form

ct,n1,n2 = 0.5 ·
∑

p∈P(st,n1,n2,p + st−1,n1,n2,p − 2ηt,n1,n2,p)
ct0,n1,n2 = 0
ηt0,n1,n2,p = 0

(10)

4 Optimization: Objective Function

As was mentioned in Sect. 1 the problem characteristics indicate that a multi-
objective optimization sought, since the goal is to minimize as much as possible
the time in which the demand is satisfied as well as product changes produced
in the polyduct. In this case, two components make up objective functioning.

The first component represents the time in which the demand is satisfied
J1. If the individual optimization of each supply source of interest, it would be
necessary to break this function down into as many components as nodes to be
satisfied. In the case we are interested in the following specification has been
made for this component.

J1 = −
∑

t∈T,n∈ND,p∈P

(t · at,n,p) (11)

According to this equation, the system will try to fill up the storage facilities
in the shortest possible time.

The second component represents the product changes produced in the dif-
ferent polyducts.

J2 =
∑

t∈T,〈n1,n2〉∈C

ct,n1,n2 (12)

In this case, the system will reduce the sum of the changes to the lowest possi-
ble number . If the individual optimization of changes per polyduct is of interest,
it would be necessary to break this function down into as many components as
polyducts.

When posing a multiobjective optimization, different optimization methods
are considered [1]. The Constraint Method has been chosen, so the set of the
equations that model the polyduct network are divided into two stages, one
per optimization. The first of the two optimizes time; the second optimizes the
product changes in the polyducts.

In the first case, the constraints are the ones specified in Sect. 3, while the
optimization function is reduced to



J1 = −
∑

t∈T,n∈ND,p∈P

(t · at,n,p) (13)

In the second case, constraints are added, with the intention of reducing
the feasible region. cant is considered to represent the changes produced in the
previous optimization indexed for origin and destination. For each 〈n1, n2〉 ∈ C∑

t∈T

ct,n1,n2 ≤ cant
n1,n2

(14)

and, in an overall way∑
t∈T,〈n1,n2〉∈C

ct,n1,n2 ≤
∑

〈n1,n2〉∈C

cant
n1,n2

(15)

while the optimization function is reduced to

J2 =
∑

t∈T,〈n1,n2〉∈C

ct,n1,n2 (16)

Consider that after making an optimization over time, set T has to be re-
defined. It can be redefined by matching the maximum of this interval to the
time obtained in the calculation of (13), or leave some slack in the system (ε) to
reduce product changes still more.

5 Constraint Programming: Optimized Solution

As far as constraint programming are concerned, the optimization itself does
not take place, but rather an optimized solution is obtained. In the model raised
in Section 4 an biobjective optimization is done using the Constraint Method.
At this point it is clear that the time optimization does not introduce com-
putational time problems, which allows us to obtain an optimization without
especially great difficulties. Since the goal is to center the study on a comparison
of techniques for the same problem, a solution optimized for product changes
(not for time) will be studied in this section.

In order to obtain an optimized solution, an upper boundary for the de-
fined objective function in (16) is defined, so that two additional constraints are
obtained, that is to say:

J2 =
∑

t∈T,m∈M

ct,m (17)

and

J2 ≤ z (18)

It is possible to be begin with z = ∞. This is going to decrease as solutions
are found, and results are “optimized”.



6 Results

The proposed models have been used to effect the optimization of several trans-
port situations of different gasoline types by polyduct pipelines. In this section
a description of one problem instance using the two methodologies is made:
Optimization and Constraint Programming, giving different approaches to the
hard part of the problem: the bidirectional polyducts. The network structure is
represented in Figure 2 and four product types (A,B,C,D) are used. The num-
bers located in the connections indicate the segmentation (the sections) of each
polyduct.

6.1 Optimization

In both cases optimization is done in two stages. In the first stage, a safe time
interval is granted so that the problem is feasible, obtaining the minimum time in
which the demand is satisfied; in this case an optimal solution can be obtained.
In the second stage, the optimal time found in the previous execution is set as
the maximum time and product changes are optimized; in this stage the best
solution is calculated, because the problem is NP-Complete [7].

The data is chosen so that bidirectional transport takes place in the edges
that allow it (Fig. 2). The initial network configuration is in Table 1. The initial
configuration reveals that it is necessary for an interchange take place in the
bidirectional edges.

Table 1. Network with interchange. Demand

PRODUCT TYPE A PRODUCT TYPE B

NODE MIN T0 MAX DEM NODE MIN T0 MAX DEM

N1 0 6 6 0 N1 0 2 2 0
N2 0 0 2 2 N2 0 0 3 3
N3 0 0 2 2 N3 0 0 3 3
N4 0 4 4 0 N4 0 5 5 1
N5 0 0 2 2 N5 0 0 0 0
N6 0 0 3 3 N6 0 0 0 0
N7 0 0 1 1 N7 0 0 0 0

PRODUCT TYPE C PRODUCT TYPE D

NODE MIN T0 MAX DEM NODE MIN T0 MAX DEM

N1 0 0 0 0 N1 0 1 1 0
N2 0 0 0 0 N2 0 0 3 3
N3 0 4 4 1 N3 0 4 4 3
N4 0 0 0 0 N4 0 2 2 1
N5 0 0 1 1 N5 0 0 0 0
N6 0 0 1 1 N6 0 0 0 0
N7 0 0 1 1 N7 0 0 0 0



In Table 1 MIN represents the lower limit of warehousing throughout the
optimization, T0 represents the amount stored in t = 0, MAX represents the
maximum storage capacity, and DEM represents the amount demanded. The
initial configuration reveals that it is not necessary for an interchange to take
place in the bidirectional edges.

For the network optimization the Constraint Method was used, first mak-
ing a time optimization and second a product change optimization. The results
obtained in the two stages of optimization are reflected in Table 2, where the
number of variables and number of constraints correspond to the second stage
of the optimization.

Table 2. Network with interchange. Optimization results

VARIABLES 2228

CONSTRAINTS 5525

TIME INTERVAL 0..30

OPTIMAL TIME 23

PRODUCT CHANGES 14.5

6.2 Constraint Programming

In the case of Constraint Programming, an Optimized Solution was sought. Al-
though Constraint Programming permits simplification (in some cases) of the
complexity of the problem using variable indexes, in this case the same model
has been solved to study the time convergence of the solutions to find the op-
timal one. In the equivalent optimization problem, obtaining an optimal value
has taken considerable time, fundamentally because of combinatorial problems.

The data are chosen so that bidirectional transport takes place in the edges
that allow it. The initial network configuration is in Table 1. From the initial
configuration it is noticed that interchange necessarily takes place in the bidi-
rectional edges.

The optimized solution obtained corresponds with the gradual decrease of
the upper boundary in the product changes. The results obtained are in Table
3.

Table 3. Network with interchange. Constraint Programming results

VARIABLES CONSTRAINTS TIME INTERVAL PRODUCT CHANGES

2157 5682 0..30 14.5

In Figure 3 it can be observed that the evolution of the solutions is related to
a reduction in the upper boundary of the product changes. The time that passes



during the optimization is recorded, as well as the changes of product type at
that optimization time.

Fig. 3. Network with interchange. Constraint Programming evolution

7 Conclusions

We have presented a simplified problem about the continuous distribution of
products through a pipeline network. It is solved by means of two different
approaches: Optimization and Constraint Programming. In Optimization the
best solution is presented, because the problem is NP-Complete.

In order to compare Optimization with Constraint Programming, one in-
stance of the problem for each model has been solved. Both results agree, but
Constraint Programming solutions are obtained more quickly.

In some cases Constraint Programming model has less number of variables
and it is possible to use variables like indexes. For example, if the number of de-
cision variables in the Optimization model is O(N2), the number of constrained
variables in the Constraint Programming model can be set to O(N). This is one
of those cases, but it has not been applied because the objective was studied
under the same domain.

Both methods are mutually beneficial. It is possible to combine the immediate
results of Constraint Programming with the results of the Optimization process
in order to accelerate the searching for the optimal value reducing the feasible
region.
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