Integrating Time Constraints into
Constraint-Based Configuration Models

Ulrich John! and Ulrich Geske?

! DaimlerChrysler AG, Research Information & Communication, email:
Ulrich.John@daimlerchrysler.com
2 Fraunhofer FIRST, email: Ulrich.Geske@first.fhg.de

Abstract. Over the last few years, we have been developing the config-
uration model ConBaCon, which is based on Constraint Programming
over finite domains. The model is sound and suitable for building effi-
cient and flexible systems that fulfill all the requirements of advanced
configuration systems.

In this paper, we present model extensions that enable time-extended
configuration and reconfiguration problems to be solved: Besides “nor-
mal” configuration and reconfiguration problems, the extended model
can now also solve problems that contain time-dependent resource avaibil-
ities or supply constraints for the ground components included. The gen-
eral nature of the model extensions introduced, would seen to make them
suitable for use other (commercial) constraint-based configuration sys-
tems/configurator libraries as well.

1 Introduction

Configuration problems can be found in a huge number of business fields. That
is why the development of efficient and flexible configuration systems is still a
hot topic in computer science. In the last twenty years, with the introduction
of the well-known, rule-based configuration system XCON for configuring DEC
computers, different approaches have been proposed and investigated for the
knowledge-based configuration of products and technical systems. These include
various rule-based, case-based and, recently, more and more constraint-based
approaches. Overviews of different approaches and systems are given in [19], [18]
and [12]. When both research approaches and commercial systems were con-
sidered in the past, the following general shortcomings were often found. The
problem specification was nondeclarative and hard to maintain. Often, the se-
quence of interactions during the configuration process were fixed, making a
flexible configuration process such as that supported by ConBaCon impossible.
The simulation of different effects resulting from alternative, interactive decisions
is rare and the support of good reconfigurations, which is needed by industry, is
inadequate or nonexistent. Furthermore, finding optimal or near-optimal config-
urations is impossible, and there are other problems like the occasional failure
of the underlying algorithms fail to terminate.

It is generally accepted that high-quality configuration systems can be real-
ized, especially by using constraint programming (cf. [8], [2], [17]).

Our configuration system ConBaCon, based on the CLP language CHIP,
overcomes the above shortcomings/problems. The ConBaCon model behind the
system is theoretically sound and covers — together with several model extensions
— a broad range of technical and non-technical configuration problems (cf. [12]).

A rather interesting problem class is that of time-constrained configuration
problems. Such problems contain, besides the “normal” problem elements, time-
constrained resource availabilities and possible supply times for potential result
components.

The practical importance of these problems is highlighted by the following
example: Often we have a situation where a customer wants to buy a complex
product, for instance a car. Besides some constraints relating to the physical
configuration of the car like color and equipment, and some optimizing goals like
price and consumption, the customer wants a wants the guarantee of delivery
by a certain self-appointed date.

Although several software and research companies are working on approaches
that tackle these problems, there are no configuration systems available that are
able to handle this problem satisfactorily, nor are the authors familiar with
any publications that describe adequate solutions. At best, some approaches
offer the opportunity to check the earliest delivery date after completion of the
configuration process proper.

We have developed some extensions of our constraint-based configuration
model that allow highly flexible, efficient configuration and reconfiguration pro-
cesses driven by the fixed delivery date. After giving the delivery date as a hard
constraint, the user can explore the possibilities for his/ her car in a flexible,
interactive way. All options that cannot be chosen because of the fixed delivery
date are marked automatically throughout the configuration process. This en-
ables the user to configure his/ her “dream car” subject to the restriction of the
self-appointed delivery date.

The following section outlines the specification language ConBaConL accord-
ing to our initial configuration model. Section 3 introduces some key aspects of
our configuration model and its realizationConBaCon, which allow the configura-
tion of industrial products/technical systems. The model extensions for solving
time-constrained configuration and reconfiguration problems are presented in
Section 4, where we also give an example for illustrative purposees. The paper
closes with a conclusion and some remarks on possible future extensions.

2 ConBaConL

By analyzing the results of design problems for industrial control systems, we
developed a formal problem model and, based on this, the largely declarative
specification language ConBaConL, which allows the specification of relevant
configuration problems. Such specifications are composed of three parts: object

hierarchy, context-independent constraints and context constraints. Every tech-
nical object that can play a part in the configuration problem must be specified
in terms of its structure in the object hierarchy. An object can consist of several
components in the sense of the consist_of-relation, where components may be
optional, or the object has some specializations in the sense of the is_a-relation.
In addition, all attributes of the technical objects are specified. If the attribute
values of a technical object are explicitly known, they are enumerated.

A correct context-independent representation of the configuration problem
is created from the object-hierarchy specification by adding the specification of
the constraints concerning different attribute value sets on the one hand, and
the existence or nonexistence of technical objects in the problem solution on the
other. If context constraints exist (e.g. customer-specific demands or resource-
oriented constraints), we have to specify them as problem-specific constraints in
ConBaConL. The distinction between problem-specific and context-independent
constraints is useful because the technical correctness of the problem solution is
ensured if all context-independent constraints are fulfilled.

The constraint elements of ConBaConL can be divided into Simple Con-
straints, Compositional Constraints and Conditional Constraints. Most of them
are introduced below.

2.1 Simple Constraints

Attribute Value Constraints and Existence Constraints
[o, Attr, VS]/not(Jo, Attr, VS]) =

the attribute Attr of object o must/must not take a value from V'S,
exist(Objectlist) /noexist(Objectlist) =

all objects contained in Objectlist must/must not be part of the solution.
Relational Constraints Between Attribute Value Sets & Table Con-
straints
eq(T1,T2), neq(T1,T2), It(T1,T2), let(T1,T2), gt(T1,T2), get(T1,T2). Further-
more, it is possible to specify equations over attributes.

In practice, coherences between solution parts are often specified in the form
of tables (decision tables). To avoid a manual, error-prone translation of the
table into other kinds of ConBaConL constraints, a table constraint (see [10])
was introduced.

2.2 Compositional Constraints

Compositional Constraints are, besides the above-mentioned Simple Constraints,
compositions of compositional constraints: and([Consy, .. .,Cons,]),

or([Cons, .. .,Cons,]), xor([Consy, . ..,Consy]),

at_least([Consy, .. .,Cons,],N)/ at_most([Cons,,...,Cons,],N)/ exact([Cons;,
...,Cons,],N) = at_least/at_most/exactly N of the listed constraints are valid®.

1 So far, the processing of or-, xor, at_least, at_most, exact-constraints concerning the
existence and nonexistence demands of objects has been realized in ConBaCon.

2.3 Conditional Constraints

[if(Comp_Cons,), then(Comp_Conss)] ([iff(Comp_Cons,), then(Comp_Conss)])
If (and only if) the compositional constraint Comp_Cons; is fulfilled, the com-
positional constraint Comp_Conss must be fulfilled.

2.4 Preferences

There are two ways of describing and processing preferences. One is to try encod-
ing the existing preferences as preference rules in the labeling heuristics (see be-
low) within the problem-solution model. Another is to specify weak constraints.
So far, specifying weak simple constraints has been supported (cf. [10]).

2.5 Modifications

In practice, the specification of product taxonomies/component catalogues has
high modification rates. For instance, about 40% of the 30,000 component types
of DEC computers used in R1/XCON were updated annually (cf. [4]). There are
several reasons for the need to change the product taxonomies/problem specifica-
tions. The most common is the fact that new technical modules become available
or obsolete ones are withdrawn. A special case of this is so-called versioning. An-
other reason is the changing of context-independent constraints due, for instance,
to changes in laws or government policy. In order to allow subsequent reconfigu-
rations, obsolete information should not be deleted in the specification. Instead,
obsolete modules and constraints should be labeled with the keyword obsolete in
the specification/product taxonomy. New modules and constraints can easily be
added to the specifications/product taxonomies. There are two cases in which a
new module/object new_o is integrated as an alternative to an already specified
module o,. In the first case, o, is a specialization of an object o. In the second
case, 0, is a module of o, whereby a notional object must be introduced at the
position of o,, which acquires the specializations new_o and o,,.

Other important elements of ConBaConL are optimization goals such as min-
imization or maximization of indicated attribute values.

A typical specification of ground converters for large electric motors is out-
lined in [10], together with the problem solution using ConBaCon.

3 Problem Solution Model

When transforming a problem specification, our goal is to obtain a problem-
solution model that allows efficient problem solution. The model should also
support the option of high-quality user interactions. The model of a constraint-
logic system over finite domains is taken as a basis for the solution model outlined
below. Thus, the model can also be seen as a global constraint for structural
configuration.

3.1 Objects

Each specified object (representing a technical module) that is not marked as
obsolete is transformed into a module object of the problem-solution model?.
Moreover, each attribute of a specified object is transformed into an attribute
object, i.e. a specified object with n attributes is represented by n + 1 objects in
the problem-solution model (Fig. 1).

=)
= 0 o = = = N > O o%
'§ components component_list %\
_E ~ Ex_Var: 0..1 “g/
2‘5\ ’1’ structure_typ %
§_ 8 opt_typ %
«» 3 attr_pointer_list %
: 3 %
= Q ALV, vy Vig(l) = — — — 3= attry(0)
e value_children_list;
A AHTYE Vit o Vi) © — — — — — — — . attr,(o)

value_children_list,

Fig. 1. Transformation of Objects

Objects of the problem-solution space acquire certain model-specific attri-
butes. The attribute component_list of object o contains identifiers of the object
components (structure_type = and-node) and of the specializations (structure-
_type = or-node) of o, respectively. The constraint variable Exz_Var determines
whether or not the object is contained in the solution. If the value of Ex_Var is
zero, o is not part of the solution. If the value is one, o is part of the solution.
opt_type contains information about whether o is optional or not. Links to the
corresponding attribute objects are given by attr_pointer_list. Each attribute
object stores possible attribute values in value_children_lists and in the domain
of a corresponding constraint variable. Moreover, identifiers of the value-related
children nodes are stored if the object o contains specializations. In this case,
the attribute value sets of o are the set unification of the corresponding attribute
value sets of the specialization objects.

Besides the model objects, constraints are needed in the problem-solution
model to ensure the coherences between the objects of the model so that the
correctness of the solution and the completeness of the solution process are
guaranteed with respect to the problem specification. These constraints we call
consistency-ensuring constraints (CE constraints).

% Some constellations require the introduction of auxiliary module objects. These are
not considered in the present paper. Details can be found in [12].

3.2 CE Constraints

Consistency-Ensuring Constraints are realized as logical coherences between val-
ues of Ex_Var-attributes/attribute value sets of different attribute objects. The
most important CE constraints are schematized in Fig. 2. If it becomes obvious

I 1.
optional
~— #~ <\

1. V. V. VI.

Fig. 2. Consistency-Ensuring Constraints

that an object cannot occur in the solution, it must be inferred that no com-
ponent/specialization of it can occur in the solution (I). If it becomes obvious
that an object is part of the solution (Ez_Var = 1), it must be ensured that
all nonoptional components of the object are part of the solution, too (II). The
existence of an object in a solution implies in each case the existence of its parent
object (III). Furthermore, if a nonoptional component of an object o cannot oc-
cur in any solution, the parent object o cannot occur in any solution either (IV).
If the specialization of an object o is part of the solution, no other specialization
of o can be part of the solution (V). If it becomes obvious that no specializations
of an object o can occur in any solution, it must be inferred that o cannot occur
in the solution either (VI).

Attribute value sets are kept consistent by a special class of CE constraints.
Where a value is deleted in the attribute value set of a specialization of an
object o, the value must be deleted in the corresponding attribute value set of
o0, except if there is another specialization of o that contains the deleted value
in the corresponding attribute value set®. If an attribute value is deleted in an
attribute value set of an object o possessing specializations, the same value must
be deleted in all corresponding attribute value sets of the specializations of o. If
an attribute value set of an object o becomes empty, the nonexistence of o will
be inferred by a special CE constraint.

By integrating the introduced CE constraints in the problem-solution model,
the structural coherences between objects of the solution model are ensured with
respect to their existence, nonexistence and attribute value sets. Moreover, the
constraints formulated in the problem specification must be transformed into
constraints of the problem-solution model.

3 To avoid intensive checking, the attribute value_children_list of the corresponding
attribute object is checked and updated after each deletion of an attribute value.

3.3 Specified Constraints

Attribute value constraints and existence constraints result in the deletion of
attribute values in the problem-solution model or in the setting of Ez_Var-
attributes. Relational constraints between attribute value sets result in the dele-
tion of attribute values, which become invalid because of the specified relation.
If there are other value tuples that do not fulfill the relation, some appropriate
daemons have to be generated which control the relational constraints after each
alteration of the attribute value sets in question. Table constraints define con-
nections between the attribute value sets in question and existence information
(Ez_Var) on the objects listed in the table head. Altering the attribute value sets
or existence values results in the marking as invalid of corresponding table lines.
If all table lines are marked as invalid, the table constraint is not satisfied. Con-
versely, it is ensured that the attribute value sets in question contain only values
that are registered in valid table lines?. Compositional Constraints are normally
realized in the solution model by equations and inequations over correspond-
ing Ex_V ar-attributes. For each nonexistence statement of an object, the term
“l1—Ez_Var” is used instead of Ez_Var in the equation/inequation. Conditional
Constraints are transformed into conditional transitions of the problem-solution
model, which ensure the specified logical coherences within the problem-solution
model. In order to substantially reduce the problem space within the problem-
solution model, the contrapositions of the specified conditional constraints are
also transformed into elements of the problem-solution model.

3.4 Configuration Process

Based on the outlined problem-solution model, a flexible and efficient problem-
solution process (Figure 3) was realized within the prototypical configuration
system ConBaCon using the CLP language CHIP. In particular, the object-
based data management and the existence of Conditional Propagation Rules® in
CHIP facilitated the implementation.

The specified configuration problem is transformed into objects of the prob-
lem-solution model. This means that the objects of the solution model are gen-
erated, corresponding CE constraints are inferred and set, and the specified con-
straints are transformed into corresponding constraints of the problem-solution
model. The value one is assigned to the Ex_Var-attribute of the target object
because the target object must exist in each solution.

Thanks to the generated model with the model-specific CE constraints, a
substantial reduction of the search space is guaranteed. In [12] mathematical
sentences with their proofs are presented which allow explicit identification of
whether a given configuration-problem specification will be transformed by the
described procedure into a strong k-consistency solution model (backtrack-free
solution process is ensured) or not. For specified problems that do not fulfill

* For implementation details of table constraints, see [12].
® Similar language elements exist in other CLP languages, e.g. Constraint-Handling
Rules in ECLIPSE.

Problem Specification Tfansmrma[,bn
(ConBaCon-L) \ Problem Solution Model

. (objects, CE-Constraints,
target object transformed specified constraints)

target_object@Ex_Var = 1

_— >

Configuration Space

Interaction
I-Constraints ~ Generation of Solution
— - (Setting/ Deletion) .
Additional Constraints Labeling

(Heuristics/ Backtracking)

4\
r l
| CH-Transformator |
Lo 4
Valuation of Solutions /

Specific _ Next Solution
Improvement of Solution

Acceptance

Fig. 3. Problem-Solution Process

the required properties, instructions for possible preprocessing steps and — as an
alternative — for generating interaction-control procedures for the configuration
process are given.

We call the set of the currently active module objects of the problem-solution
model Configuration Space. Interactive user constraints now can be given (one
by one) relating to the existence or nonexistence of objects of the configura-
tion space or to the shape of the corresponding attribute value sets. The user’s
freedom to decide which object or attribute value set of the configuration space
should be restricted by an interactively given user constraint is an outstand-
ing feature compared with most other configuration models/tools. Governed by
the constraints of the problem-solution model, this results in a new configura-
tion space. Thus, a new cycle can start. Users can either give a new interactive
constraint or they can delete previously given interactive user constraints. This
allows the simulation of several user decisions, which is the prerequisite for a
highly flexible configuration process. If no further interactive constraints are
required, the generation of a solution can be started. This is done by labeling
the Ex_V ar-attributes of the (still) active objects of the problem-solution model.
Such labeling can be controlled by heuristics. This allows us to take into account
preferences in the form of preference rules for controlling the labeling process.
If the solution found is not suitable or fails to pass the solution-quality check,
further solutions can be created by backtracking. If a partial improvement of
the solution suffices, a specific solution improvement can be started by specifi-
cation and processing of a constraint hierarchy, i.e., the constraints that must
be satisfied unconditionally are specified as hard constraints, and the solution
parts that should, if possible, be in the new solution or desired attribute values
are fixed as weak constraints. The weak constraints can be marked with several
weights. The specified constraint hierarchy is processed in an error-minimization
process, which results in the generation of a set of equivalent (hard) constraints

of the problem-solution model. Information about the realization and applica-
tion of constraint hierarchies in ConBaCon for partial improvement can be found
in [12].

At second sight, it becomes obvious that the improvement process using
a constraint-hierarchy transformer provides a sound basis for reconfiguration,
which is needed by industry. The reconfiguration approach using ConBaCon is
described in [13], and in more detail in [12].

Besides model extensions for realizing reconfiguration processes with Con-
BaCon, we have developed a couple of other model extensions which extend
the set of configuration problems that are manageable by our approach. Among
them are extensions for tackling large configuration problems (mainly cluster-
ing of the model; see [11,12]), for certain design problems and for optimization-
oriented configuration problems (handling of large nets of arithmetic constraints;
see [12]).

In the following section, we present the idea of how to integrate time con-
straints into the solution model in such a way as to enable the solution of time-
constrained configuration problems of the sort described in the Introduction.

4 Integrating Time Constraints

Time-constrained configuration problems emerge from classical configuration
problems by taking into account availability times of preliminary products, pro-
cessing times, constraints between these time points/slices and resource con-
straints regarding the required processing operations. We can distinguish be-
tween assembly processes and transformation processes. Transformation pro-
cesses can be connected with all problem objects represented by module objects
in the problem-solution model (c.f. Section 3). Assembly processes are connected
with all aggregated objects which are presented in the solution model by mod-
ule objects with structure_type = and-node and their component elements. To
be able to specify time-constrained configuration problems, we must of course
add, some suitable specification primitives to the specification language ConBa-
ConL. In the rest of this section we focus on necessary extensions of the problem
solution model.

4.1 Availability Variables

For each module object o of the solution model, an availability FD-variable
avail(o) must be introduced, which represents the availability of the module.
The domain of each availability variable must contain the value zero as a
special element.
If a module is a ground object (supply component), the domain of the asso-
ciated variable must contain, in addition to zero, all the time values at which the
module is available. The domains of availability variables of nonground objects

(not supply objects) initially get a proper FD-interval, e.g. (now, end_of _planning
_horizon)% in addition to the special domain element zero.

The inital domains of the availability variables are normally reduced after
generating special constraints into the problem-solution model (see below). In
order to get better propagation, it is advantageous to delete, in a preprocess-
ing step, values from (now, end-of _planning_horizon) that obviously cannot be
valid because of the availabilities of the respective components (see next section).

Each processing step (or atomic chain of processing steps) in production can
be explicitly associated with a module object. For each object o, we have to
introduce a FD-variable proctime(o).

To simplify the description, let us asume that the processing times are always
zero. This restriction does not affect the quality of the presented model extensions
because processing times greater than zero can be easily introduced into the
model by proper additional addends (FD variables) in the model.

4.2 Availability Constraints

We must ensure the generation of proper constraints that specify the problem-
dependent relations between the availability variables of a solution model. We
call them awailability constraints. In doing so, we must distinguish between ag-
gregated objects (structure_type = and-node) and or-objects (structure_type =
or-node).

Aggregated Objects For each aggregated object o with components ¢y, . .., ¢y,
it is clear that avail (0) = proctime(o)+mazx(avail(c1)+proctime(cy), - - ., avail (c,)+
proctime(cy,)) if we assume that the assembly process can start at the earliest
when all components are available after associated transformation processes are
finished. In our solution model, we can realize this relation using the global con-
straint mazimum(CV ,CV List) which ensures that C'V is the maximum of the
elements of C'V List. The propagation realized by this constraint works in both
directions: from C'V to the elements of C'V List and vice versa. If the availability
variable domain of an aggregated object is restricted top-down, the availability
variable domains of all components will be restricted with the same limit. If “no
real” availability time point remains, the variable will be instantiated with the
remaining value zero.

or-Objects In the case of or-nodes o with specializations s1,..., s,, we know
that o can be available at earliest when one of its specializations s; is available
and the transformation operation possibly associated with s; is finished. We
can realize these dependencies between the availability variables of objects in
an or-dependency using the procedure (meta constraint) domain_aeq_cb(R, L)
(see below), which was also used for model extensions relating to large nets of
arithmetic constraints in specified configuration problems (for details, see [12]).

8 now should be greater than zero.

domain_aeq-cb(R,L) : —

domain_aeq-cb_up(R, L), !,

touched(domain_aeq-cb_down, R, L, all).
domain_aeq-cb_up(R,L) : —

domain_aeq_-cbup_t2(L,[], Nullist),

length(L, Le), Z :: 1..Le,

element(Z, L, Nullist, R, [all, all,all, all]).
domain_aeq_cb_up_t2([], Nullist, Nullist).
domain_aeq-cb_up_t2([H|T], A, Nullist) : —

I, domain_aeq_cb_upt2(T, [0|A], Nullist).

For each specialization dependency of a specified configuration problem, the
procedure domain_aeq-cb(R,L) is called, R being the availability variable of
the or-object and L the availability variable list of the specializations. The call
of touched(domain_aeq_cb_down, R, L,all) ensures that values are deleted from
the domains of the variables in L (exception: special value zero) if the values are
deleted in the domain of R. The procedure domain_aeq_cb_up(R, L) ensures by
calling an element constraint that values are deleted from the domain of R if they
are removed from the domains of all availability variables listed in L. The element
constraint is a global constraint. In short, element(i,[e1,...,e,],CV) ensures
that CV = e;. In our model, this means that R is, in each generated problem
solution, equal to one availability variable of L. This gives us the guarantee
that the propagation will be done in the desired quality. Thus, the procedure
domain_aeq-cb(R, L) is also a global constraint that ensures the consistency
between availability value sets of an or-node and its specializations. By doing so,
a complete propagation between the availability variables in or-dependencies is
guaranteed.

Initial Reduction of Availability Variables After generation and activation
of the described availability constraints, the initial availability-variable domains
that belong to aggregated objects should be reduced before the configuration
process is started. This should be done bottom-up with respect to the specified
taxonomy. For each aggregated object o, the smallest value limit that is able
to fulfill the mazimum relation (see above) is calculated on the basis of the
availability-variable domains of the components of o. All values from (1, limit)
are deleted in avail(o). Of course, further domain reductions can follow, caused
by propagation due to the availability constraints of the model during the initial
reduction process.

Constraints between Availability and Existence It is intuitively clear that
object elements of configuration problems can be part of a problem solution if and
only if they are available in time. A remaining task is introducing transformations
of these constraints into our problem-solution model.

We can do this by extending the set of CE Constraints (see Section 3.2)
by constraints between availability variables and their associated existence vari-

\ A

f

ﬁ Ag_lm vh_zos V;A\

m o

Vrr 43 Vo=98 /\ V‘T 109
r

vi=17 v 25 vr 7 er 5 W— 102

X y z
V=306 w=27 v=59

Fig. 4. Taxonomy of Product a with Given Availabilities

ables. To ensure the described dependencies, it is enough to generate, for each
module object o, the following conditional constraints:

1. Ex_Var(o) =0 — avail(o) =0,
2. avail(o) =0 — Exz_Var(o) = 0 and
3. Ex_Var(o) =1 — avail(o) > 0.

4.3 Example of Time-Constrained Configuration

To understand better the way our configuration model works — and the exten-
sions introduced in the previous sections — let us now consider the following
example problem shown in Figure 4.

Given is the problem tof configuring the complex product a, which consists
of the components b, ¢ and d. The specification elements b, ¢ and d are abstract
elements. This means that b can be instantiated in the final product either
with e or f, ¢ with g, h or i, and d with j or k, and so on. The specified
components g, h,i,k,n,0,q,7,5,t,u,v,z,y and z are ground components (which
may be delivered by a supplier). For each of them, the earliest possible delivery
time is listed in the figure; v, is, for instance, the earliest availability time for s.

For the sake simplicity, we assume that all operation durations are zero. In
principle, however they could be greater than zero. On the other hand, resource
constraints relating to availability could also be integrated into the problem
specification.

Let the specified configuration problem be transformed into a correspond-
ing (constraint-based) problem-solution model following the description given in
Section 3. In addition to this transformation process, availability variables and
availability constraints are generated as described in Sections 4.1 and 4.2.

After processing the initial reduction of the availability-variable domains of
aggregated objects (see above) and following the domain reductions due to the
constraints realized in the solution model, we obtain the following variable do-
mains:
dom(avail(g)) = {0,107}, dom(avail(h)) = {0, 203}, dom(avail(i)) = {0, 402}, dom(avail(k))
= {0,111},
dom(avail(n)) = {0,43}, dom(avail(o)) = {0, 98}, dom(avail(q)) = {0,109},
dom (avail(r)) = {0,17}, dom(avail(s)) = {0, 25}, dom(avail(t)) = {0, 7}, dom(avail(u))
= {0,5}, dom(avail(v)) = {0,102},
dom(avail(x)) = {0,306}, dom(avail(y)) = {0,27}, dom(avail(z)) = {0, 59},
dom(avail(l)) = {0,17,25}, dom(avail(m)) = {0, 5,7}, dom(avail(p)) = {0, 102, 306},
dom(avail(e)) = {0,17,25}, dom(avail(f)) = {0, 98}, dom(avail(j)) = {0,109, 306},
dom(avail(b)) = {0,17,25,98}, dom(avail(c)) = {0,107,203,402}, dom(avail(d)) =
{0,109, 111, 306},
dom(avail(a)) = {0,109, 111, 203, 306, 402},

Now the main configuration process, which is described in Section 3.4 can
be started. In addition to the “conventional” questions, which can be answered
during the configuration process, we are now able to investigate time-relevant
questions as well. For instance, the user can observe that the earliest delivery
time for product a is 109.

Also, it is obviously possible to answer questions of the type mentioned
in the Introduction using the problem solution model. For instance, system
user are able to investigate, which configurations of a are available if they set
the latest delivery time to 203. This demand is equivalent with the interac-
tively given constraint avail(a) < 203. Because of the mazimum constraint be-
tween avail(a), avail (b), aivail(c) and avail(d) (see Section 4.2), the value 402
is deleted from dom(avail(c)) and the value 306 is removed from the domain of
avail(d). This immediately implies the deletion of 306 in dom(avail(j)) due to
the domain_aeq_cb constraints between avail(c), avail(g), avail(h) and avail(i)
and between avail(d), avail(j) and avail(k). The deletion of 402 in the domain
of avail(i) results in the implication of the nonexistence of i because of the
constraint avail(i) = 0 = Ez_Var(i) = 0 (c.f. Section 4.2). And so on.

As a result of the hard demand that the latest possible delivery time be 203,
our solution model deduces that neither the component i nor the component x
can be included in the final product.

The configuration process can now be continued in the familiar way (see
Section 3.4). Of course, reconfiguration processes can also be started after the
generation of a solution.

5 Conclusion

We have presented some fundamental information about our constraint-based
problem-solution model ConBaCon for the configuration and reconfiguration of
technical systems/industrial products. An idea of the complexity of the con-
figuration problems that can be tackled by the solution model was given by
describing the main elements of the corresponding specification language Con-
BaConL.

The problem-solution model — together with several extensions’ — was real-
ized using the CLP language CHIP. The resulting ConBaCon system was suc-
cessfully used with several realistic and abstract configuration problems, includ-
ing the configuration of power-supply systems for large electric motors and the
configuration of computer rack systems.

By substantially reducing the search space, the problem-solution model —
together with the underlying CLP system — allows an efficient configuration
process that can be flexibly controlled by user interactions. It is ensured that
each solution obtained is correct with respect to the problem specification and
the underlying constraint solver. In addition, the completeness of the solution
process is guaranteed.

The main focus of this paper was on novel model extensions that allow the
flexible solving of time-constrained configuration problems. Compared with other
configuration systems, this is an outstanding feature of the resulting problem-
solution model. Given the rather general nature of the extensions, we assume
that the key ideas presented here can also be integrated quite easily into other
constraint-based configuration systems or configuration libraries like ILOG Con-
figurator.

The new features of the problem-solution model were demonstrated by means
of an example.

Our extended configuration model offers a broad range of interesting tasks
for future work. For instance, the development of extensions for time-constrained
multiproduct configurations as well as investigations on the tighter integration
of scheduling systems into the problem-solution model are important areas of
future research.

7

References

1. Axling, T.: Collaborative Interactive Design in Virtual Environments. www.sics.se/
~axling/3dobelics.html (1996)

2. Axling, T., Haridi, S.: A Tool for Developing Interactive Configuration Applica-
tions. Logic Programming 26 (2) (1996) 147-168

3. Fleischanderl, G. et al.: Configuring Large Systems Using Generative Constraint
Satisfaction. IEEE- Intelligent Systems 13 (4) (1998)

4. Freuder, E. C.: The Role of Configuration Knowledge in the Business Process.
IEEE Intelligent Systems 13 (4) (1998)

7 Links to the corresponding publications are given in the paper.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Geller, S.: Come, and they will build it. Manufacturing Systems (June 1999)
. Gupta, L., Chionglo, J. F.;, Fox, M. S.: A Constraint Based Model of Coor-

dination in Concurrent Design Projects. www.ie.utoronto.ca/EIL/DITL/WET-
ICE96/ProjectCoordination/ (1996)

. Haselbock, A., Stumptner, M.: A Constraint-Based Architecture for Assembling

Large-Scale Technical Systems. Proceedings of International Conference on Expert
Systems Applications/ Al in Engineering. Edinburgh (1993)

. Van Hentenryck, P., Saraswat, V.: Constraint Programming: Strategic Directions.

J. of Constraints (2) (1997)

. John, U.: Constraint-Based Design of Reliable Industrial Control Systems. In: Ba-

jic, V.(eds.): Advances in Systems, Signals, Control and Computers. IAAMSAD.
Durban, South Africa (1998)

John, U.: Model and Implementation for Constraint-Based Configuration. Pro-
ceedings of the 11th International Conference on Applications of Prolog, INAP’98.
Tokyo (1998)

John, U.: Solving Large Configuration Problems Efficiently by Clustering the Con-
BaCon Model. Proceedings of the 13th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, IEA /AIE-
2000. Lecture Notes in Artificial Intelligence, Vol. 1821, Springer-Verlag, Berlin
Heidelberg New York (2000)

John, U.: Configuration and Reconfiguration with Constraint-based Modelling (in
German). PhD Thesis Technical University of Berlin. DISKI 255, Aka-Verlag,
Berlin (2001)

John, U., Geske, U.: Reconfiguration of Technical Products Using ConBaCon. Pro-
ceedings of the AAAT’99 Workshop on Configuration. Orlando (1999)

John, U., Geske, U.: Constraint-Based Configuration of Large Systems. In: Barten-
stein, O. et al: Web Knowledge Management and Decision Support. Revised Papers
of 14th International Conference on Applications of Prolog, INAP 2001. Lecture
Notes in Artificial Intelligence, Vol. 2543, Springer-Verlag, Berlin Heidelberg New
York (2003)

Van Parunak et al.: Distributed Component-Centered Design as Agent-Based Dis-
tributed Constraint Optimization. Proceedings of the AAAT’97 Workshop on Con-
straints and Agents. Providence (1997)

Pasik, A. J.: The Configuration Invasion. Report, Lazard Fréres & Co. LLC,
www.selectica.com/html/articles/Lazard1l.html. New York (1998)

Sabin, D., Freuder, E. C.: Configuration as Composite Constraint Satisfaction.
Proceedings of AAAT’96. Portland (1996)

Sabin, D., Weigel, R.: Product Configuration Frameworks - A Survey. IEEE- In-
telligent Systems 13 (4) (1998)

Stumptner, M.: An Overview of Knowledge-Based Configuration. AT Communica-
tions 10 (2) (1997)

