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Abstract. Simulation is a proper approach for supporting the goal-
oriented design and redesign of real supply nets.
In this paper we present our constraint-based production planning com-
ponent which is integrated in our simulation tool SNS for realistic emu-
lation of intelligent/ advanced planning behaviour inside companies of a
supply net.
Due to the generation of several types of redundant constraints inside
the planning model, the planning component is able to produce batch-
oriented plans that fullfil given customer demands under simultaneous
consideration of part-availability constraints, storage-capacity constraints
and production-capacity constraints. Additionally, several optimization
objectives can be taken into account.

1 Introduction

Nowadays, the goal-oriented design/ redesign of planning processes for industrial
supply nets becomes more and more important. On the one hand we can observe
the continuing trend to outsource parts of the own production which results
in larger and closely coupled supply networks. On the other hand the proper
assessment and operation of the supply nets is essential to assure and enlarge
the market position.

Because of the high complexity and dynamics inherent to supply nets, the
design/ redesign of supply nets is rather complicated. It is general accepted that
especially the using of powerful simulation approaches is a suitable way to takle
the problem.

Planning and Control tasks in real supply nets are done by humans and/or
by planning systems. In large companies, the used planning systems are recently
more often advanced planning systems which use constraint technology to takle
also more advanced planning problems and to obtain better plans.

So we can find a lot of different planning behaviours in real supply nets. A
crucial issue regarding the quality of supply-net simulation software is wheter
the software is able to emulate the different types of planning.

In other words, software for supply-net simulation which should be usable
as universal as possible must contain also an advanced planning component
that allow the modeling/emulation of different (intelligent) planning behaviours
which can be found in real companies (cf. e.g. [6], [2]).



We have developed a prototypical advanced planning component (SNS-APS)
which is responsible for the emulation of advanced planning methods inside our
simulation software SNS that was only be able to emulate the traditional pro-
duction planning methods, like MRPII, before. The realization of the planning
component was done using ILOG OPL (cf. [3]). That is, we used ILOG OPL

Studio (cf. [4]) as development environment and the ILOG OPL Studio Compo-

nent Libraries Java API (cf. [5]) to connect the solver to SNS which is written
in Java. Because of the general nature of our approach, the proposed constraint
model can also be realized with other finite domain constraint software.

In the next section we describe the class of production planning problems
which is adressed by the advanced planning component developed by us. Then
we outline the basic constraint model for the solution of the adressed problem
types together with some used search heuristics. As expected, the basic solution
model is not sufficient for the general case. So we had to deduce redundant
constraints with the intention to achieve a further significant reduction of search
space. These redundant constraints are described in Section 3. A simulation
example using the presented planning component is given in Section 4. Finaly,
we will give a conclusion and some remarks on future work.

2 Constrained Batch-Oriented Production Planning

The initial intention for the planning component was to enable the generation
of production output plans (and production release plans) for producing compa-
nies which fullfil given problem constraints. Associated with that intention, we
had the objective to ensure a high degree of universality regarding the class of
processable problems (see below). In the case that a given problem is recognized
as unsolvable (inconsistent constraint set), the system inference should compute
reasons for the inconsistency if possible. The identified bottle necks can be used
as input for the communication to the planning systems of regarding supplier
companies or customers in order to find a proper relaxation of the planning
problem. Intrinsically, this has the potential for simulation and realization of
novel distributed planning processes.

2.1 Planning Problem

Let us consider the general case of an arbitrary producing enterprise (see Fig-
ure 1) which has to plan its output over a given planning horizon (τ) which
consists of several time slices/ periods (t1, . . . , tn). The enterprise is able to
produce a set of different product types (Variants).

For each product type g, a finished good inventory (inventory(g)) may exist
which can be limited by a given storage capacity and by a demanded minimal
inventory (inventory constraints). For the production of a product of type p, a
set of parts (parts(p)) is required1 . That way, for each enterprise, a set Parts

1 The amounts of needed parts is stored in a bill of material (BOM).
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Fig. 1. Scheme of a very simple supply chain

exists that contains all identifiers of parts which can be used in production. For
each part type p, a part inventory (part inventory(p)) may exist. Like in the
case of finished goods inventories, the part inventories are also restricted by given
capacity constraints (part inventory constraints) and lower limits. Regarding the
refilling of the part inventories by the suppliers, some availability information

(availability constraints) exist depending on the current part inventory level, the
amount of parts in transit, and the capacity of the corresponding supplier com-
pany. In the normal case, the amount of production which can be done in a time
slice t is restricted by existing production capacitiy constraints (capacity(t))2.

Coarsly said, the core planning problem consists in planning the produc-
tion of demanded products in such a way that they can be delivered to the
customers with the demanded amount at the desired delivery time/ delivery
period while taking into account all given constraints.

The complexity of the problem could be increased by the fact that the produc-
tion of a given product type p is only possible in fixed batchsizes (batchsize(p))
due to technical restrictions. In the following, we call production planning prob-
lems which contain batch-size constraints batch-oriented production planning

problems.
In addition, several optimization objective – like minimizing the inventory

deviations from given desired inventory values – can be part of the planning
problem.

We can sum up the customer demands that way that we have for each product
type p and for each time slice t of the planning horizon a tupel [p, amount, t]
which represents the overall demand regarding product type p for time slice t.

2.2 Frame Model

It can be quite easily recognized that the described planning problem can be
modeled in a rather declarative way by using finite domain variables and con-

2 For reasons of simplicity, we restricted us for the first approach to cases where each
producible product type needs one unit of production capacity.



straints between the variables. Now we want to present the essentials of the
constraint-based frame model which was used as the basis of our planning com-
ponent. The main variables and main constraints of the frame model are schema-
tized in Figure 2.
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Fig. 2. Frame Model Variables and Constraints

Regarding the planning horizon, we assume that it consists of the connected
time slices t1, . . . , tn and is represented by τ = t1, . . . , tn. In the real applica-
tion, we differentiate between the output-planning horizon and a release-planning

horizon. For reasons of simplicity, we will restrict us to the consideration of the
output-planning horizon whenever we can.

Model Constants We can identify several constants which occur in problems of
the described problem class. So we have an initial inventory for each producible
variant v at the begin of the planning horizont (initialInv(v)), initial part in-
ventories for each part p (initPartInv(p)), fixed over-all production capacities



(productionCapacity(t1), . . . , productionCapacitity(tn)), the work in process –
differentiated regarding the different variants (wip(v1), . . . , wip(vs)) – and limits
for each product inventory (desiredProductInvMin, desiredProductInvMax)
and part inventory (desiredPartInvMin, desiredPartInvMax).

The delivery of parts p in period i is restricted by given supplier capacities
(supplierCapacity(p, i)) which are also constants of our model.

The production batchsizes (batchsize(v1), . . . , batchsize(vn)) are treated as
time-independent model constants.

In addition to the allready mentioned model constants, we have a data struc-
ture which stores the bill of materials (BOM) for the producable product types.
For a product type v and a part p, bom(v, p) is the amount of p which is needed
to produce one pice of v.

For each period i, we have one over-all demand per variant v (see above)
which is denoted by demand(v, i).

Model Varibles Besides constants, we can identify several variables which will
be represented by finite domain variables of the frame model: The planned pro-
duction output for a product variant v ∈ Variants in period i ∈ τ is represented
by the FD-variable production(v, i). That way, we have card(Variants)×card(τ)
production-output variables in the frame model. For each period i and part p, we
have a variable partDemand(p, i) which represents the amount of part p needed
for production in period i. The respected part amounts can be taken from the
corresponding part inventories or from just arriving part deliveries if allowed.

For each period i and for each variant v, we have a FD-variable estInv(v, i)
which represents the estimated inventory at the end of period i. In analogy, we
have a variable estPartInv(p, i) for each p ∈ Parts and i ∈ τ .

For realizing the batchsize constraints (see below), we introduce for each
pair [v, i] with v ∈ Variants and i ∈ τ , the batchsize-related constraint variables
batchproduction(v, i), batchnumber(v, i), carryover(v, i) and carryoverflag(v , i).

The respective variable batchproduction(v, i) is the amount of product type
p which is planed to be produced in batches which are started inside period i.
The number of full batches is batchnumber(v, i). carryover(v, i) is respectively
the amount of product type p which is planned to be produced in period i + 1
but belongs to a batch which is planned to be started in period i. If this amount
is greater then zero, the boolean constraint variable carryoverflag [v, i] gets the
value one, otherwise it gets the value zero (see below).

Following our intention to create a frame model where each assignment of
the model variables represents a soltuion, we have to introduce now the essential
problem constraints into the model.

Demand-originated Constraints The following constraints must be fullfiled
between the finished-goods inventories, the production output and the demand:

– ∀v ∈ Variants : estInv(v, 1) = initialInv(v) + wip(v) − demand(v, 0), 3

3 0 is the actual time period with running production.



– ∀v ∈ Variants∀i ∈ τ :
i > 1 → estInv(v, i) = estInv(v, i − 1) + production(v, i) − demand(v, i).

Capacity Constraints Regarding the production capacity, the following con-
straints have to be fullfiled:

– ∀i ∈ τ :
∑

v∈Variants
production(v, i) ≤ productionCapacity(i).

To ensure the the fullfilment of the inventory-capacity constraints, the following
constraints have to be integrated into the frame model:

– ∀v ∈ Variants∀i ∈ τ : estInv(v, i) ≤ desiredProductInventoryMax(v),
– ∀v ∈ Variants∀i ∈ τ : estInv(v, i) ≥ desiredProductInventoryMin(v).

In analogy, for the part inventories, the constraints

– ∀p ∈ Parts∀i ∈ τ : estPartInv(v, i) ≤ desiredPartInventoryMax(v),
– ∀p ∈ Parts∀i ∈ τ : estPartInv(v, i) ≥ desiredPartInventoryMin(v)

have to be realized.

Availability Constraints Regarding the part availability, the following con-
straints are essential:

1. ∀p ∈ Parts : estPartInv(p, 1) =
min(initPartInv(p) −

∑
v∈Variants

production(v, 1) · bom(v, p)
+ supplierCapacity(p, 1), desiredPartInventoryMax(p)),

2. ∀p ∈ Parts∀i ∈ τ : i > 1 → estPartInv(p, i) =
min(estPartInv(p, i − 1) −

∑
v∈Variants

production(v, i) · bom(v, p)
+ supplierCapacity(p, i), desiredPartInventoryMax(p)),

3. ∀p ∈ Parts :∑
v∈Variants

production(v, 1) · bom(v, p)
≤ initPartInv(p) − desiredPartInventoryMin(p)),

4. ∀p ∈ Parts∀i ∈ τ : i > 1 →∑
v∈Variants

production(v, i) · bom(v, p)
≤ estPartInv(p, i − 1) − desiredPartInventoryMin(p)).

The minimum constraint (min) is used in constraint 1 and constraint 2, because
it is possible that the supplier capacity can not be used exhaustively because of
the existing limits of a part inventory. Constraint 3 and 4 ensure that enough
parts are available for the planned production. They may be relaxed depending
on the used storage policy.

Batchsize Constraints The batchsize constraints have to ensure that each
sucessful assignment of the model variables represents a production output plan
that takes into account the demanded production batchsizes of the different
product types. This is guaranteed by introducing the following constraints into
our model:



1. ∀v ∈ Variants∀i ∈ τ : i > 1
→ production(v, i) = batchproduction(v, i)+carryover(v, i−1)−carryover(v, i),

2. ∀v ∈ Variants∀i ∈ τ : carryover(v, i) < batchsize(v),
3. ∀v ∈ Variants∀i ∈ τ : batchoutput(v, i) = batchsize(v) · batchnumber(v, i).

Constraint 1 embodies the dependencies between the production in a period and
the part of it which is produced in full batches inside the period. Constraint 2
fixes the fact that a batch can overlap to the next period at most with batchsize−

1 units. Constraint 3 finally ensures that batchoutput is in each case an undivided
multiple of the corresponding batchsize.

Because we wanted to allow also the representation of problems where the
number of overlapping batches is restricted per period, we have integrated into
the model the constraints

– ∀v ∈ Variants∀i ∈ τ : carryoverflag(v, i) = 1 ↔ carryover(v, i) > 0

for the boolean constraint variables carryoverflag .

2.3 Problem Solving within the Frame Model

So far, we have introduced all essential constraints of the frame model. That
means, if it succeeds to generate an assignment for all variables of the model, a
solution for the modelled problem is found.

As expected we have found, that a lot of problems could not be solved in an
acceptable time although we have integrated several search heuristics.

The basic idea of the search strategy follows the iteration approach of the
MRP algorithm. The iteration runs along the planning periods. The output plans
and estimated part inventories for a period i are computed based on correspond-
ing values at period i-1. Our variable choice works in the same way: it chooses
the plan and estimated inventory variables along the planning periods. Within
each period, we first label the variables with the smallest domain, namely the
carryoverflags . Then we label the variables for the production output plan. The
most other variables within a period will be derived by constraints as soon as
the output plan variables are ground.

For labeling of the output variables we make use of the production batch sizes
and of the PreDemand (see below). We try the values for the output variables
starting with a value derived from the respective desired inventory value and the
preDemand. If this value violates the current constraint set, we jump with step
width batchsize alternating up and down around the start value.

If values for early chosen variables cause a conflict in later steps, backtracking
to the earlier choice points will occur. This requires a heavy computational effort.
To overcome this problem we need to have a stronger propagation inside the
model. One possible way to achieve this is the logical deduction and model
integration of proper redundant constraints.

In the following section we describe several types of redundant constraints
which we have developed and which we have succesfully used to speed up the
problem solution process for a lot of problems due to the achived substantial
search-space reduction.



3 Integrating Redundant Constraints

Redundand constraints are constraints that not explicitely occur in the “nat-
ural specification” of a problem. The addition of redundant constraints to a
constraint model do not cut the solution space, but often the search space is
reduced drastically.

During analysing problem models of the given problem class, we could iden-
tify a couple of dependencies which were not explicitely given in the frame model
and which have the potential to cause an additional search-space reduction in
early phases of search. In the most cases, the identified dependencies have con-
cern with cumulations of constraint variables that are part of the frame model.

In the following we want to present the most important of them.

3.1 Global Constants

There are several constants implicitely given in a specified planning problem
which can help for better characterizing the planning problem. The dependencies
given in the initial specification have mostly local character. In contrast, the
deducable constants reflect a more global view.

Capacity Potential The constant CapaPot is the maximal capacity amount
which can be let unused in every resulting plan regarding a given planning prob-
lem. CapaPot can be calculated by the following formula:
CapaPot =

∑
i∈τ

productionCapacity(i)
+

∑
v∈Variants

(initialInv(v)−desiredProductInvMin(v)+wip(v))
−

∑
v∈Variants

∑
i∈τ

demand(v, i)

Global Predemand The constants GPred(i) with i ∈ τ is a meassure for the
minimum amount of products that must be taken from the stock in period i to
fullfil the constraints of the given planning problem. For each x ∈ τ ,a constant
GPred(x) can be calculated in following way:
GPred(x) =

∑
v∈Variants

∑
i∈τ

demand(v, i) −
∑

v∈Variants
wip(v)

−
∑

i∈{1...i−1}

∑
v∈Variants

demand(v, i)+
∑

i∈{1...i−1} productionCapacity(i)

Quite similar to the constants GPred(1), . . . , GPred(n) but stronger in some
aspects of the target propagation are the constants minProdSumForFuture(x)
for x ∈ τ .
minProdSumForFuture(x) =

maxl(0, maxq∈τ :q>x(
∑

r∈τ :r>x&r<=q

∑
v∈Variants

demand(v, r)
−

∑
r∈τ :r>x&r<=q

ProductionCapacity(r))

Other Sums of constants Other constants (availPartsCum) that can be used
to reduce the search space are the maximal amounts of available parts of each
part type cumulated over the planning horizon. They are calculated on basis of
the known supplier capacities, but they do not consider the fact that the part



stocks are limited in the normal case (see below). That’s why, they are upper
bounds for the amounts of parts that are planned to be used in each producible
plan.

Besides the listed constants, we use other constants in our realization which
are sums of existing frame-model constants:

– demandCum(v, i) =
∑

x∈{1...i} demand(v, x),

– demandSumCum(i) =
∑

v∈Variants
demandCum(v, i),

– prodCapaCum(i) =
∑

x∈{1...i} ProductionCapacity(x).

3.2 Cumulated Variables/ Cumulating Constraints

We introduce in the following several FD-variables which are set equial by con-
straints to cumulations of respective variables of the frame model. Together with
the introduced constants, they bulit the basis for the formulation of redundant
constraints. Doing the realization of the presented cumulation constraints, it is
wise to use recursive constructions because only that way, we will gain a stronger
propagation inside the solution model.

Cumulated Production and Cumulated Batch Production Regarding
the production, cumulations of production variables with respect to the different
product types are interesting for us on the one hand. On the other hand also
the cumulation of the sums of production in the periods can be useful. So we
introduce the following constraints variables together with the constraints for
the calculation:

– productionCum(v, i) =
∑

x∈{1...i} production(v, x),

– productionSumCum(i) =
∑

v∈Variants
productionCum(v, i).

In analogy, we introduce

– batchproductionCum(v, i) =
∑

x∈{1...i} batchproduction(v, x),

– batchproductionSumCum(i) =
∑

v∈Variants
batchproductionCum(v, i).

– batchnumberCum(v, i) =
∑

x∈{1...i} batchnumber(v, x),

for the production under batch view.

Difference Variables Other important variables for restricting the search in
our model (see below) are DiffCapaProductionCum(i), whereat i ∈ τ :

– DiffCapaProductionCum(i) = prodCapaCum(i) − prodSumCum(i)



Accumulated Inventory Variables To facilitate the description of relations
between demands, production capacities and inventory levels, we introduce for
each period the constraint variable/ constraint:

– estInvSum(i) = sumv∈VariantsestInv(v, i).

Besides the listed cumulated variables and cumulating constraints, there are
others in our model realization which are constructed using the same prin-
ciple. Among them, the variables partsUsableCum(p, i) with p ∈ Parts and
i ∈ τ represent the amount of parts of type p which is available till the end
of period i. Thereby, the given upper limits for the inventories are consid-
ered. Note, this and the fact that partsUsableCum(p, i) are constraint variables
(i ∈ τ, p ∈ Parts) instead of constants are the main differences in comparsion
with availpartCum(p, i) (see above).

To limit the domains of partsUsableCum(p, i) (i ∈ τ, p ∈ Parts) in the initial-
ization phase of the solution model, it is useful to set the following constraints:

– ∀p ∈ Parts∀i ∈ τ : partsUsableCum(p, i) ≤ availpartCum(p, i)

In the folowing section, we give an overview of the most important redun-
dant constraints which we have integrated into the frame model. They give a
significant contribution for the propagation realized in SNS-APS.

3.3 Redundant Constraints

Copy Frame Model Constraints to Cumulation Variables Several con-
straints which are part of the frame model are valid in a similar manner for their
cumulations. So we can introduce for instance the following constraints which
describe, basically, the dependencies between the cumulated number of produced
batches and the cumulated planned production output for all periods and for all
product types:

– ∀i ∈ τ∀v ∈ Variants :
carryoverflag(v, i) = 0 ↔ productionCum(v, i)mod batchsize(v) = 0,

– ∀i ∈ τ∀v ∈ Variants :
batchnumberCum(v, i) · batchsize(v) ≥ productionCum(v, i),

– ∀i ∈ τ∀v ∈ Variants :
(batchnumberCum(v, i)− 1) · batchsize(v) ≤ productionCum(v, i),

– batchproductionCum(v, p) = batchsize(v) · batchnumberCum(v, p).

Constraints Between Cumulated Production Outputs and Demands
It is obviously, that – if the planning problem should be solved successfully – the
cumulated demand for a product type must be smaler or equal than the cumu-
lated production output of the product plus the available part of the inventory
for each period. Otherwise, production can only be procecced in an amount
which is smaler or equal than the sum of demands plus the usable free storage.
These facts can be used for further reduction of the respecting search spaces:



– ∀v ∈ Variants∀i ∈ τ :
productionCum(v, i) + wip(v) + initialInv(v)− desiredProductInvMin(v)
≥ demandCum(v, i),

– ∀v ∈ Variants∀i ∈ τ :
productionCum(v, i) ≤ demandCum(v, i) + desiredProductInvMax

− desiredProductInvMin

If we take into consideration in addition the production capacities and the
constants GPred(1), . . . , GPred(n), we can integrate into our model the con-
straints:

1. DiffCapaProductionCum(n) ≤ CapaPot, where n is the last period of the
planning horizon,

2. ∀i ∈ τ : estInvSum(i) ≥ GPred(i) +
∑

x∈{i+1,...,x} DiffCapaOutput(i)

3. ∀i ∈ τ : productionSumCum(i) ≥
∑

v∈Variants
demandCum(v, i)

+ minProdSumForFuture(i) +
∑

i∈τ :i>p
DiffCapaProductionCum ,

4. ∀i ∈ τ : productionSumCum(i) ≤
∑

x∈{1,...,i} minl(desiredProductInvMaxSum

−
∑

v∈Variants
estInv(v, x−1)+

∑
v∈Variants

demand(v, x), P roductionCapacity(x))

Briefly said, the constraints 2, 3 and 4 ensure that enough production capac-
ity will be used if it is already known that in later periods not enought capacity
is available on the one hand or if – on the other hand – it is already clear, that
some existing capacity in later periods will not be used.

Constraints Between Production and Availability After realizing the ad-
ditional constraints so far as described, we found a drastically improved runtime
behaviour of the planning component. Some planning problems kept their bad
run times. A new quality stage regarding this problems was reached by integrat-
ing redundant constraints between the production output and the availability
respectively between their cumulation variables. Two of them are the following:

1. ∀p ∈ Parts∀i ∈ τ :
partDemandCum(p, i) =

∑
v∈Variants

productionCum(v, i) · bom(v, p),
2. ∀i ∈ τ∀p ∈ Parts : partDemandCum(p, i) ≤ partsUsableCum(p, i).

4 Sample Scenario

The simulation experiments for the proof of concept were based on an artificial,
but realistic scenario. An OEM4 produces three products (A, B, and C). Each
product consists of three parts. While parts p1 and p2 are contained in each
product type, parts p3, p4 and p5 occur only in products A, B, and C, respec-
tively. The OEM has five suppliers, one for each part type. Further, a competitor
of the OEM belongs to the supply network. This competitor produces a product
X which also contains part p5. Unfortunately, the competitor also obtains p5

4 original equipment manufacturer



from supplier 5. Supplier 5 has aligned it’s capacity with the demand from it’s
customers in a way that it’s production system is almost completely utilized. To
increase capacity, supplier 5 would need to build a new production line. Supplier

5 would not hesitate to do this if it would recognize a stable demand increase.
But installing a new production facility lasts several weeks.

For arbitrary reason, competitors demand for p5 increases rapidly and sud-
denly. Supplier 5 starts to build the new production line, but the demand increase
starts six weeks before the capacity is adjusted. During this period, supplier 5

cannot fulfill all orders. Supplier 5 has to distribute it’s production amount
between it’s two customers. A usual policy is to calculate delivery amounts in
proportion of demand. Since the competitor increased demand, the proportion of
OEMs demand decreased. The delivery amount decreases too. As a consequence,
the inventory level of p5 at OEM falls, and in case of constant production rate
released production orders for product C cannot start due to missing parts. This
may lead to unused production capacity and to falling product inventories. In
worst case, customer orders cannot be fulfilled in time. We investigated many
different simulation experiments based on that scenario. Mainly we compared
the question if use of an APS could help the OEM to mitigate the effects of this
situation. We assumed that a supplier would inform the OEM in case of such
demand increase, or any other kind of capacity shortage. That is, we defined
the supplier capacity parameter of the OEM according to the expected supply
situation 5. This parameter is used by the OEM’s APS system to calculate part
availability.

4.1 Comparison of Simulations with and without APS System

The main result of the experiments is that the APS system was able to cope
with the situation in a way that no customer order became late, no capacity
was lost and part orders remained relatively stable. The APS computed a pro-
duction plan like an experienced human planner. As soon as the material for
product C was not available completely, the remaining production capacity was
planned to be used to produce other products which were not affected by the
shortage. These products were produced to stock, i.e. the inventory level was
increased. As soon as supplier 5 had delivered the missing parts, the production
ratio between the products was changed. Then, the production of the stocked
products was reduced and orders were filled from stock with reducing the inven-
tory level to the initial value. In doing so, the remaining capacity was used to
produce product C and to fill the product inventory up to optimal level. The
sum over all products in product inventory remained constant. Despite this is a
very important result from a simulation and process design point of view, it is
not the most interesting point regarding the focus of this paper. That’s why, we
want to point out in the next section a comparison of two different APS system
versions, namely one which uses cumulating constraints and a former version
without these constraints.
5 Later we will develop automated communication between the APS systems of dif-

ferent companies to enable automated, collaborative problem solving processes.
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Fig. 3. APS runtimes with and without cumulating constraints

4.2 Comparison of Simulations by APS With and Without
Cumulating Constraints

The scenario described above was simulated with several versions of the APS. As
long as we did not use the cumulating constraints, the runtime of the APS was
dissatisfactory. Even if the APS computed a plan in a time of few minutes, this
is not sufficient for the application as planning node in a supply net simulation:
during a simulation run with 10 companies using an APS once a week and a
simulation time of one year, 520 APS runs occur. If one APS run would need
only one minute, the over-all simulation time would be around 9 hours, which is
not acceptable for an interactive process design approach. Hence, a runtime of
few seconds instead of minutes is required.

The APS with cumulating constraints reached this goal for the given scenario
as we show in Figure 3. The runtime of the APS without cumulating constraints
is for the difficult planning problems greater than 60 seconds, with cumulating
constraints the runtime is stable between one and two seconds.

Figure 4 provides a specific view to the planning results. The 3D charts
show for each APS run and for each planning period of the planning horizon
the deviation of the planned finished goods inventory from the optimal value.
That is, the x-axis shows the several planning system runs the OEM performed.
At each APS run, a plan for the production output and the estimated finished
goods inventory will be created. The deviation of the estimated inventory from
the optimal value is a measure for the quality of the plan. The higher the value is,
the worse is the plan. The plan quality can vary over the periods of the planning
horizon. Hence, along the y-axis for each APS run, the quality of the plan is
indicated by the z-value.

The graphics show the problem which comes sooner and sooner to our OEM.
At the first planning runs, the problem is foreseeable in late planning periods.
With each planning run, the problem becomes more evident. At the time when
APS run number 17 is executed, the problem is present. After that, it is solved,
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Fig. 4. APS planning results: deviation of planned inventory from optimal level

i.e. the supplier has adapted it’s capacity and deliveres the missing parts. From
this time, the quality of the plans is perfect, the deviation value is equal to zero.

The quality charts show another important effect of the redundant con-
straints: the solution quality could be slightly improved. The peaks of the devi-
ations are not constantly as high as in the case without cumulating constraints,
and in the left corner more optimal values are reached.

5 Conclusion

In this paper, we have introduced model and realization of a constraint-based
planning system for solving batch-oriented production planning problems. This
planning system is part of a supply network simulation tool which is dedicated
to support effective designs and redesigns of information flow and planning pro-
cesses in real supply networks.

Due to the integration to the simulation approach, the planning system had
to fulfill strong execution efficiency requirements. On the one hand, runtimes of
few seconds are the ultimate goal to ensure interactive simulation. On the other
hand, the planner has to solve complex planning problems to fulfill customer
demands while considering production capacity, warehouse capacity and part
availability constraints simultaneously.

To reach the goal, we build a constraint model not only with basic constraints
between production output, estimated inventories, production releases and part
demands, but also with a lot of redundant constraints. The most important
class of these redundant constraints are the cumulating constraints which bring



information about bottlenecks in later planning periods to the decision on plan
values for early plan periods.

These constraints improved the efficiency of the constraint solving dramat-
ically. The large number of possible scenarios does not allow to state a general
ratio of runtimes, but for one specific simulation scenario including 22 runs of the
planning systems, the runtime for difficult planning situations could be improved
by factor 25.

Despite this enjoyable stage of the APS development, a lot of work is still
open. One area for further improvements is for instance the extension and the
more comprehensive embedding of cumulating constraints regarding the part
availability. Our presented simulation results were still produced without com-
prehensive integration/realization of cumulating availability constraints. A sec-
ond area for improvement is the search strategy. We will investigate if it is
possible to replace the described sequential planning along the planning periods
by a more general approach if enough redundant and cumulating constraints are
introduced. For the case that this will be feasible, we expect a further improved
quality of the plans.

Beside the further improvement of the planning behaviour, a lot of work re-
mains regarding conflict analysis and conflict handling. Now, the APS is able to
analyze first conflict situations and to communicate the analysis results to it’s
company agent in the simulation model. The company agent needs to be en-
hanced by dedicated communication and reaction mechanisms to solve the iden-
tified problems in an appropriate way. For example, it can activate it’s capacity
adjustment mechanism or it can look for alternative suppliers. Such mechanisms
are described, for example, in [1].
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